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Abstract This tutorial describes the mean-field variational Bayesian approximation to
inference in graphical models, using modern machine learning terminology rather than sta-
tistical physics concepts. It begins by seeking to find an approximate mean-field distribution
close to the target joint in the KL-divergence sense. It then derives local node updates and
reviews the recent Variational Message Passing framework.
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1 Introduction

Variational methods have recently become popular in the context of inference problems,
(Attias 2000; Winn and Bishop 2005). Variational Bayes is a particular variational method
which aims to find some approximate joint distribution Q(x; θ) over hidden variables
x to approximate the true joint P(x), and defines ‘closeness’ as the KL divergence
K L[Q(x; θ)||P(x)]. The mean-field form of VB assumes that Q factorises into single-var-
iable factors, Q(x) = ∏

i Qi (xi |θi ). The asymetric K L[Q||P] is chosen in VB principally
to yield useful computational simplifications, but can be viewed as preferring approximation
where areas of high Q are accurate, rather than areas of high P . This is often useful because
if we were to draw samples from, or integrate over, Q, then the areas used will be largely
accurate (though they may well miss out areas of high P).
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1.1 Problem statement

We wish to find a set of distributions {Qi (xi ; θi )} to minimise the KL-divergence:

K L[Q(x)||P(x |D)] =
∫

dx .Q(x) ln
Q(x)

P(x |D)

where D is the observed data and x are the unobserved variables and

Q(x) =
∏

i

Qi (xi |θi )

We sometimes omit the notational dependence of Qi on θi for clarity. As the Qi are
approximate beliefs, they are subject to the normalisation constraints:

∀i.
∫

dxi Qi (xi ) = 1.

1.2 VB approximates joints, not marginals

Q approximates the joint, but the individual Qi (xi ) can be poor approximations to the true
marginals Pi (xi ). The Qi (xi ) components should not be expected to resemble—even
remotely— the true marginals, for example when inspecting the computational states of
network nodes. This makes VB considerably harder to debug than algorithms whose node
states do have some local interpretation: the optimal VB components can be highly counter-
intuitive and make sense only in the global context.

Figure 1a shows a graphical model of an extreme example of mean-field VB breaking
down, as a warning for the algorithms that follow. Suppose a factory produces screws of
unknown diameter μ. We know the machines are very accurate so the precision γ = 1/σ 2

of the diameters is high. However no-one has told us what the mean diameter is, except for
a drunken engineer in a pub who said it was 5 mm. We might have a prior belief π that μ is
say 5± 4 mm (the 4 mm deviation reflecting our low confidence in the report.) Suppose we
are given a sealed box containing one screw. What is our belief in its diameter x? The exact
marginal belief in x should be almost identical to our belief in μ, i.e. 5 ± 4 mm. Figure 1b
shows one standard deviation of the true Gaussian joint P(μ, x) and the best mean-field
Gaussian approximate joint Q(μ, x). As discussed above, this Q is chosen to minimise error
in its own domain so it appears as a tight Gaussian. Importantly, the marginal Qx (x) is now
very small, and not at all equal to the marginal P(x). We emphasise such cases because we
found them to be the major cause of debugging time during development.

We also want to find the model likelihood, P(D|M) for model comparison. This quantity
will appear naturally as we try to minimise the KL divergence. There are many ways to
think about the following derivations, which we will see involves a balance of three terms
called lower bound, energy and entropy. The derivation presented here begins by aiming to
minimise the above KL divergence. For example, other equivalent derivations may begin by
aiming to maximise the lower bound.
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Fig. 1 a Graphical model for a
population mean problem. Square
nodes indicate observed
variables. b True joint P and VB
approximation Q

(a) (b)

1.3 Rewriting KL optimisation as an easier problem

We will rewrite the KL equation in terms that are more tractable. First we flip the numerator
and denominator, and flip the sign:

K L[Q(x)||P(x |D)] =
∫

dx .Q(x) ln
Q(x)

P(x |D)
= −

∫

dx .Q(x) ln
P(x |D)

Q(x)

Next, replace the conditional P(x |D) with a joint P(x, D) and a prior P(D). The reason
for making this rewrite is that for Bayesian networks with exponential family nodes, the
log P(x, D) term will be a be a very simple sum of node energy terms, whereas log P(x |D)

is more complicated. This will simplify later computations.

