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Abstract Due to digitization, usual discrete signals
generally present topological paradoxes, such as the
connectivity paradoxes of Rosenfeld. To get rid of those
paradoxes, and to restore some topological properties to
the objects contained in the image, like manifoldness,
Latecki proposed a new class of images, called well-
composed images, with no topological issues. Further-
more, well-composed images have some other interest-
ing properties: for example, the Euler number is locally
computable, boundaries of objects separate background
from foreground, the tree of shapes is well-defined, and
so on. Last, but not the least, some recent works in
mathematical morphology have shown that very nice
practical results can be obtained thanks to well-com-
posed images. Believing in its prime importance in dig-
ital topology, we then propose this state-of-the-art of
well-composedness, summarizing its different flavours,
the different methods existing to produce well-compo-
sed signals, and the various topics that are related to
well-composedness.
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1 Introduction

In 1979, Rosenfeld [148] studied basic topological pro-
perties of digital images that he called digital topology.
This work was completed in [90] by Kong and himself.
However, Rosenfeld’s framework needs to use a dual
pair of connectivities to get rid of connectivity para-
doxes, leading then to ambiguities: depending on the
chosen dual pair of connectivities, the results are not
always the same, even for elementary algorithms such
as object counting. To overcome this problem, Latecki et
al. [104] introduced in 1995 2D sets free from topologi-
cal paradoxes, called well-composed sets: the connected
components of these sets or of their complement do
not depend on the chosen connectivity. Observing that
the natural extension of this definition is not strong
enough in 3D, Latecki et al [I00] proposed in 1997 a
new definition of well-composedness for 3D sets: a set
is said well-composed iff the boundary of its continu-
ous analog is a 2-manifold. In parallel, Wang and Bat-
tacharya [I83] proposed an extension of 2D well-compo-
sedness to arbitrary grids. In 1998, Stelldinger proposed
in his book [I68] a definition of well-composedness on
polytopal complexes, but this definition seems to be ill-
defined. Fifteen years passed before Najman and Gér-
aud [127] introduced in 2013 the definition of well-com-
posedness in Alexandrov spaces based on discrete sur-
faces; this definition works in n-D and can be applied
to cubical complexes defined on Khalimsky grids [88].
Finally, well-composedness on arbitrary grids has been
extended to n-D in 2016 by N. Boutry [26] in his Ph.D.
thesis.

To avoid ambiguities among these different flavors
of well-composednesses, we need to precise the termi-
nology. In this paper, well-composedness such that the
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9D: EWC < DWC < AWC &  CWC & AGWC
1995 [104] 1997[183)
3D: EWC <~ DWC & AWC s  Ccwe &0 AGWC
1997 [100] 2016[26]
nD: EWC <« DWC <& AwWe & cwe & AGWC
2015 [29] 2015 [29] 2013 [127] 2000 [102] 2016[26]

Table 1: The different “flavors” of well-composedness and their relationship on cubical grids.

topological boundary of the continuous analog of a set
is a manifold is named well-composedness in the conti-
nuous sense or CWChess [29]. Well-composedness based
on discrete surfaces in Alexandrov spaces is named well-
composedness in the Alexandrov sense or AWCness [29).
The natural extension in n-D of well-composedness such
that the connected components of a set or of the com-
plementary of this set do not depend on the chosen
connectivity is named well-composedness based on the
equivalence of connectivities or EWChness [29]. Well-
composedness based on critical configurations, i.e., such
that a set is said well-composed iff it does not contain
any critical configuration [29], is named digital well-
composedness or DWCness [29]. Finally, well-compo-
sedness on arbitrary grids is renamed in this paper un-
der the name of AG-well-composedness.

On cubical grids, DWCness has been observed to
be equivalent to CWCness and to AWCness in 2D and
in 3D; however, if these three flavours of well-compo-
sednesses are equivalent to EWCness in 2D, they are
stronger than EWCness in 3D. Furthermore, DWCness,
CWCness and AWCness have not been proved to be
equivalent to each other in n-D, n > 4. Hence it is
useful to see how these different flavors of well-compo-
sedness are related to each other (see Table . Observe
that in 2D the X-well-composednesses (X = A, C, D,
E) are equivalent, so a set/image is well-composed iff
it is X-well-composed (X = A, C, D, E). On the other
hand, in 3D, the X-well-composednesses (X = A, C,
D) are equivalent, so a set/image is well-composed iff
it is X-well-composed (X = A, C, D). In n-D, n > 4,
the equivalences are not proved yet, so we need to spec-
ify the type of well-composedness we are dealing with
(AWCness, CWCness, DWCness, or EWCness). Note
that no link between AG-well-composedness and the
other flavours of well-composedness has been published
yet in n-D.

Also, we will note that well-composed sets are coun-
terparts of n-dimensional manifolds in the sense that
they do not have singularities. This means that such
sets can be directly used by algorithms that compute
differential properties from digital data, bypassing the
need for converting them to a continuous representation
in order to compute the same properties; see [97,99]
for instance. Also, continuous representations obtained
from well-composed images are consistent with their
digital counterparts; having two consistent representa-
tions (digital and continuous) allows for algorithms to
choose between the two in order to more effectively per-
form a certain task.

This state-of-art is organized as follow. Section [2]
explains the origins of well-composedness. Section [3]re-
calls the definition of the generalization of digital well-
composedness to n-D. Section [4] recalls the definitions
of well-composednesses on complexes. Section [5| recalls
the other flavours in matter of well-composedness. Sec-
tion[6]recalls how well-composedness has been extended
from digital sets to digital gray-level images. Section [7]
recalls the different methods to obtain well-composed
sets or images. Section [§land Section [J]recall the differ-
ent topics and applications that are respectively related
to well-composed sets and well-composed gray-level im-
ages. Finally, Section [10] concludes this paper.

2 Where does well-composedness comes from?

We recall in this section some fundamental notions of
digital topology, some well-known topological paradoxes,
and how these paradoxes led to the birth of a new class
of images called well-composed sets.

