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OVERVIEW PAPER

A tutorial survey of architectures, algorithms,
and applications for deep learning
li deng

In this invited paper, my overview material on the same topic as presented in the plenary overview session of APSIPA-2011 and

the tutorial material presented in the same conference [1] are expanded and updated to include more recent developments in

deep learning. The previous and the updatedmaterials cover both theory and applications, and analyze its future directions. The

goal of this tutorial survey is to introduce the emerging area of deep learning or hierarchical learning to the APSIPA community.

Deep learning refers to a class of machine learning techniques, developed largely since 2006, where many stages of non-linear

information processing in hierarchical architectures are exploited for pattern classi�cation and for feature learning. In the more

recent literature, it is also connected to representation learning, which involves a hierarchy of features or concepts where higher-

level concepts are de�ned from lower-level ones and where the same lower-level concepts help to de�ne higher-level ones. In this

tutorial survey, a brief history of deep learning research is discussed �rst. Then, a classi�catory scheme is developed to analyze

and summarize major work reported in the recent deep learning literature. Using this scheme, I provide a taxonomy-oriented

survey on the existing deep architectures and algorithms in the literature, and categorize them into three classes: generative,

discriminative, and hybrid. Three representative deep architectures – deep autoencoders, deep stacking networks with their

generalization to the temporal domain (recurrent networks), and deep neural networks (pretrained with deep belief networks) –

one in each of the three classes, are presented in more detail. Next, selected applications of deep learning are reviewed in broad

areas of signal and information processing including audio/speech, image/vision, multimodality, language modeling, natural

language processing, and information retrieval. Finally, future directions of deep learning are discussed and analyzed.
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I . I NTRODUCT ION

Signal-processing research nowadays has a signi�cantly
widened scope compared with just a few years ago. It has
encompassed many broad areas of information process-
ing from low-level signals to higher-level, human-centric
semantic information [2]. Since 2006, deep learning, which
is more recently referred to as representation learning, has
emerged as a new area of machine learning research [3–5].
Within the past few years, the techniques developed from
deep learning research have already been impacting a wide
range of signal- and information-processing work within
the traditional and the new, widened scopes including
machine learning and arti�cial intelligence [1, 5–8]; see a
recent New York Times media coverage of this progress
in [9]. A series of workshops, tutorials, and special issues
or conference special sessions have been devoted exclu-
sively to deep learning and its applications to various clas-
sical and expanded signal-processing areas. These include:
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the 2013 International Conference on Learning Represen-
tations, the 2013 ICASSP’s special session on New Types of
DeepNeural Network Learning for Speech Recognition and
Related Applications, the 2013 ICML Workshop for Audio,
Speech, and Language Processing, the 2013, 2012, 2011, and
2010NIPSWorkshops onDeep Learning andUnsupervised
Feature Learning, 2013 ICML Workshop on Representa-
tion Learning Challenges, 2013 Intern. Conf. on Learning
Representations, 2012 ICML Workshop on Representation
Learning, 2011 ICMLWorkshop on Learning Architectures,
Representations, and Optimization for Speech and Visual
Information Processing, 2009 ICML Workshop on Learn-
ing Feature Hierarchies, 2009 NIPS Workshop on Deep
Learning for Speech Recognition and Related Applications,
2012 ICASSP deep learning tutorial, the special section
on Deep Learning for Speech and Language Processing
in IEEE Trans. Audio, Speech, and Language Processing
(January 2012), and the special issue on Learning Deep
Architectures in IEEE Trans. Pattern Analysis and Machine
Intelligence (2013). The author has been directly involved
in the research and in organizing several of the events
and editorials above, and has seen the emerging nature
of the �eld; hence a need for providing a tutorial survey
article here.
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Deep learning refers to a class of machine learning
techniques, where many layers of information-processing
stages in hierarchical architectures are exploited for pat-
tern classi�cation and for feature or representation learn-
ing. It is in the intersections among the research areas of
neural network, graphical modeling, optimization, pattern
recognition, and signal processing. Three important rea-
sons for the popularity of deep learning today are drastically
increased chip processing abilities (e.g., GPU units), the sig-
ni�cantly lowered cost of computing hardware, and recent
advances in machine learning and signal/information-
processing research. Active researchers in this area include
those at University of Toronto, New York University, Uni-
versity of Montreal, Microsoft Research, Google, IBM
Research, Baidu, Facebook, Stanford University, Univer-
sity of Michigan, MIT, University of Washington, and
numerous other places. These researchers have demon-
strated successes of deep learning in diverse applications
of computer vision, phonetic recognition, voice search,
conversational speech recognition, speech and image fea-
ture coding, semantic utterance classi�cation, hand-writing
recognition, audio processing, visual object recognition,
information retrieval, and even in the analysis of molecules
that may lead to discovering new drugs as reported
recently in [9].
This paper expands my recent overview material on the

same topic as presented in the plenary overview session of
APSIPA-ASC2011 as well as the tutorial material presented
in the same conference [1]. It is aimed to introduce the
APSIPA Transactions’ readers to the emerging technologies
enabled by deep learning. I attempt to provide a tutorial
review on the research work conducted in this exciting area
since the birth of deep learning in 2006 that has direct rele-
vance to signal and information processing. Future research
directions will be discussed to attract interests from more
APSIPA researchers, students, and practitioners for advanc-
ing signal and information-processing technology as the
core mission of the APSIPA community.
The remainder of this paper is organized as follows:

• Section II: A brief historical account of deep learning is
provided from the perspective of signal and information
processing.