P(x, D) = P(x |D)P(D)

= ln P(x |D) = ln P(x, D)− ln P(D)

K L[Q(x)||P(x |D)] = −
∫

dx

(

Q(x) ln
P(x, D)

Q(x)
− ln P(D)

)

The log P(D) term does not involve Q so we can ignore it for the purposes of our mini-
misation.

Finally, define

L[Q(x)] =
∫

dx

(

Q(x) ln
P(x, D)

Q(x)

)

So that

K L[Q(x)||P(x |D)] = −L + ln P(D)

So to minimize the KL divergence, we must maximize L .
The maximisation is still subject to the normalisation constraints:

∀i.
∫

dxi Qi (xi ) = 1

123

Author's personal copy



C. W. Fox, S. J. Roberts

L[Q(x)] are lower bounds on the model log-likelihood, P(D) = P(D|M) (where we
generally drop the M notation as we are working with a single model only). The best bound
is thus achieved when L[Q(x)] is maximised over Q. The reason for L being a lower bound
is seen by rearranging as:

ln P(D) = L[Q(x)] + K L[Q(x |D)||P(x)]
Thus when the KL-divergence is zero (a perfect fit), L is equal to the model log-likelihood.
When the fit is not perfect, the KL-divergence is always positive and so L[Q(x)] < ln P(D).

Another rearrangement gives

L[Q(x)] = ln P(D)− K L[Q(x |D)||P(x)]
showing that the KL divergence is the error between L and ln P(D).

1.4 Solution of free energy optimisation

We now wish to find Q to maximise the lower bound, subject to normalisation constraints,

L[Q(x)] =
∫

dx Q(x) ln
P(x, D)

Q(x)

=
∫

dx Q(x) log P(x, D)−
∫

dx Q(x) ln Q(x)

= 〈E(x, D)〉Q(x) + H [Q(x)]
where we define energy as E = ln P and entropy1 as H [Q(x)] = − ∫

dx Q(x) ln Q(x). For
exponential models, this will become a convenient sum of linear functions. By the mean field
assumption:

L[Q(x)] =
∫

dx

(
∏

i

Qi (xi )

)

E(x, D)−
∫

dx

(
∏

k

Qk(xk)

)
∑

i

ln Qi (xi ) (1)

Consider the entropy (rightmost) term. We can bring out the sum:

∑

i

∫

dx

(
∏

k

Qk(xk)

)

ln Qi (xi )

Consider the partitions x = {xi , x̄i } where x̄i = x\xi .

=
∑

i

∫

dxi d x̄i Qi (x̄i )Qi (xi ) ln Qi (xi )

=
∑

i

〈∫

dxi Qi (xi ) ln Qi (xi )

〉

Q(x̄i )

=
∑

i

∫

dxi Qi (xi ) ln Qi (xi )

Substituting this into the right term of Eq. 1:

L[Q(x)] =
∫

dx

(
∏

i

Q(xi )

)

E(x, D)−
∑

i

∫

dxi .Q(xi ) ln Q(xi ) (2)

1 This is Shannon entropy, used by convention.
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Now look at and rearrange the energy (left) term of Eq. 2, again separating out one variable:
∫

dx

(
∏

i

Qi (xi )

)

E(x, D) =
∫

dxi Qi (xi )

∫

dx̄i .Q(x̄i )E(x, D)

=
∫

dxi Qi (xi )〈E(x, D)〉Q(x̄i )

=
∫

dxi Qi (xi ) ln exp〈E(x, D)〉Q(x̄i )