2.1 Digital topology in Z?2

Here are the basic definitions of digital topology [148,
90] when we work in the digital plane Z?. Let S be
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Fig. 1: Neighborhoods of a point p € Z2.
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Fig. 2: Square grids using 4-adjacency on the left and
8-adjacency on the right.

a subset of the digital plane, the points in S will be
termed foreground points, while those of its comple-
ment in the digital plane, S¢ = Z? \ S, will be termed
the background points. Note that the background points
(respectively, the foreground points) will be depicted
using white or black points depending on the context.
The 4-neighbors of a point (z,y) € Z? are the points
(x+1,y), (x —1,y), (z,y + 1) and (z,y — 1). The -
neighbors of a point (z,y) € Z? are its four 4-neighbors
together with its four diagonal neighbors (x + 1,y + 1),
(x+1l,y—1), (x—1,y+1)and (x — 1,y —1). For n €
{4,8}, the n-neighborhood of a point P = (z,y) € Z?
is the set N, (P) consisting of P plus its n-neighbors.
N (P) is the set of all n-neighbors of P without P itself:
N} (P) = N, (P)\ {P}. Figure [1| depicts on the left the
4-neighborhood and on the right the 8-neighborhood of
a point p € Z2.

Let P, Q be two points of Z2. We say that a se-
quence of points (P = Py,...,P, = Q) of Z? is a n-
path, n € {4,8}, from P to Q iff P, € N;(P;_;) for
i € [2,n], and it is a path if it is a n-path for some
n € {4,8}. A set X C Z? is said n-connected iff for
every pair of points P,Q € X, there exists a n-path
in X from P to @, and connected if it is connected
for some n € {4,8}. A n-component of a set S C Z?
is a maximal n-connected subset of S. Depending on
whether 4- or 8-connectedness is used, we mean 4- or
8-components. A set C' C Z? is called a simple closed
curve if it is connected and each of its points has ex-
actly two neighbors in C'. Depending on whether we use
4- or 8-neighborhoods, we call C' either a 4-curve or a
8-curve.

[, LT IX/NIX
RN
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Fig. 3: Some connectivity paradoxes using 4-adjacency
on the left and 8-adjacency on the right.
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Fig. 4: Different square grids based on 6-adjacency.

2.2 Connectivity paradoxes on cubical grids

Let V be the set Z2, and let E C V x V be the ir-
reflexive symmetric binary relation such that any two
points p,q € V verify (p,q) € E iff p and ¢ are n-
adjacent. We call the points of V' the wvertices and the
elements of E the edges. We obtain this way a graph
structure G = (V, E) based on the n-adjacency. These
structures representing the digital plane supplied with
the n-adjacency can be observed in Figure

Now, assuming that we have a set of foreground
points S C Z?2 that is given and which depicts a 4- or
a 8-curve in Z2, we could hope that the Jordan Sepa-
ration Theorem which states that a simple closed curve
separates R? into two components, the interior which is
bounded and the exterior which is not bounded, holds
as in the continuous world. However, when we draw a
4-curve in the digital plane supplied with the 4-adja-
cency as shown on the left of Figure [3] this curve sepa-
rates the digital plane into 3 components, two of them
are bounded and the third is unbounded. In a certain
‘interiors”. The Jordan Separa-
tion Theorem does not hold in discrete spaces using
4-adjacency. We can also draw an 8-curve in the digital
plane, as shown on the right of Figure [3] and we ob-
tain that the complement of the 8-curve is an only con-
nected component. The and the “exterior”
are the same component. Then the Jordan Separation
Theorem fails with 8-adjacency too.

manner, we have two *

“interior”

Rosenfeld called these phenomena the connectivity
paradozes [I53LQ0L[104] and explained that this failure
follows from the fact that we use the same adjacency for
the foreground and the background. Effectively, we can
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Fig. 5: A 6-curve does not always separates the digital
plane even if we use 6-adjacency.
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Fig. 6: (4, 8)-adjacency on the left and (8,4)-adjacency
on the right.

remark that when we use 6-adjacency, such as depicted
in Figure[d] a 6-curve does not always satisfy the Jordan
Separation Theorem (see Figure [5)): it works using the
first or second grids but not the other.

Note that digital subsets of Z? are in bijection with
digital binary images: a 2D digital binary image [102]
(p. 102) is a 4-uple denoted by (Z2, X, k, 1) where X is
a subset of Z? such that either X or X¢ is finite; X
corresponds to the foreground and is associated with
the k-adjacency, and X¢ := Z? \ X corresponds to the
background of the image and is associated with the I-
adjacency. Equivalently, this image can be interpreted
as the characteristic function of the set X in Z2, that
is, a mapping I from Z? to {0,1} such that I(p) = 1 if
p € X and I(p) = 0 if p € X¢. This way, these same
connectivity paradoxes can happen on binary images.

2.3 Using dual pairs of connectivities

Using a dual pair of adjacencies, as recommended in [50]
for the first time, can be helpful. The (8,4)-adjacency,
meaning that we use 8-adjacency for the foreground and
4-adjacency for the background, or the (4, 8)-adjacency,
meaning that we use 4-adjacency for the foreground
and 8-adjacency for the background, make the Jordan
Separation Theorem (JST) true at the condition that
an 8-curve (respectively, a 4-curve) is made by at least
4 points (respectively, by at least 8 points) to avoid
pathological cases. This is depicted in Figure[6} on the

left, the 4-curve separates the plane into two 8-components,

and on the right, the 8-curve separates the plane into
two 4-components.

EEEEENN

IEEEEEE

Fig. 7: The gray set is made of one or two components
depending on the associated connectivity [I18].

Using a dual pair of connectivities is efficient but
has a main drawback: the result of an algorithm often
depends on the chosen pair. In other words, we have
to choose, depending on the application, one particu-
lar pair and we are not always able to know a priori
which one is the best to our needs. Indeed, the set of
connected components of a given set clearly depends on
the chosen pair, and then the consequences can be un-
expected or unstable results in some applications like
object counting [90].