• Sections III: A three-way classi�cation scheme for a
large body of the work in deep learning is developed.
A growing number of deep architectures are classi�ed
into: (1) generative, (2) discriminative, and (3) hybrid cat-
egories, and high-level descriptions are provided for each
category.

• Sections IV–VI: For each of the three categories, a tuto-
rial example is chosen to provide more detailed treat-
ment. The examples chosen are: (1) deep autoencoders
for the generative category (Section IV); (2) DNNs pre-
trained with DBN for the hybrid category (Section V);
and (3) deep stacking networks (DSNs) and a related spe-
cial version of recurrent neural networks (RNNs) for the
discriminative category (Section VI).

• Sections VII: A set of typical and successful applications
of deep learning in diverse areas of signal and information
processing are reviewed.

• Section VIII: A summary and future directions are given.

I I . A BR IEF H ISTOR ICAL ACCOUNT

OF DEEP LEARN ING

Until recently,mostmachine learning and signal-processing
techniques had exploited shallow-structured architectures.
These architectures typically contain a single layer of non-
linear feature transformations and they lack multiple layers
of adaptive non-linear features. Examples of the shal-
low architectures are conventional, commonly used Gaus-
sian mixture models (GMMs) and hidden Markov models
(HMMs), linear or non-linear dynamical systems, condi-
tional random �elds (CRFs), maximum entropy (MaxEnt)
models, support vector machines (SVMs), logistic regres-
sion, kernel regression, and multi-layer perceptron (MLP)
neural networkwith a single hidden layer including extreme
learning machine. A property common to these shallow
learning models is the relatively simple architecture that
consists of only one layer responsible for transforming the
raw input signals or features into a problem-speci�c feature
space, which may be unobservable. Take the example of an
SVM and other conventional kernel methods. They use a
shallow linear pattern separation model with one or zero
feature transformation layer when kernel trick is used or
otherwise. (Notable exceptions are the recent kernel meth-
ods that have been inspired by and integrated with deep
learning; e.g., [10–12].) Shallow architectures have been
shown e�ective in solving many simple or well-constrained
problems, but their limited modeling and representational
power can cause di�culties when dealing with more com-
plicated real-world applications involving natural signals
such as human speech, natural sound and language, and
natural image and visual scenes.
Human information-processing mechanisms (e.g.,

vision and speech), however, suggest the need of deep
architectures for extracting complex structure and build-
ing internal representation from rich sensory inputs. For
example, human speech production and perception sys-
tems are both equipped with clearly layered hierarchical
structures in transforming the information from the wave-
form level to the linguistic level [13–16]. In a similar vein,
human visual system is also hierarchical in nature, most in
the perception side but interestingly also in the “generative”
side [17–19]. It is natural to believe that the state-of-the-
art can be advanced in processing these types of natural
signals if e�cient and e�ective deep learning algorithms
are developed. Information-processing and learning sys-
tems with deep architectures are composed of many layers
of non-linear processing stages, where each lower layer’s
outputs are fed to its immediate higher layer as the input.
The successful deep learning techniques developed so far
share two additional key properties: the generative nature
of the model, which typically requires adding an additional
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top layer to perform discriminative tasks, and an unsuper-
vised pretraining step that makes an e�ective use of large
amounts of unlabeled training data for extracting structures
and regularities in the input features.
Historically, the concept of deep learning was originated

from arti�cial neural network research. (Hence, one may
occasionally hear the discussion of “new-generation neu-
ral networks”.) Feed-forward neural networks orMLPs with
many hidden layers are indeed a good example of the mod-
els with a deep architecture. Backpropagation, popularized
in 1980s, has been a well-known algorithm for learning the
weights of these networks. Unfortunately backpropagation
alone did not work well in practice for learning networks
with more than a small number of hidden layers (see a
review and analysis in [4, 20]). The pervasive presence of
local optima in the non-convex objective function of the
deep networks is themain source of di�culties in the learn-
ing. Backpropagation is based on local gradient descent,
and starts usually at some random initial points. It often
gets trapped in poor local optima, and the severity increases
signi�cantly as the depth of the networks increases. This dif-
�culty is partially responsible for steering away most of the
machine learning and signal-processing research from neu-
ral networks to shallow models that have convex loss func-
tions (e.g., SVMs, CRFs, and MaxEnt models), for which
global optimum can be e�ciently obtained at the cost of less
powerful models.
The optimization di�culty associated with the deep