=
∫

dxi Qi (xi ) ln Q∗i (xi )+ ln Z

where we have defined Q∗i (xi ) = 1
Z exp〈E(x, D)〉Q(x̄i ) and Z normalises Q∗i (xi ). Substitut-

ing this new form of the energy back into Eq. 2 yields

L[Q(x)] =
∫

dxi Qi (xi ) ln Q∗i (xi )−
∑

i

∫

dxi Qi (xi ) ln Qi (xi )+ ln Z

Separate out the entropy for Hi = H [Qi (xi )] from the rest of the entropy sum:

L[Q(x)] =
{∫

dxi Qi (xi ) ln Q∗i (xi )−
∫

dxi Qi (xi ) ln Qi (xi )

}

+ H [(Q(x̄i )] + ln Z

Consider the terms in the brackets:
∫

dxi Qi (xi ) ln Q∗i (xi )−
∫

dxi Qi (xi ) ln Qi (xi ) =
∫

dxi Qi (xi ) ln
Q∗i (xi )

Qi (xi )

= −K L[Qi (xi )||Q∗i (xi )]
What a lucky co-incidence! Though we started by trying to minimise the KL-divergence

between large joint distributions (which is hard), we have converted the problem to that of
minimising KL-divergences between individual 1D distributions (which is easier). Write:

L[Q(x)] = −K L[Qi (xi )||Q∗(xi )] + H [Qi (x̄i )] + ln Z

Thus L depends on each individual Qi only through the KL term. We wish to maximise L
with respect to each Qi , subject to the constraint that all Qi are normalized to unity. This
could be achieved by Lagrange multipliers and functional differentiation:

δ

δQi (xi )

⎧
⎨

⎩
−K L[Qi (xi )||Q∗(xi )] − λi

⎛

⎝
∫

si

Qi (xi )dxi − 1

⎞

⎠

⎫
⎬

⎭
:= 0

A long algebraic derivation would then eventually lead to a Gibbs distribution. However,
thanks to the KL form rearrangement we do not need to perform any of this, because we can
see immediately that L will be maximised when the KL divergence is zero, hence when

Q(xi ) = Q∗(xi )

(The normalisation constraint on Qi is satisfied thanks to the inclusion of Z in the previous
definition of Q∗i ). Expanding back the definition gives the optimal Qi to be

Q(xi ) = 1

Z
exp〈E(xi , x̄i , D)〉Q(x̄i )

where E(xi , x̄i , D) = log P(xi , x̄i , D) is the energy.
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Fig. 2 Graphical model for
variational example.
Square nodes are observed

1.5 Solution as iterative update equations

Converting the equation above into an iterative update equation gives:

Q(xi )← 1

Z
exp〈E(xi , x̄i , D)〉Q(x̄i )

where x j is a hidden node to be updated; D are the observed data, and x̄i = (x\xi ) are the
other hidden nodes. These updates give us an EM-like algorithm, optimising one node at
a time in the hope of converging to a local minimum. Graphical models define conditional
independence relationships between nodes, so for models having such structure there exists
a Markov blanket set of nodes mb(xi ) for each node xi such that P(xi |x̄i ) = P(xi |mb(xi )).
For undirected graphical model links, the Markov blanket is the net of neighbouring nodes
of xi ; for directed Bayesian networks it is the neighbours of xi augmented with the set of
co-parents of xi . By the definition of Markov blankets, we may write

ln Q(xi )← 〈ln P(xi , mb(xi )), D〉Q(mb(xi ))

where mb(xi ) is the Markov blanket of the node xi of interest.

1.6 Example: variational Bayesian mean update

Until recently, variational implementations have consisted of calculating the iterative update
equations by hand for each specific network model. These calculations required much algebra
and were error-prone. We consider the simple graphical model shown in Fig. 2: the task is
to infer the mean μ component of the posterior joint of a Gaussian population of unknown
precision γ given a set of M observations D = {Di }Mi=1 drawn from this population.