Using digital multi-label images, that is, digital im-
ages with possibly more than two “colors”, we may con-
sider each label as the foreground with one connectiv-
ity, and the union of the other labels as the background
with a dual connectivity. However, this approach can
be problematic: some label can be associated with dif-
ferent connectivities if it is considered as the foreground
or part of the background, leading to ambiguities. For
example, it can be made of one component at a given
time and of two components at another time [I18] (see
Figure E[) Furthermore, in this way we consider only
each label relatively to its associated background; the
topological relationship between the different labels is
then lost [I42|[IT111T]. Another approach is to consider
that the multi-label image can be represented with a
connected components tree [114] where the root is the
infinite background, and the rest of the tree represent
the nested relationship between the connected compo-
nents into the image. This way, the new representation
of the image is “isomorphic” to a binary image; this ap-
proach has then been called binary modeling [1141[122].
However, this last method assumes that the topological
structure of the connected components of the labels has
no ambiguity, and then can only be applied on “simple

images” [118].

An alternative to these methods is to work directly
with images where we can associate the same connec-
tivity to the foreground and to the background without
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Fig. 8: A set which is weakly well-composed but not
well-composed [104].
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Fig. 9: The (black) sets are well-composed in (a) and
(¢), but the (black) set in (b) is neither well-composed
nor weakly well-composed [104].

having any topological paradox, ambiguity, or collision
between sets, they are called well-composed images. The
seminal definition of this class of images, much easier
to manage in practice, is developed below.

2.4 The seminal definition of well-composedness

In 1995, Latecki et al. introduced what they called wea-
kly well-composed sets [104], that is, subsets of Z? such
that any of their 8-components are also 4-components.
For example, as shown in Figure [8| [104], this set is
weakly well-composed, since it is made of one 8-compo-
nent (in black) which is also a 4-component.

Since this definition is not self-dual, that is, S weakly
well-composed does not imply that its complementary
is well-composed, Latecki strenghtened this definition
in the following manner: a subset S of Z? is said well-
composed [104] iff S and its complement S¢ in Z? are
both weakly well-composed. As shown in Figure[9] the
(black) set S in Figure 9(a) is made of two 8-components
which are also 4-components. The set in Figure 9(c)
is made of only one 8-component, which is also a 4-
component. On the contrary, the set in Figure 9(b) is
made of only one 8-component, which is made of two 4-
components, and then is neither weakly well-composed
nor well-composed.

Then Latecki reformulated the notion of well-com-
posedness using local 4-connectivity [104]: a set S C Z?
is said locally 4-connected iff the points of S in the 8-
neighborhood of any point of S are 4-connected, i.e.,

o L o ®)

Fig. 10: Forbidden patterns
sets [104].

into well-composed

SNNg(P) is 4-connected for every point P in S. Notice
that this notion is self-dual: S is locally 4-connected
iff S¢ is locally 4-connected. Latecki proposed then the
following theorem [104]: any set S C Z? is well-compo-
sed iff it is locally 4-connected. This way, it was clear
that the patterns depicted in Figure[I0} that they called
“critical configurations”, and representing two points
which are 8-adjacent but not 4-adjacent, cannot occur
in a well-composed set.

In 2015, Boutry et al. [29] have extended the seminal
definition of well-composedness to n-D, n > 2, in such a
manner that a digital set X C Z™ is said well-composed
based on the equivalence of connectivities (EWC) iff the
set of (3™ —1)-connected components X (respectively, of
X°) is equal to the set of 2n-connected components of
X (respectively, of X¢). This definition will be detailed
in Section [Bl

3 Digital well-composedness in n-D

In this section, we recall the basics about digital topol-
ogy extended to n-D, n > 2, and then we recall the
definition and the characterization proposed in [29] of
digital well-composedness.

3.1 Basics of digital topology in Z™

Let n > 2 be a (finite) integer called the dimension.
Now, let B = {e!,...,e"} be the (orthonormal) canon-
ical basis of Z™. We use the notation x;, where ¢ belongs
to [1,n], to determine the i** coordinate of the vector
x € Z"™. We recall that the L'-norm of a point = € Z"
is denoted by ||.|[1 and is equal to 3¢y ,p |@i| where
|.| is the absolute value. Also, the L -norm is denoted
by |||l and is equal to max;eqi nj @il

For a given point x € Z", the 2n-neighborhood in Z"
is noted N, () and is equal to {y € Z™ ; |[z—yl|l1 < 1}.
In other words,

Nop(z) ={2z}U{z —e' z+e',... o —e" x4+ e}
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Fig. 11: 2D, 3D and 4D blocks.

For a given point z € Z", the (3" — 1)-neighborhood
in Z™ is noted N3»_1(z) and is equal to {y € Z" ; ||z —
Y|loo < 1}. In other words, N3»_1(z) equals:

T+ Z Nt A€ {—1,0,1},Vi € [1,n]
i€[1,n]

From now on, let § be a value in {2n,3™ — 1}.

The starred {-neighborhood of x € Z™ is noted N ()
and is equal to Ne(z) \ {z}. An element of the starred
&-neighborhood of = € Z" is called a &-neighbor of x
in Z". Two points x,y € Z" such that x € N (y) or
equivalently y € N (x) are said to be £-adjacent.

Let x,y be two points in Z"™ and X be a subset of
Z™. A finite sequence (p°, ..., p*) is a &-path if and only
if p¥ is &-adjacent only to p', p* is £&-adjacent only to

pF=1 and if for i € [1,k — 1], p* is &-adjacent only to

p'~1 and to p**l. Such paths are said to be of length k.

A subset X of Z™ such that Card(X) or Card(Z™ \
X) is finite is said to be a digital set. A digital set X C
7™ is said &-connected iff for any pair of points z,y € X,
there exists a &-path joining them into X. A subset C
of X which is £&-connected and which is mazimal in the
inclusion sense, that is, there is no subset of X which
is greater than C' and which is £-connected, is said to
be a £-component of X.