models was empirically alleviated when a reasonably e�-
cient, unsupervised learning algorithm was introduced in
the two papers of [3, 21]. In these papers, a class of deep
generative models was introduced, called deep belief net-
work (DBN), which is composed of a stack of restricted
Boltzmann machines (RBMs). A core component of the
DBN is a greedy, layer-by-layer learning algorithm, which
optimizes DBN weights at time complexity linear to the
size and depth of the networks. Separately and with some
surprise, initializing the weights of an MLP with a corre-
spondingly con�gured DBN often produces much better
results than that with the random weights. As such, MLPs
with many hidden layers, or deep neural networks (DNNs),
which are learned with unsupervised DBN pretraining fol-
lowed by backpropagation �ne-tuning is sometimes also
called DBNs in the literature (e.g., [22–24]). More recently,
researchers have been more careful in distinguishing DNN
from DBN [6, 25], and when DBN is used the initial-
ize the training of a DNN, the resulting network is called
DBN–DNN [6].
In addition to the supply of good initialization points,

DBN comes with additional attractive features. First, the
learning algorithm makes e�ective use of unlabeled data.
Second, it can be interpreted as Bayesian probabilistic gen-
erative model. Third, the values of the hidden variables in
the deepest layer are e�cient to compute. And fourth, the
over�tting problem, which is often observed in the models
with millions of parameters such as DBNs, and the under-
�tting problem, which occurs often in deep networks, can
be e�ectively addressed by the generative pretraining step.

An insightful analysis on what speech information DBNs
can capture is provided in [26].
The DBN-training procedure is not the only one that

makes e�ective training of DNNs possible. Since the pub-
lication of the seminal work [3, 21], a number of other
researchers have been improving and applying the deep
learning techniques with success. For example, one can
alternatively pretrain DNNs layer by layer by considering
each pair of layers as a denoising autoencoder regularized
by setting a subset of the inputs to zero [4, 27]. Also, “con-
tractive” autoencoders can be used for the same purpose by
regularizing via penalizing the gradient of the activities of
the hidden units with respect to the inputs [28]. Further,
Ranzato et al. [29] developed the sparse encoding symmet-
ric machine (SESM), which has a very similar architecture
to RBMs as building blocks of a DBN. In principle, SESM
may also be used to e�ectively initialize the DNN training.
Historically, the use of the generative model of DBN to

facilitate the training of DNNs plays an important role in
igniting the interest of deep learning for speech feature cod-
ing and for speech recognition [6, 22, 25, 30]. After this
e�ectiveness was demonstrated, further research showed
many alternative but simpler ways of doing pretraining.
With a large amount of training data, we now know how
to learn a DNN by starting with a shallow neural network
(i.e., with one hidden layer). After this shallow network has
been trained discriminatively, a new hidden layer is inserted
between the previous hidden layer and the softmax output
layer and the full network is again discriminatively trained.
One can continue this process until the desired number
of hidden layers is reached in the DNN. And �nally, full
backpropagation �ne-tuning is carried out to complete the
DNN training.Withmore training data andwithmore care-
ful weight initialization, the above process of discriminative
pretraining can be removed also for e�ective DNN training.
In the next section, an overview is provided on the var-

ious architectures of deep learning, including and beyond
the original DBN published in [3].

I I I . THREE BROAD CLASSES OF

DEEP ARCH ITECTURES : AN

OVERV IEW

As described earlier, deep learning refers to a rather
wide class of machine learning techniques and architec-
tures, with the hallmark of using many layers of non-
linear information-processing stages that are hierarchical in
nature. Depending on how the architectures and techniques
are intended for use, e.g., synthesis/generation or recogni-
tion/classi�cation, one can broadly categorize most of the
work in this area into three main classes:

1) Generative deep architectures, which are intended to
characterize the high-order correlation properties of the
observed or visible data for pattern analysis or synthesis
purposes, and/or characterize the joint statistical distri-
butions of the visible data and their associated classes. In
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the latter case, the use of Bayes rule can turn this type of
architecture into a discriminative one.

2) Discriminative deep architectures, which are intended
to directly provide discriminative power for pattern clas-
si�cation, often by characterizing the posterior distribu-
tions of classes conditioned on the visible data; and

3) Hybrid deep architectures, where the goal is discrimi-
nation but is assisted (often in a signi�cant way) with
the outcomes of generative architectures via better opti-
mization or/and regularization, or when discriminative
criteria are used to learn the parameters in any of the
deep generative models in category (1) above.