Making the mean-field approximation and assuming conjugate exponential priors we have:

Q(x) = Q(μ)Q(γ ) = N (μ;m, β−1)Γ (γ ; a, b)

where m, β, a and b are constants specifying conjugate priors on the population parameters.
The update equation is

ln Q(xi )← 〈ln P(xi , mb(xi )), D〉Q(mb(xi ))
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Substituting the variables for the mean update, xi = μ:

ln Q(μ)←
∫

dγΓ (γ ; a, b) ln P(μ, γ, {Di })

=
∫

dγΓ (γ ; a, b) ln N (μ;m, β−1)Γ (γ ; a, b)
∏

i

N (Di |μ, γ )

=
∫

dγΓ (γ ; a, b)

{

ln N (μ;m, β−1)+ ln Γ (γ ; a, b)+
∑

i

ln N (Di |μ, γ )

}

=
∫

dγΓ (γ ; a, b) ln N (μ;m, β−1)+
∫

dγΓ (γ ; a, b) ln Γ (γ ; a, b)]

+
∑

i

∫

dγΓ (γ ; a, b) ln N (Di |μ, γ )

This simplifies greatly. First, integrands not dependent on μ can be discarded and replaced
by a normalising Z , since we are only interested in the PDF for Q(μ) :

ln Q(μ) =
∫

dγΓ (γ ; a, b) ln N (μ;m, β−1)+
∑

i

∫

dγΓ (γ ; a, b) ln N (Di |μ, γ )+ ln
1

Z

The left term does depend on μ but not on γ , so the integral over the normalised Q(γ ) has
no effect. Its integral is simply its integrand, so we can write

ln Q(μ) = ln N (μ;m, β−1)+
∑

i

∫

dγΓ (γ ; a, b) ln N (Di |μ, γ )+ ln
1

Z

We next consider the integral containing data Di . Writing out its log Gaussian energy expres-
sion in full, this term becomes

∫

dγΓ (γ ; a, b) ln N (Di |μ, γ ) =
∫

dγΓ (γ ; a, b)[c + (Di − μ)γ (Di − μ)]

where c is its normalising constant. Rewriting up to normalisation gives

∝ (D − μ)

[∫

dγΓ (γ ; a, b)γ

]

(D − μ)

The required integral is now just the expectation (first moment) of a Gamma distribution,
which can be found in standard statistics tables:

〈γ 〉 = E[Γ (γ ; a, b)] = ab−1

(We notate pre- and post-multiplications by (D − μ) rather than a single multiplication by
(D − μ)2 so that the multivariate Wishart case follows the same derivation and notation.)
The term is now

∝ (D − μ)〈γ 〉(D − μ)
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Substituting this back into the equation for ln Q(μ) gives

ln Q(μ) = ln N (μ;m, β−1)+
∑

i

(Di − μ)〈γ 〉(Di − μ)+ ln
1

Z

Q(μ) = 1

Z
N (μ;m, β−1) exp

{
∑

i

(Di − μ)〈γ 〉(Di − μ)

}

Q(μ) = 1

Z
N (μ;m, β−1)

∏

i

N (Di |μ, 〈γ 〉)

Switching round the dependent variable we obtain the following. (For μ in Gaussian
distribution, the flipped result is still Gaussian. For other distributions, it will be conjugate.)

Q(μ) = 1

Z
N (μ;m, β−1)

∏

i

N (μ|Di , 〈γ 〉)

Finally we can use the standard equation for product of Gaussians to give

Q(μ) = N (μ|m′, β ′−1)

with

β ′ = β + M〈γ 〉

m′ = β ′−1

(

βm + 〈γ 〉
M∑

i=1

xi

)

The above illustrates how the general VB updates can be transformed into particular
updates for graphical models. The Q(μ) component is meaningless by itself as VB aims to
approximate the full joint rather than local marginals, so a more useful analysis would repeat
the above to obtain the Q(γ ) updates as well—requiring even more algebra. We see that
this process is time-consuming and error prone even for very simple networks such as the
Gaussian population used here.