A point x € Z" is said to be £-connected to a set
Y C Z' iff there exists a point y € Y such that z and y
are £-neighbors or equal. Two sets X,Y C Z™ are said
to be &-connected iff there exists x € X such that z and
Y are £-connected.

3.2 Definition of DWCness in n-D

To be able to recall the definition of digital well-compo-
sedness, named this way due to the “digital patterns” on
which it is based, we first have to recall the elementary
notions of block, antagonism, and critical configurations
in Z™.

Fig. 12: In the raster scan order: in this 4D exam-
ple, the white points are l-antagonists, 2-antagonists,
3-antagonists, and 4-antagonists.

Given a point z € Z"™ and a family of vectors F =
(fY,..., f¥) C B, we define the block associated with
the pair (z,F) in this way:

Sz, F)=Sz+ Y Nf'| X €{0,1},Vi€ [1,k]
i€[1,k]

A subset S C Z"™ is called a block iff there exists a pair
(2, F) € Z™ x P(B) such that S = S(z,F). Note that
a block which is associated with a family F € P(B) of
cardinality & € [0, n] is said to be of dimension k, what
will be denoted by dim(S) = k. Figure shows 2D,
3D and 4D blocks. We will denote the set of blocks of
7" by B(Z™).

Using this notion of blocks, we can define antago-
nism. Two points p, ¢ belonging to a block S € B(Z"™)
are said to be antagonists in S iff their distance equals
the maximal distance using the L'-norm between two
points into S. In other words, two points p and ¢ in Z"
are antagonists in S € B(Z"™) iff p,q € S such that:

lp —qlli = max{[|z —y||1 ; =,y € S},

and in this case we write that ¢ = antagg(p) or equiva-
lently p = antagg(q). The antagonist of a point p in
a block S € B(Z"™) containing p exists and is unique.
Sometimes we will use the notation S(p, q) where p,q €
Z™ are (3™ —1)-neighbors to indicate the block in B(Z")
such that p and ¢ are antagonists in this block.

Also, two points which are antagonists in a block
of dimension k € [0,n] are said k-antagonists. In this
case, k of their coordinates differ, and they differ from a
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Fig. 13: The white points on the left draw a 2D primary
critical configuration, and the white points on the right
draw a secondary 2D critical configuration.

-y

Fig. 14: The white points on the left draw a 3D primary
critical configuration, and the white points on the right
draw a secondary 3D critical configuration.

Fig. 15: The white points on the left draw a 4D primary
critical configuration, and the white points on the right
draw a secondary 4D critical configuration.

value 1, the other coordinates being equal. Two points
which are 0-antagonists are equal, two points which are
l-antagonists in a block of Z" are 2n-neighbors in Z",
and two points which are n-antagonists in a block of Z™
are (3™ —1)-neighbors in Z™. See Figure |12|for different
possible pair of antagonists (in white) in a 4D space.

Now, we are able to define critical configurations
of dimension k € [2,n] in a n-D space: let X C Z"
be a digital set, and let S € B(Z") be a block of di-
mension k € [2,n]. We say that X contains a primary
critical configuration of dimension k in the block S iff
X NS ={pp} with p,p’ € S two points that are an-
tagonists into S. We say that X contains a secondary
critical configuration of dimension k in the block S iff
XNnS = S\{pp} with p,p’ € S two points that
are antagonists into S. More generally, a critical con-
figuration of dimension k € [2,n] is either a primary
or a secondary critical configuration of dimension k.

Figures and [T5] depict 2D, 3D, and 4D critical
configurations.

There comes the definition of digitally well-compo-
sed sets in Z": a digital set X C Z" is said digitally
well-composed or DWC' iff it does not contain any crit-
ical configurations, that is, for any block S € B(Z"),
the restriction X NS is neither a primary nor a sec-
ondary critical configuration. Obviously, this definition
is self-dual, since a set X C Z™ contains a primary
(respectively, a secondary) critical configuration in the
block S € B(Z™) iff its complement X¢ contains a sec-
ondary (respectively, a primary) critical configuration
in this same block S.

Note that this definition is based on local patterns,
by contrast to EWCness (defined later in Section
which is based on connected components, and then is
global.

Fig. 16: Step-by-step construction of the 2n-path join-
ing the two (red) antagonists into X N S into Z™.

We can reformulate digital well-composedness based
on 2n-paths [29]: a set X C Z" is digitally well-com-
posed iff, for any block S € B(Z™) and for any pair of
points (p, antagg(p)) such that they belong to X NS
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(resp. S\ X), p and antagg(p) are 2n-connected in XN.S
(resp. in S\ X).

This reasoning is illustrated in Figure two an-
tagonists, depicted in red in the block S (the tesseract),
are assumed to belong to a digitally well-composed set
X C Z", which is shown in Figure 16(a). Since the two
red points (0,0,0,0) and (1,1,1,1) belong to X and are
4-antagonists in S, there exists at least one more point
in the block S belonging to X (in the contrary case, X
contains a critical configuration, which is impossible by
hypothesis). A first possibility is shown in Figure 16(b),
and a second possibility is shown in Figure 16(c), where
the green point depicts this additional point. Let us
treat first the case corresponding to Figure 16(b): since
the points (0,0,1,0) and (1,1,1, 1) are 3-antagonists in
the 3D block C' depicted in yellow, there must be at
least one more point in this block which belongs to X
(for the same reason as before), and then we obtain
that the blue point (1,0,1,1) belongs to X, which is
shown in Figure 16(d). Applying recursively the reason-
ing until X does not contain any critical configuration,
we obtain that the point (1,0,1,0) also belongs to X,
which is shown in purple in Figure 16(f). Finally, we
obtain a 2n-path joining the two red points (0,0, 0,0)
to (1,1,1,1) into X N .S. Let us now treat the case cor-
responding to Figure 16(c): if (0,0,0,0) and (0,0, 1,1),
which are 2-antagonists, are the only points of X in the
block A, X N A is a critical configuration, then there ex-
ists an additional point among (0,0,1,0) and (0,0,0,1)
which belongs to X. The same happens in the block B
where at least (0,0,1,1) and (1,1,1,1) belongs to X:
at least (0,1,1,1) or (1,0,1,1) must belong to X. Let
us assume that (0,0,0,1) and (0,1,1,1) belong to X,
we obtain Figure 16(e) where a 2n-path joins the two
red points (0,0,0,0) to (1,1,1,1) in X NS. Obviously,
the reasoning is similar when (0,0,0,0) and (1,1,1,1)
belong to X°¢. In this case, we obtain that a 2n-path
joins these two points in X¢ NS, thanks to self-duality
of digital well-composedness.