Note the use of “hybrid” in (3) above is di�erent from that
used sometimes in the literature, which refers to the hybrid
pipeline systems for speech recognition feeding the output
probabilities of a neural network into an HMM [31–33].
By machine learning tradition (e.g., [34]), it may be nat-

ural to use a two-way classi�cation scheme according to
discriminative learning (e.g., neural networks) versus deep
probabilistic generative learning (e.g., DBN, DBM, etc.).
This classi�cation scheme, however, misses a key insight
gained in deep learning research about how generative
models can greatly improve learning DNNs and other deep
discriminative models via better optimization and regular-
ization. Also, deep generative models may not necessarily
need to be probabilistic; e.g., the deep autoencoder. Nev-
ertheless, the two-way classi�cation points to important
di�erences between DNNs and deep probabilistic models.
The former is usually more e�cient for training and test-
ing, more "exible in its construction, less constrained (e.g.,
no normalization by the di�cult partition function, which
can be replaced by sparsity), and is more suitable for end-
to-end learning of complex systems (e.g., no approximate
inference and learning). The latter, on the other hand, is
easier to interpret and to embed domain knowledge, is eas-
ier to compose and to handle uncertainty, but is typically
intractable in inference and learning for complex systems.
This distinction, however, is retained also in the proposed
three-way classi�cation, which is adopted throughout this
paper.
Below we brie"y review representative work in each of

the above three classes, where several basic de�nitions will
be used as summarized inTable 1. Applications of these deep
architectures are deferred to Section VII.

A) Generative architectures

Associated with this generative category, we often see
“unsupervised feature learning”, since the labels for the data
are not of concern. When applying generative architectures
to pattern recognition (i.e., supervised learning), a key con-
cept here is (unsupervised) pretraining. This concept arises
from the need to learn deep networks but learning the lower
levels of such networks is di�cult, especially when training
data are limited. Therefore, it is desirable to learn each lower
layer without relying on all the layers above and to learn all
layers in a greedy, layer-by-layer manner from bottom up.

This is the gist of “pretraining” before subsequent learning
of all layers together.
Among the various subclasses of generative deep archi-

tecture, the energy-based deep models including autoen-
coders are the most common (e.g., [4, 35–38]). The original
form of the deep autoencoder [21, 30], which we will give
more detail about in Section IV, is a typical example in
the generative model category. Most other forms of deep
autoencoders are also generative in nature, but with quite
di�erent properties and implementations. Examples are
transforming autoencoders [39], predictive sparse coders
and their stacked version, and denoising autoencoders and
their stacked versions [27].
Speci�cally, in denoising autoencoders, the input vec-

tors are �rst corrupted; e.g., randomizing a percentage of
the inputs and setting them to zeros. Then one designs the
hidden encoding nodes to reconstruct the original, uncor-
rupted input data using criteria such asKL distance between
the original inputs and the reconstructed inputs. Uncor-
rupted encoded representations are used as the inputs to the
next level of the stacked denoising autoencoder.
Another prominent type of generative model is deep

Boltzmann machine or DBM [40–42]. A DBM contains
many layers of hidden variables, and has no connections
between the variables within the same layer. This is a spe-
cial case of the general Boltzmann machine (BM), which
is a network of symmetrically connected units that make
stochastic decisions about whether to be on or o�. While
having very simple learning algorithm, the general BMs are
very complex to study and very slow to compute in learning.
In a DBM, each layer captures complicated, higher-order
correlations between the activities of hidden features in the
layer below. DBMs have the potential of learning internal
representations that become increasingly complex, highly
desirable for solving object and speech recognition prob-
lems. Furthermore, the high-level representations can be
built from a large supply of unlabeled sensory inputs and
very limited labeled data can then be used to only slightly
�ne-tune the model for a speci�c task at hand.
When the number of hidden layers of DBM is reduced

to one, we have RBM. Like DBM, there are no hidden-
to-hidden and no visible-to-visible connections. The main
virtue of RBM is that via composing many RBMs, many
hidden layers can be learned e�ciently using the feature
activations of one RBM as the training data for the next.
Such composition leads to DBN, which we will describe in
more detail, together with RBMs, in Section V.
The standard DBN has been extended to the factored

higher-order BM in its bottom layer, with strong results
for phone recognition obtained [43]. This model, called
mean-covariance RBM or mcRBM, recognizes the limita-
tion of the standard RBM in its ability to represent the
covariance structure of the data. However, it is very di�-
cult to train mcRBM and to use it at the higher levels of
the deep architecture. Furthermore, the strong results pub-
lished are not easy to reproduce. In the architecture of [43],
the mcRBM parameters in the full DBN are not easy to be
�ne-tuned using the discriminative information as for the
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Table 1. Some basic deep learning terminologies.

1. Deep Learning: A class of machine learning techniques, where many layers of information-

processing stages in hierarchical architectures are exploited for unsupervised feature learning and

for pattern analysis/classi�cation. The essence of deep learning is to compute hierarchical features

or representations of the observational data, where the higher-level features or factors are de�ned

from lower-level ones.

2. Deep belief network (DBN): probabilistic generative models composed of multiple layers of

stochastic, hidden variables. The top two layers have undirected, symmetric connections between

them. The lower layers receive top-down, directed connections from the layer above.

3. Boltzmann machine (BM): A network of symmetrically connected, neuron-like units that make

stochastic decisions about whether to be on or o�.

4. Restricted Boltzmann machine (RBM): A special BM consisting of a layer of visible units and a

layer of hidden units with no visible-visible or hidden-hidden connections.