1.7 Variational Bayes with message passing

The previous method of by-hand derivation was time-consuming and tedious, though until
recently was state-of-the-art. However the recent variational message passing (VMP) algo-
rithm (Bishop et al. 2002; Winn and Bishop 2005) has shown how to automate these deriva-
tions in the case of conjugate-exponential networks. For such networks, the updates all have
a standard form, involving the sufficient statistics and natural parameters of the particular
node types. For unavoidable non-conjugate-exponential nodes (such as mixture models in
particular) it is possible to make further approximations to bring them into the standard form.
For conjugate-exponential networks, VMP should now be the standard method for variational
Bayesian inference, replacing derivations by hand. For non-conjugate-exponential networks,
VMP may still be useful if fast approximations are required at the expense of accuracy.
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1.8 VMP details

A standard theorem (Bernardo and Smith 2000) about exponential family distributions shows
that the expectation of sufficient statistics are given simply by:

〈u(xi )〉 = 	φg(φ)|φ
where the Dell symbol (	) means we form a vector whose r th component is the derivative
of g with respect to the r th component of the vector φ.

We will write xi ’s set of parents as pa(xi ); its set of children as ch(xi ); its set of co-parents
with respect to particular child ch as cop(xi ; ch); and its set of co-parents over all children
as cop(xi ). We wish to compute the variational Bayesian update as in the previous section:

Qi (xi )← 〈ln P(xi , mb(xi )), D〉Q(mb(xi ))

Assuming the effects of D are already in the Markov blanket nodes, and separating, this
becomes

〈ln P(pa(xi ))+ ln P(cop(xi ))+ ln P(xi |pa(xi ))+ ln P(ch(xi )|xi , cop(xi ))〉Q(mb(xi ))

Simplifying and dropping constant parent and co-parent terms:

= 〈ln P(xi |pa(xi ))〉Q(pa(xi )) + 〈ln P(ch(xi )|xi , cop(xi ))〉Q(ch(xi ),cop(xi ))

The children separate:

= 〈ln P(xi |pa(xi ))〉Q(pa(xi )) +
∑

ch∈ch(xi )

〈ln P(ch|xi , cop(xi ; ch))〉Q(ch,cop(xi ;ch))

We will consider the two parts one at a time.

1.8.1 Messages from parents

A conjugate-exponential node xi is parametrised by a natural parameter vector φi . By the
definition of such nodes,

〈ln P(xi |pa(xi ))〉Q(pa(xi )) = 〈φi u(xi )+ fi (xi )+ gi (φi )〉Q(pa(xi ))

= 〈φi 〉Q(pa(xi ))ui (xi )+ fi (xi )+ 〈g(φi )〉Q(pa(xi ))

As φ and g are multi-linear functions of the parent sufficient statistics (by construction), and
using the mean field assumption, we can simply take their formulæ (defined as conditional
on single values of the parents) and substitute the expectations for the sufficient statistics,
to get the expectation of the whole expression as required. So parents of xi need only to
send their sufficient statistic expectations to xi as messages. (A concrete example is shown
in Sect. 1.9.)

1.8.2 Messages to parents

A key property of the exponential family is that we can multiply (fuse) similar distributions
by adding their natural parameter vectors φ:

exp{φ1u(xi )+ f (xi )+ g(φ1)} exp{φ1u(xi )+ f (xi )+ g(φ1)}
= exp{(φ1 + φ2)u(xi )+ f (xi )+ g(φ1 + φ2)}
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A second property is that by conjugacy, φ and g are also multi-linear in parental sufficient
statistics. So we can always rearrange the formula by finding functions φi j , f j , gi j to make
it look like a function of a parent x j ∈ pa(xi ):