4 Well-composedness on complexes

After having recalled some basics in matter of discrete
topology related to Alexandrov spaces, we recall the def-
inition of well-composedness in the Alexandrov sense or
AWCness introduced in [I127] by Najman and Géraud.
Then, we present the most used immersions from Z"
into Khalimsky grids, denoted by H", and we will see
the link between DWCness and AWCness into these cu-
bical grids. Finally, we will recall the definition of well-
composed polytopal complexes according to Stelldinger.
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Fig. 17: Basic operators in axiomatic digital topology:
« is the combinatorial closure, § is the combinatorial
opening, and @ is the neighborhood.

4.1 WCness on Alexandrov spaces

Let X be any set, and let U be a set of subsets of X
s.t. X,0 € U, any union of any family of elements in U
belongs to U, and any finite intersection of any family
of elements in U belongs to Y. Then U is a topology [85),
2], and the pair (X,U) is called a topological space. We
abusively say that X is a topological space, assuming
it is supplied with its topology U. The elements of U
are called the open sets of (X,U), and the complement
of an open set is said to be a closed set [2]. A set N
containing an element p of a topological space X s.t.
there exists U € U s.t. p € U C N is said to be a
neighborhood of p into X. We say that a topological
space (X,U) verifies the Ty aziom of separation [4/85]2]
iff for any two different elements X, at least one of them
admits an open neighborhood not containing the other
element. A topological space which verifies the Tj axiom
of separation is said to be a Ty-space, a topological space
X is said discrete [6] iff the intersection of any family
of open sets of X is open in X, and a discrete Ty-space
is said to be an Alexandrov space [52].

Let A be an arbitrary set. A binary relation [I5] R
on A is a subset of A x A, and for any z,y € A, we
denote by = R y the fact that (z,y) € R, or equiv-
alently z € R(y). A binary relation R is said reflex-
we iff, Vx € A, © R z, asymmetric iff, Vx,y € A,
z Ry and y R x implies x = y, and transitive iff,
Vr,y,z € A, * Ry and y R z implies + R z. Also,
we denote by R™ the binary relation defined such that,
Vo,y € A, {z RP y} < {z Ryand z # y}. An order
relation [15] on A is a binary relation R s.t. it is reflex-
ive, asymmetric, and transitive, and a set A of arbitrary
elements supplied with an order relation R on X is de-
noted (A, R) or |A| and is called a poset [I5]; A is called
the domain of |A].

According to Alexandrov (Th. 6.52, p. 28 of [2]), we
can identify any poset |X| = (X, R) with the Alexan-
drov space induced by the order relation R, that is, by
considering that a subset A of X is closed iff for any
z,2y e X,z € AN yRax =y € A This way, we
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consider equivalently | X| = (X, ax) as a poset and as
an Alexandrov space induced by the order relation ax.
So, let (X, ax) be a poset and p an element of X, we
define the combinatorial closure ax (p) of p in | X| as the
set {¢ € X ; (q,p) € ax}, the combinatorial opening
Bx(p) of pin | X| as the set {g € X ; (p,q) € ax}, and
Ox(p) = ax(p)UBx(p); a(p) is then the smallest closed
set containing {p} and Bx(p) is the smallest open set
containing {p} in X. Some examples of the operators
«, B, and 6 are depicted in Figure Also, we define,
VS C X, ax(S) = Upesax(p), Bx(S) = UpesBx(p),
and ax(S) = Upesox(p).

Now, let S be a subset of X. The suborder [15] of
| X| relative to S is the poset |S| = (S, as) s.t. ag =
ax NS x S; we have then, for any z € S, ag(z) =
ax(x)NS, Bs(x) = Bx(x)NS, and Og(x) = 0x ()N S.
For any suborder |S| of | X|, we denote by Intx (S) the
open set {h € X ; Bx(h) C S}. Aset S C X is said
to be a reqular open set (resp. a reqular closed set) iff
S =Intx(ax(S)) (resp. S = ax(Intx(5))).

We call relative topology [52] induced in S by U the
set of all the sets which can be written U N S where
U € U. A set which is open in the relative topology of
S is said to be a relatively open set [52]. A set S C X is
then said to be connected iff there is no decomposition
S = T7 UT, such that Ty N1y = @, both 11,15 # (Z),
and relatively open sets with respect to S. The largest
connected set in (X,U) containing p € X is called the
component [2] of the point p in (X,U) and we denote it
CC(X,p). When (X,U) is non-empty, the set of maximal
components of X in the inclusion sense is denoted by
CC(X) and is called the set of connected components
of X. We call path [15] into S C X a finite sequence
(p°,...,p*) such that for all i € [1,k], p* € 63 (»*"),
and we say that a set S C X is path-connected [15] iff for
any points p,q in S, there exists a path into S joining
them. Since |X| is an Alexandrov space, any subset S
of X is connected iff it is path-connected [521[15].

The rank p(x,|X]|) of an element z in |X| is 0 if
aJ(z) = 0 and is equal to maxye%u((x)(p(y, X)) +1
otherwise. The rank of a poset | X| is denoted by p(|X|)
and is equal to the maximal rank of its elements. An
element = of X such that p(x,|X|) = k is called k-

face [15] of X.