5. Deep Boltzmann machine (DBM): A special BM where the hidden units are organized in a deep

layered manner, only adjacent layers are connected, and there are no visible–visible or hidden–

hidden connections within the same layer.

6. Deep neural network (DNN): a multilayer network with many hidden layers, whose weights are

fully connected and are often initialized (pretrained) using stacked RBMs orDBN. (In the literature,

DBN is sometimes used to mean DNN)

7. Deep auto-encoder:ADNNwhose output target is the data input itself, often pretrained withDBN

or using distorted training data to regularize the learning.

8. Distributed representation:A representation of the observed data in such away that they aremod-

eled as being generated by the interactions of many hidden factors. A particular factor learned from

con�gurations of other factors can often generalize well. Distributed representations form the basis

of deep learning.

regular RBMs in the higher layers. However, recent work
showed that when better features are used, e.g., cepstral
speech features subject to linear discriminant analysis or to
fMLLR transformation, then the mcRBM is not needed as
covariance in the transformed data is already modeled [26].
Another representative deep generative architecture is

the sum-product network or SPN [44, 45]. An SPN is a
directed acyclic graph with the data as leaves, and with
sum and product operations as internal nodes in the deep
architecture. The “sum” nodes give mixture models, and
the “product” nodes build up the feature hierarchy. Prop-
erties of “completeness” and “consistency” constrain the
SPN in a desirable way. The learning of SPN is carried
out using the EM algorithm together with backpropaga-
tion. The learning procedure starts with a dense SPN.
It then �nds an SPN structure by learning its weights,
where zero weights remove the connections. The main dif-
�culty in learning is found to be the common one – the
learning signal (i.e., the gradient) quickly dilutes when it
propagates to deep layers. Empirical solutions have been
found to mitigate this di�culty reported in [44], where it
was pointed out that despite the many desirable genera-
tive properties in the SPN, it is di�cult to �ne tune its
weights using the discriminative information, limiting its
e�ectiveness in classi�cation tasks. This di�culty has been
overcome in the subsequent work reported in [45], where
an e�cient backpropagation-style discriminative training
algorithm for SPN was presented. It was pointed out that
the standard gradient descent, computed by the derivative
of the conditional likelihood, su�ers from the same gra-
dient di�usion problem well known for the regular deep
networks. But whenmarginal inference is replaced by infer-
ring the most probable state of the hidden variables, such
a “hard” gradient descent can reliably estimate deep SPNs’

weights. Excellent results on (small-scale) image recogni-
tion tasks are reported.
RNNs can be regarded as a class of deep generative archi-

tectures when they are used to model and generate sequen-
tial data (e.g., [46]). The “depth” of anRNNcan be as large as
the length of the input data sequence. RNNs are very pow-
erful for modeling sequence data (e.g., speech or text), but
until recently they had not been widely used partly because
they are extremely di�cult to train properly due to the well-
known “vanishing gradient” problem. Recent advances in
Hessian-free optimization [47] have partially overcome this
di�culty using second-order information or stochastic cur-
vature estimates. In the recent work of [48], RNNs that are
trainedwithHessian-free optimization are used as a genera-
tive deep architecture in the character-level language mod-
eling (LM) tasks, where gated connections are introduced
to allow the current input characters to predict the transi-
tion from one latent state vector to the next. Such generative
RNN models are demonstrated to be well capable of gener-
ating sequential text characters. More recently, Bengio et al.
[49] and Sutskever [50] have explored new optimization
methods in training generative RNNs that modify stochas-
tic gradient descent and show these modi�cations can out-
perform Hessian-free optimization methods. Mikolov et al.
[51] have reported excellent results on using RNNs for LM.
More recently, Mesnil et al. [52] reported the success of
RNNs in spoken language understanding.
As examples of a di�erent type of generative deep mod-

els, there has been a long history in speech recognition
research where human speech production mechanisms are
exploited to construct dynamic and deep structure in prob-
abilistic generative models; for a comprehensive review, see
book [53]. Speci�cally, the early work described in [54–59]
generalized and extended the conventional shallow and
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conditionally independent HMM structure by imposing
dynamic constraints, in the form of polynomial trajectory,
on the HMM parameters. A variant of this approach has
beenmore recently developed using di�erent learning tech-
niques for time-varying HMM parameters and with the
applications extended to speech recognition robustness [60,
61]. Similar trajectory HMMs also form the basis for para-
metric speech synthesis [62–66]. Subsequent work added a
new hidden layer into the dynamic model so as to explic-
itly account for the target-directed, articulatory-like prop-
erties in human speech generation [15, 16, 67–73]. More
e�cient implementation of this deep architecture with hid-
den dynamics is achieved with non-recursive or FIR �lters
in more recent studies [74–76]. The above deep-structured
generative models of speech can be shown as special cases
of the more general dynamic Bayesian network model and
even more general dynamic graphical models [77, 78]. The
graphical models can comprise many hidden layers to char-
acterize the complex relationship between the variables in
speech generation. Armed with powerful graphical model-
ing tool, the deep architecture of speech has more recently
been successfully applied to solve the very di�cult problem
of single-channel, multi-talker speech recognition, where
the mixed speech is the visible variable while the un-
mixed speech becomes represented in a new hidden layer
in the deep generative architecture [79, 80]. Deep genera-
tive graphical models are indeed a powerful tool in many
applications due to their capability of embedding domain
knowledge. However, in addition to the weakness of using
non-distributed representations for the classi�cation cate-
gories, they also are often implemented with inappropri-
ate approximations in inference, learning, prediction, and
topology design, all arising from inherent intractability in
these tasks for most real-world applications. This problem
has been partly addressed in the recent work of [81], which
provides an interesting direction for making deep genera-
tive graphical models potentially more useful in practice in
the future.
The standard statistical methods used for large-scale