〈ln P(xi |pa(xi ))〉Q(pa(xi )) = 〈φi j u j (x j )+ fi j (x j )+ gi j (φi j )〉Q(pa(xi ))

As before, we may handle the expectation by using the multi-linear property to push all the
expectations tight around the sufficient statistics. So from the point of view of the parent, this
is written in terms of the sufficient statistic expectations of its child and co-parents. We can
thus pass a likelihood message consisting of

φi j
(〈u(xi )〉, {〈u(cop)〉}cop∈cop(x j ;xi )

)

The parent may then simply add these to its prior parameters, by the first property.
Observed data nodes D may be treated as Delta distributions which send standard mes-

sages to their parents and children.

1.9 Example: mean, precision and data using VMP

To demonstrate the power of the VMP formalism, we consider the same scenario as used to
hand-derive the VB updates in Sect. 1.6. Using VMP we can quickly substitute the particular
Gaussian and Gamma distributions into the VMP update equations and quickly obtain all
network messages for mean, precision, and data nodes as follows. (Messages to D are not
required in this particular example, but are useful in general for making inferences about
unobserved data.) The exponential forms used here are standard (Bernardo and Smith 2000).

1.9.1 Mean node (with known prior parameters)

Beginning with the conjugate-exponential form of the Gaussian distribution:

ln P(μ|m, β) =
[

mβ

−β/2

]

·
[

μ

μ2

]

− g(m, β)

with

g(m, β) = 1

2
(ln β − βm2 − ln 2π)

The message to child D is the expectation of sufficient statistics:
〈[

μ

μ2

]〉

= 	φg(φ)|φ =
[

μ

μ2 + β−1

]

1.10 Computing the log-likelihood bound using VMP

VMP also makes computation of the log-likelihood bound simple. Recall that

ln P(D|M) ≥ L[Q(x)]
L[Q(x)] =

∫

dx Q(x) log
P(x, D)

Q(x)

= 〈log P(x, D)〉Q(x) − 〈log Q(x)〉Q(x)
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Writing as the sum of individual node contributions from the universe of all (data and hidden)
nodes Ω = x ∪ D,

=
∑

ω∈Ω
〈log P(ω|pa(ω))〉Q(ω,pa(ω)) − 〈log Q(ω)〉Q(ω) =

∑

ω∈Ω
Lω

with

Lω = 〈log P(ω|pa(ω))〉Q(ω,pa(ω)) − 〈log Q(ω)〉Q(ω)

= 〈φπ
ω u(ω)+ f (ω)+ g(φπ

ω )〉Q(ω,pa(ω)) − 〈φ∗ωu(ω)+ f (ω)+ g(φ∗ω)〉Q(ω)

where φπ are the prior natural parameters conditioned only on the parents, and φ∗ are the
posterior parameters, after child message are fused. Q(ω) uses the posterior parameters. By
multi-linearity we can push in the expectations and simplify to obtain:

Lω = (〈φπ
ω 〉Q(pa(ω)) + φ∗ω)〈u(ω)〉Q(ω) + 〈g(φπ

ω )〉Q(pa(ω)) + g(φ∗ω)

which is simple to compute locally, from each node’s received messages. (The term
〈φπ

ω 〉Q(pa(ω)) is computed by substituting in the received parent sufficient statistics expecta-
tions into the conjugate-exponential formula for φω. By multi-linearity, the expectation can
be pushed into the sufficient statistics.) The global model log-likelihood bound is computed
by summing the contributions from all nodes, both hidden and observed.

1.11 Summary

In this tutorial we have seen how variational methods may be used to approximate joint
posteriors with mean-field distributions. An long-hand calculation of variational inference
was shown, then the more general variational message passing framework introduced, which
greatly simplifies calculations for conjugate-exponential networks. Variational methods are
not appropriate when the marginals or the correlations structure of the joint are required, but
are useful in model comparison tasks when the joint is integrated out.
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