Let | X| = (X, ax) be a poset. | X]| is said countable
iff its domain X is countable. Also, |X]| is said locally
finite iff for any element x € X, the set 0x () is finite.
A poset which is countable and locally finite is said to
be a CF-order [15]. Now let us recall the definition of
(discrete) n-surfaces [55]. Let | X| = (X, ax) be a CF-
order, the poset |X| is said to be either a (—1)-surface
iff X =0, or a 0-surface iff X is made of two different

Fig. 18: On the left, a discrete 1-surface is a simple
closed curve, and on the right a poset which is not a
discrete 1-surface since it contains a pinch circled in
red.

Q

Fig. 19: An example of AWC set on the left, and an
example of a set which is not AWC on the right.

elements x,y € X such that = ¢ 65 (y), or an n-surface,
n > 1,iff | X| is connected and for any z € X, |05 (z)| is
a (n—1)-surface. Figure [L§[shows an example of a poset
which is a 1-surface and an example of poset which is
not a 1-surface (see the “pinch” circled in red).

Then, the boundary [127] of a digital subset S in an
Alexandrov space X of rank n > 1 is the set:

ax(S)Nax(X\S),

and S is said well-composed in the sense of Alexandrov
(AWC) iff the connected components of its boundary
are discrete (n — 1)-surfaces. Examples of AWC and
not AWC sets are depicted in Figure

4.2 Khalimsky grids

The Khalimsky grid [88] of dimension n is denoted |H"| =
(H",C) and is defined as the poset such that H} =
{{a}; a€Z}, HI = {{a,a+1};a€Z}, H' = HjU
H!, and H" = {hy x --- x hy, ; ¥i € [1,n], h; € H'}.
For any h € H", we have the following equalities: a(h) =
agn(h) = {0 e H" ; k' C h}, B(h) = Pun(h) = {W €
H" ; h C h'}, and 6(h) = Ogn(h) = {W e H" ; W' C
h or h C h'}. For any suborder |X| of |H"|, we obtain
that ax(h) = { € X ; B C h}, Bx(h) = {0 €
X;hCh} andOx(h)={h € X; W ChorhCh'}.
Any element h of H™ which is the Cartesian product of
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k elements, with k € [0, n], of Hi and of (n—k) elements
of Hy is called a k-face of H" and is said to be of dimen-
sion k [95], which is denoted by dim(h) = k, and the set
of all the k-faces of H" is denoted by H}. In the Khalim-
sky grids, the dimension is equal to the rank. Further-
more, for any n > 1, [H"| is an Alexandrov space [I5].
Finally, let A, B be two subsets of H", we say that A
and B are separated iff (AN (B(B))U (B(A)N B) =0,
or equivalently iff AN6#(B) = 0.

4.3 Immersions from Z™ into H"

O—6—O0O—0—0 ¢
-3/2 -1 -1/2 0 12 1 3/2

{-1» {10}y {0} {0.1} {1} {1.2} {2}
H

Fig. 20: Bijection between (Z/2) and H*.

Now let us define the bijection between (Z/2)" and
H"™ (see Figure on which we will base our immer-
sions into Khalimsky grids. Let H : (Z/2) — H! be the
application such that:

Vz € (2/2), H(z) = {Zt i/ﬁ ii : (Z%/2) \Z

from which we deduce naturally the application H,, :
(%)n — H" such that:

Vz € (Z/2)" , Hn(2) = QiepnyH(2i),

where for two arbitrary sets A and B, A® B := {a X
b; a € Abe B} with x the Cartesian product; note
that elements of Z" are transformed into n-faces of H™.
In the sequel, we will denote by Z,, the inverse of the
bijection H,,.

Note that another “natural” bijection from (Z/2)"
to H™ is possible, transforming elements of Z" into ver-
tices of H"; however, this transformation is not conve-
nient to define topological boundaries of immersions of
subsets of Z", and then will not be developed further
in this paper.

The first possible immersion of a given binary im-
age Upin : 2" — {0,1} (see Figure would be a 1-1
correspondence from Z" to H" since it is bijective. How-
ever, we can see in Figure 22] that this approach does
not preserve the structure of the initial image by any
opening or closing [I31], and then it is not interesting
as a representation of the initial signal. Two other im-
mersions, based on H,, are well-known in digital topol-
ogy [43]: the miss-transform Int(a(H,(X))) and the

Fig. 21: A binary 2D digital image up;,, that we can
identify to the digital set X = [upin, = 1] [43] (page 31).
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Fig. 22: Different immersions [4326] of X into H?: in
the raster scan order, the direct immersion, the miss-
transform, the hit-transform, and H, (X).

hit-transform o(H, (X)), depicted in Figure which
both lead to regular sets. By construction, their con-
nected components are respectively open sets for the
miss-transform, and closed sets for the hit-transform.
The last immersion in Figure 22 has the property to be
bijective and to given open sets, but not regular ones.
Note that we will usually refer to the hit-transforms
and miss-transforms as span-based immersions.

4.4 Relation between DWCness and AWCness

Now, let us recall the well-known relation between DWC-
ness of a set and AWCness of its immersion: for any

digital subset X of Z", it is well-known [26] that when

n € {2,3}, the DWCness of X is equivalent to the

AWChness of the span-based immersion, that is, the hit-

or the miss-transform, of X. Let us recall the reasoning

between these equivalences.

On Figure 23] the middle of the subfigures repre-
sents the restriction of a set to a 2D block in Z? (the
white points correspond to the foreground), the left of
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Fig. 23: Set of local configurations in 2D.
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the subfigures represents the representation in Khalim-
sky grids of this same set up to H,, (the foreground is
depicted by the green squares and the boundary is de-
picted by the yellow edges and the red point), and the
right of the subfigures represents the continuous analog
of the restriction of this set in R? (the foreground is in
white and the boundary is in red).