speech recognition and understanding combine (shallow)
HMMs for speech acoustics with higher layers of structure
representing di�erent levels of natural language hierarchy.
This combined hierarchical model can be suitably regarded
as a deep generative architecture, whose motivation and
some technical detail may be found in Chapter 7 in the
recent book [82] on “Hierarchical HMM” or HHMM.
Relatedmodels with greater technical depth andmathemat-
ical treatment can be found in [83] for HHMM and [84] for
Layered HMM. These early deep models were formulated
as directed graphical models, missing the key aspect of “dis-
tributed representation” embodied in the more recent deep
generative architectures of DBN andDBMdiscussed earlier
in this section.
Finally, temporally recursive and deep generative mod-

els can be found in [85] for human motion modeling, and
in [86] for natural language and natural scene parsing. The
latter model is particularly interesting because the learn-
ing algorithms are capable of automatically determining the

optimal model structure. This contrasts with other deep
architectures such as the DBN where only the parameters
are learned while the architectures need to be prede�ned.
Speci�cally, as reported in [86], the recursive structure com-
monly found in natural scene images and in natural lan-
guage sentences can be discovered using a max-margin
structure prediction architecture. Not only the units con-
tained in the images or sentences are identi�ed but so is the
way in which these units interact with each other to form
the whole.

B) Discriminative architectures

Many of the discriminative techniques in signal and infor-
mation processing apply to shallow architectures such as
HMMs (e.g., [87–94]) or CRFs (e.g., [95–100]). Since a
CRF is de�ned with the conditional probability on input
data as well as on the output labels, it is intrinsically
a shallow discriminative architecture. (Interesting equiva-
lence between CRF and discriminatively trained Gaussian
models and HMMs can be found in [101]. More recently,
deep-structured CRFs have been developed by stacking
the output in each lower layer of the CRF, together with
the original input data, onto its higher layer [96]. Vari-
ous versions of deep-structured CRFs are usefully applied
to phone recognition [102], spoken language identi�ca-
tion [103], and natural language processing [96]. However,
at least for the phone recognition task, the performance
of deep-structured CRFs, which is purely discriminative
(non-generative), has not been able to match that of the
hybrid approach involving DBN, which we will take on
shortly.
The recent article of [33] gives an excellent review on

othermajor existing discriminativemodels in speech recog-
nition based mainly on the traditional neural network or
MLP architecture using backpropagation learning with ran-
dom initialization. It argues for the importance of both the
increased width of each layer of the neural networks and
the increased depth. In particular, a class of DNN models
forms the basis of the popular “tandem” approach, where
a discriminatively learned neural network is developed in
the context of computing discriminant emission probabil-
ities for HMMs. For some representative recent works in
this area, see [104, 105]. The tandem approach generates
discriminative features for an HMM by using the activi-
ties from one or more hidden layers of a neural network
with various ways of information combination, which can
be regarded as a form of discriminative deep architectures
[33, 106].
In themost recentwork of [108–110], a newdeep learning

architecture, sometimes calledDSN, togetherwith its tensor
variant [111, 112] and its kernel version [11], are developed
that all focus on discrimination with scalable, parallelizable
learning relying on little or no generative component. We
will describe this type of discriminative deep architecture
in detail in Section V.
RNNs have been successfully used as a generative model

when the “output” is taken to be the predicted input data in
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the future, as discussed in the preceding subsection; see also
the neural predictivemodel [113] with the samemechanism.
They can also be used as a discriminative model where the
output is an explicit label sequence associatedwith the input
data sequence. Note that such discriminative RNNs were
applied to speech a long time ago with limited success (e.g.,
[114]). For training RNNs for discrimination, presegmented
training data are typically required. Also, post-processing is
needed to transform their outputs into label sequences. It
is highly desirable to remove such requirements, especially
the costly presegmentation of training data.Often a separate
HMM is used to automatically segment the sequence dur-
ing training, and to transform the RNN classi�cation results
into label sequences [114]. However, the use of HMM for
these purposes does not take advantage of the full potential
of RNNs.
An interesting method was proposed in [115–117] that