In the raster scan order, we observe then the follow-
ing possibilities by comparing the first two columns of
the subfigures:

1. if the restriction of the set is made of four black
points, that is, no point of X belongs to the block,
and then there is no boundary in this part of the
Khalimsky grid, we have then nothing to prove,

2. if the restriction of the set is made of only one point,
we can observe that the red point belonging to the
discrete boundary has only two neighbors into the
boundary: the two yellow edges,

3. if this resctriction is made of two 4-adjacent white
points, the red point belonging to the discrete bound-
ary has one more time two yellow edges as neighbors
into the boundary,

4. if this restriction is made of two white points which
are 8-adjacent but not 4-adjacent, that is, when we
have a critical configuration, then we obtain that the
red point has four neighbors, the four yellow edges.

Then the red points of the boundary of the repre-
sentation of the set in Khalimsky grids admit only two
neighbors iff the set is digitally well-composed. Since
the yellow edges admit always two neighbors, because
a boundary is closed (and then contains its vertices in
the Khalimsky grid) by construction, we obtain finally
that every set which is AWC is DWC and conversely in
2D. Note that Figure|23]also illustrates the equivalence
between DWCness and CWCness in 2D.

Looking at Figure with the same reasoning as
for the 2D case, we can see that there is no critical con-
figurations in the restriction X N S, where S is any 3D
block in Z3, if and only if the boundary dZ(X) (made
of green squares, yellow edges, and red points) of the
span-based immersion Z(X) (such that white points in

72 become blue cubes) of X is locally a simple closed
curve. On the contrary, in the cases containing one or
more 2D critical configurations or a 3D critical config-
uration, 0Z(X) is not locally a simple closed curve: it
contains a “pinch” at a yellow edge in the case of a 2D
critical configuration and at a red point in the case of
a 3D critical configuration. Note that the cases that we
can obtain by complementarity have been omitted since
well-composedness is self-dual. This gives the intuition
of why AWCness and DWCness are equivalent in 3D.

Boutry [26] asserted in his Ph.D. thesis that this
equivalence is still true when n > 4 but this still remains
a conjecture.

4.5 Well-composedness on polytopal complexes

As defined in Stelldinger’s book [168], a polytopal com-
plex in R™ is a set of conver polyhedra in R™, called
polytopes, such that every face of each polytope belongs
to this complex, and such that for any two faces of the
complex, their intersection is a common face of both
these two faces.

The dimension of a polytope is the maximum num-
ber of contained independent vectors after translating
the polytope so that it covers the origin, and a polytope
of dimension m > 0 is called a m-cell. The dimension
of a polytopal complex is the maximal dimension of its
polytopes.

Two polytopes of a complex are said m-adjacent if
their intersection is a m/-polytope with m’ > m. Two
polytopes are adjacent iff they are adjacent for some
m. They are incident iff they are adjacent and of dif-
ferent dimensions (then one polytope is a face of the
other). A complete polytopal complex of dimension m
is a polytopal complex where each polytope of dimen-
sion m’ < m is incident to at least one polytope with
dimension m.

A polytopal complex is called well-composed iff it
is complete, of dimension n, and any two adjacent n-
polytopes are (n — 1)-adjacent. A set in R™ is said
well-composed iff there exists a well-composed poly-
topal complex such that the union of its polytopes is
equal to this set.

According to Stelldinger [168], this definition ex-
tends the ones of Latecki [T00,102] and Wang and Bhat-
tacharya [I83] for arbitrary cell complexes in any di-
mension.

However, it seems that the polytopal complex such
as depicted in Figure [25] made of three edge-connected
unit squares depicting a “L”, plus their faces, depicts a
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Fig. 24: A set of local configurations in 3D.
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Fig. 25: A polytopal complex which would not be well-
composed according to Stelldinger [168]; see text for
details.

polytopal complex which would be well-composed ac-
cording to Latecki, since the boundary of the complex
is a simple closed curve. It would not be well-composed
according to Stelldinger, since this set contains two
squares p and p’ which share a vertex ¢, and then are
adjacent, but which do not share any edge. The defi-
nition of Latecki and Stelldinger then seems not to be
equivalent.

A new definition of well-composedness for polytopal
complexes could then follow the one of Boutry [26]
about well-composedness of arbitrary grids in n-D: a
polytopal complex could be said to be well-composed
iff for any two different n-polytopes p and ¢ incident to
a common m-polytope a, 0 < m < n — 1, there exists
asequence IT = (p= f2,...,q = fF), k > 1, of n-faces
such that for any i € [0,k — 1], f% and fi*! share ex-

actly a (n — 1)-face and such that each fi, i € [0, k], is
incident to a.

However, note that even this way, this definition is
not equivalent to the one of Latecki, since the immer-
sion into the Khalimsky grid of a secondary critical con-
figuration in 3D would be well-composed, this definition
being not self-dual.

5 Other flavours of WCnesses

We have seen definitions of well-composedness in the
digital sense in Z™ and in the Alexandrov sense, let us
now present the other definitions of well-composednesses
that exist nowadays: the well-composedness based on
the equivalence of comnectivities or EWChness and its
relationship with DWCness, the continuous well-com-
posedness or CWCness and its relationship with DWC-
ness in 3D and with AWCness in n-D, and well-compo-
sedness on arbitrary grids or AG-well-composedness in
n-D.

5.1 Definition of EWCness in n-D

Let us recall the n-D extension of well-composedness
based on the equivalence of connectivities proposed in [29]:
let X be a digital set in Z", then X is said to be EWC
or well-composed based on the equivalence of its connec-
tivities iff the two following conditions hold:
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Fig. 26: EWCness does not imply DWCness in n-D (n >
3).

— any of its 2n-component is also one of its (3" — 1)-
components and vice versa,

— any 2n-component of X°¢ is also a (3™ — 1)-compo-
nent of X¢ and wice versa.

We can underline that this definition is clearly self-
dual, and since the connectivity does not matter for
this class of sets, we will sometimes say (when the con-
text is clear) that their connectivities and the ones of
their complement in Z" are “equivalent”. Also, this def-
inition is the natural extension of the one of Latecki
in [T04] for 2D sets.

5.2 DWC implies EWC in n-D

Let us recall that EWCness is a global property, since it
is based on connected components, and that DWCness
is based on local properties, that is, there is no crit-
ical configurations. That shows that the link between
DWCness and EWChness is not so obvious. However, as
presented for the first time in »n-D in [29] and proved
n [20], for any digital subset X of Z", if X is DWC,
then X is EWC.

Recall [29,26] that the converse is not true in 3D and
beyond (see Figure: a 3D subset of Z" can be EWC
without being DWC, since the (3" —1)-components and
the 2n-components of this set are equal, but it contains
a 2D critical configuration and then is not DWC.

5.3 Definition of CWCness in n-D

The first definition of 3D well-composedness, based on
manifoldness, has been first introduced in 1997 [100].
Then, it has been extended to n-D in 2000 [102], and re-
named as “continuous well-composedness” in 2015 [29]
to distinguish it from EWCness and DWCness. Be-
fore we recall this n-D extension, let us introduce some

mathematical background. According to Latecki et al. [100]

Fig. 27: The continuous analogs of 2D critical configu-
rations in R2.

102], the continuous analog CA(p) of a point p € Z" is
the closed unit cube centered at this point with faces
parallel to the coordinate planes: CA(p) = {¢ € R" ; ||p—
qlee < 1/2}, where |z]|oc = max{z; ; ¢ € [1,n]}
for any € R™, and the continuous analog CA(X) of
a digital set X C Z" is the union of the continuous
analogs of the points belonging to the set X: CA(X) =
Upex CA(p). This way, a digital subset X C Z" is
said well-composed in the continuous sense [100,102]
29], or shortly CWC, iff the boundary of the continu-
ous analog bdCA(X) of this set is a (n — 1)-manifold,
that is, if for any point p € X, the (open) neighbor-
hood of p in bdCA(X) is homeomorphic to R™~1).
Note that this definition is self-dual: for any X C Z",
bdCA(X) = bdCA(X¢) and then X is well-composed
iff X¢ is well-composed.

In [I00], Latecki also introduced a characterization
of 3D continuous well-composedness using m-adjacen-
cies: two points are said G-adjacent (G-neighbors) iff
their continuous analog share a face, 18-adjacent (18-
neighbors) iff their continuous analogs share a face or
an edge, and 26-adjacent (26-neighbors) iff their con-
tinuous analogs share a face, an edge, or a corner (of a
unit cube centered at a point of Z3). Then, with X a
digital subset of Z3, X; = X and Xy = X¢, X is CWC
iff the two following conditions hold for x € {0, 1}:

— for every two 18-adjacent points z and y in X, there
exists a 6-path joining z to y into Mig(z) NNig(y) N
ka

— for every two 26-adjacent points  and y in X, there
exists a 6-path joining z to y into Nag(z) N N2g(y) N
X

This way, we clearly understand that local 18/26-connec-
tivities in CWC sets imply 6-connectivity, and then that
CWCness implies EWCness.

5.4 DWChness is equivalent to CWCness in 2D/3D

As proved by Latecki et al. [I04I00], a digital subset

1
X C Z? contains a critical configuration ( 0 ?) or its

dual <(1) (1)> iff its continuous analog contains the pat-
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Fig. 28: The continuous analogs of primary 2D /3D crit-
ical configurations in R3.
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Fig. 29: The six possible configurations [100] at a corner
point in a 3D well-composed set.

tern shown in Figure 27} that is, two squares sharing a
vertex.

In the same manner, in 3D, a digital subset X C Z3

. N ) 10 00[01
contains a critical configuration (0 1> or (1 0lo 0)

iff its continuous analog contains one of the patterns
shown in Figure [28] (modulo 90 degrees rotations and
translations), that is, two cubes sharing a edge or two
cubes sharing a vertex. In other words, DWCness and
CWCness are equivalent in 2D/3D.

The complete proof [I00] (pp. 166-167) relies on the
fact that any set containing one of these critical con-
figurations contains a “pinch” such that at these criti-
cal locations, no point of the boundary owns an open
neighborhood homeomorphic to an open disk, and then
to R2. Conversely, if the set S does not contain any
critical configuration of any type, then at each point
belonging to the interior of a face, any neighborhood
which is small enough will be homeomorphic to an open
disk, at any point belonging to the interior of the union
of two adjacent faces of the boundary sharing an edge;
the neighborhood of this point is homeomorphic to an
open disk (whether the two faces are parallel or per-
pendicular). At the corners of the faces included in the
boundary, only 6 configurations are possible (see Fig-
ure . In the six cases the corner admits a neighbor-

Fig. 30: Definition of 2D well-composedness on 2D ar-
bitrary grids.

hood homeomorphic to an open disk, which concludes
the proof of Latecki. However, we can denote that this
study has been processed case-by-case and then seems
difficult to be extended to higher dimensions.

5.5 AWCness vs. CWCness in n-D

In digital topology, its is generally admitted that in 2D
and 3D a digital set X C Z" is continuous well-com-
posed, that is, the boundary of its continuous analog
bdCA(X) is a (n — 1)-manifold, iff its span-based im-
mersion in the Khalimsky grids is well-composed in the
sense of Alexandrov, that is, its boundary is a disjoint
union of discrete (n — 1)-surfaces. However, the study
of n-D well-composedness is yet in its infancy, as shown
by the conjecture of Boutry [26] in his thesis, asserting
that CWCness and AWCness are equivalent in n-D.

5.6 Well-composedness on arbitrary grids

According to Wang and Battacharya [I83], we can ex-
tend the definition of well-composedness coming from
the rectangular grids to arbitrary grids in 2D in the fol-
lowing manner. We assume that we have a (locally fi-
nite) arbitrary grid system of (closed) pixels paving the
topological space R? such that the boundary of each
pixel is a simple closed curve (or Jordan curve) as de-
picted in Figure 30}

A set X of pixel is then said well-composed iff for
any point p belonging to the boundary of X, the set of
pixels of X containing p is edge-conne