enables the RNNs themselves to perform sequence classi-
�cation, removing the need for presegmenting the training
data and for post-processing the outputs. Underlying this
method is the idea of interpreting RNN outputs as the
conditional distributions over all possible label sequences
given the input sequences. Then, a di�erentiable objec-
tive function can be derived to optimize these conditional
distributions over the correct label sequences, where no
segmentation of data is required.
Another type of discriminative deep architecture is con-

volutional neural network (CNN), with each module con-
sisting of a convolutional layer and a pooling layer. These
modules are often stacked up with one on top of another,
or with a DNN on top of it, to form a deep model. The
convolutional layer shares many weights, and the pooling
layer subsamples the output of the convolutional layer and
reduces the data rate from the layer below. The weight
sharing in the convolutional layer, together with appropri-
ately chosen pooling schemes, endows the CNN with some
“invariance” properties (e.g., translation invariance). It has
been argued that such limited “invariance” or equi-variance
is not adequate for complex pattern recognition tasks and
more principled ways of handling a wider range of invari-
ance are needed [39].Nevertheless, theCNNhas been found
highly e�ective and been commonly used in computer
vision and image recognition [118–121, 154]. More recently,
with appropriate changes from the CNNdesigned for image
analysis to that taking into account speech-speci�c proper-
ties, the CNN is also found e�ective for speech recognition
[122–126]. We will discuss such applications in more detail
in Section VII.
It is useful to point out that time-delay neural networks

(TDNN, [127, 129]) developed for early speech recognition
are a special case of the CNNwhenweight sharing is limited
to one of the twodimensions, i.e., time dimension. It was not
until recently that researchers have discovered that time is
the wrong dimension to impose “invariance” and frequency
dimension is more e�ective in sharing weights and pool-
ing outputs [122, 123, 126]. An analysis on the underlying
reasons are provided in [126], together with a new strat-
egy for designing the CNN’s pooling layer demonstrated to

be more e�ective than nearly all previous CNNs in phone
recognition.
It is also useful to point out that the model of hierar-

chical temporal memory (HTM, [17, 128, 130] is another
variant and extension of the CNN. The extension includes
the following aspects: (1) Time or temporal dimension is
introduced to serve as the “supervision” information for dis-
crimination (even for static images); (2) both bottom-up
and top-down information "ow are used, instead of just
bottom-up in the CNN; and (3) a Bayesian probabilistic
formalism is used for fusing information and for decision
making.
Finally, the learning architecture developed for bottom-

up, detection-based speech recognition proposed in [131]
and developed further since 2004, notably in [132–134]
using the DBN–DNN technique, can also be categorized
in the discriminative deep architecture category. There is
no intent and mechanism in this architecture to character-
ize the joint probability of data and recognition targets of
speech attributes and of the higher-level phone and words.
The most current implementation of this approach is based
on multiple layers of neural networks using backpropaga-
tion learning [135]. One intermediate neural network layer
in the implementation of this detection-based framework
explicitly represents the speech attributes, which are sim-
pli�ed entities from the “atomic” units of speech developed
in the early work of [136, 137]. The simpli�cation lies in
the removal of the temporally overlapping properties of
the speech attributes or articulatory-like features. Embed-
ding such more realistic properties in the future work is
expected to improve the accuracy of speech recognition
further.

C) Hybrid generative–discriminative
architectures

The term “hybrid” for this third category refers to the
deep architecture that either comprises or makes use of
both generative and discriminative model components. In
many existing hybrid architectures published in the liter-
ature (e.g., [21, 23, 25, 138]), the generative component is
exploited to help with discrimination, which is the �nal goal
of the hybrid architecture. How and why generative model-
ing can help with discrimination can be examined from two
viewpoints:

1) The optimization viewpoint where generative models
can provide excellent initialization points in highly non-
linear parameter estimation problems (the commonly
used term of “pretraining” in deep learning has been
introduced for this reason); and/or

2) The regularization perspective where generative mod-
els can e�ectively control the complexity of the overall
model.

The study reported in [139] provided an insightful analysis
and experimental evidence supporting both of the view-
points above.
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When the generative deep architecture of DBNdiscussed
in Section III-A is subject to further discriminative training
using backprop, commonly called “�ne-tuning” in the lit-
erature, we obtain an equivalent architecture of the DNN.
The weights of the DNN can be “pretrained” from stacked
RBMs or DBN instead of the usual random initializa-
tion. See [24] for a detailed explanation of the equivalence
relationship and the use of the often confusing terminol-
ogy. We will review details of the DNN in the context of
RBM/DBN pretraining as well as its interface with the most
commonly used shallow generative architecture of HMM
(DNN–HMM) in Section IV.
Another example of the hybrid deep architecture is

developed in [23], where again the generative DBN is
used to initialize the DNN weights but the �ne tuning
is carried out not using frame-level discriminative infor-
mation (e.g., cross-entropy error criterion) but sequence-
level one. This is a combination of the static DNN with
the shallow discriminative architecture of CRF. Here, the
overall architecture of DNN–CRF is learned using the
discriminative criterion of the conditional probability of
full label sequences given the input sequence data. It
can be shown that such DNN–CRF is equivalent to a
hybrid deep architecture of DNN and HMMwhose param-
eters are learned jointly using the full-sequence max-
imum mutual information (MMI) between the entire
label sequence and the input vector sequence. A closely
related full-sequence training method is carried out with
success for a shallow neural network [140] and for a
deep one [141].
Here, it is useful to point out a connection between the

above hybrid discriminative training and a highly popu-
lar minimum phone error (MPE) training technique for
the HMM [89]. In the iterative MPE training procedure
using extended Baum–Welch, the initial HMM parameters
cannot be arbitrary. One commonly used initial param-
eter set is that trained generatively using Baum–Welch
algorithm for maximum likelihood. Furthermore, an inter-
polation term taking the values of generatively trained
HMM parameters is needed in the extended Baum–Welch
updating formula, which may be analogous to “�ne tuning”
in the DNN training discussed earlier. Such I-smoothing
[89] has a similar spirit to DBN pretraining in the “hybrid”
DNN learning.
Along the line of using discriminative criteria to train

parameters in generative models as in the above HMM
training example, we here brie"y discuss the same method
applied to learning other generative architectures. In [142],
the generative model of RBM is learned using the discrimi-
native criterion of posterior class/label probabilities when
the label vector is concatenated with the input data vec-
tor to form the overall visible layer in the RBM. In this
way, RBM can be considered as a stand-alone solution to
classi�cation problems and the authors derived a discrimi-
native learning algorithm for RBM as a shallow generative
model. In the more recent work of [146], the deep gen-
erative model of DBN with the gated MRF at the lowest

level is learned for feature extraction and then for recog-
nition of di�cult image classes including occlusions. The
generative ability of the DBN model facilitates the discov-
ery of what information is captured and what is lost at each
level of representation in the deep model, as demonstrated
in [146]. A related work on using the discriminative crite-
rion of empirical risk to train deep graphical models can be
found in [81].
A further example of the hybrid deep architecture

is the use of the generative model of DBN to pre-
train deep convolutional neural networks (deep DNN)
[123, 144, 145]). Like the fully-connected DNN dis-
cussed earlier, the DBN pretraining is also shown to
improve discrimination of the deep CNN over random
initialization.
The �nal example given here of the hybrid deep archi-

tecture is based on the idea and work of [147, 148], where
one task of discrimination (speech recognition) produces
the output (text) that serves as the input to the second task of
discrimination (machine translation). The overall system,
giving the functionality of speech translation – translating
speech in one language into text in another language – is
a two-stage deep architecture consisting of both generative
and discriminative elements. Both models of speech recog-
nition (e.g., HMM) and ofmachine translation (e.g., phrasal
mapping and non-monotonic alignment) are generative in
nature. But their parameters are all learned for discrimina-
tion. The framework described in [148] enables end-to-end
performance optimization in the overall deep architecture
using the uni�ed learning framework initially published in
[90]. This hybrid deep learning approach can be applied
to not only speech translation but also all speech-centric
and possibly other information-processing tasks such as
speech information retrieval, speech understanding, cross-
lingual speech/text understanding and retrieval, etc. (e.g.,
[11, 109, 149–153]).
After brie"y surveying awide range ofwork in each of the

three classes of deep architectures above, in the following
three sections, I will elaborate on three prominent mod-
els of deep learning, one from each of the three classes.
While ideally they should represent the most in"uential
architectures giving state of the art performance, I have
chosen the three that I am most familiar with as being
responsible for their developments and that may serve the
tutorial purpose well with the simplicity of the architec-
tural and mathematical descriptions. The three architec-
tures described in the following three sections may not be
interpreted as the most representative and in"uential work
in each of the three classes. For example, in the category
of generative architectures, the highly complex deep archi-
tecture and generative training methods developed by and
described in [154], which is beyond the scope of this tuto-
rial, performs quite well in image recognition. Likewise, in
the category of discriminative architectures, the even more
complex architecture and learning described in Kingsbury
et al. [141], Seide et al. [155], and Yan et al. [156] gave the state
of the art performance in large-scale speech recognition.
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I V . GENERAT IVE ARCH ITECTURE :

DEEP AUTOENCODER

A) Introduction

Deep autoencoder is a special type of DNN whose output
is the data input itself, and is used for learning e�cient
encoding or dimensionality reduction for a set of data.More
speci�cally, it is a non-linear feature extraction method
involving no class labels; hence generative. An autoencoder
uses three or more layers in the neural network:

• An input layer of data to be e�ciently coded (e.g., pixels
in image or spectra in speech);

• One or more considerably smaller hidden layers, which
will form the encoding.

• Anoutput layer, where each neuron has the samemeaning
as in the input layer.

When the number of hidden layers is greater than one, the
autoencoder is considered to be deep.
An autoencoder is often trained using one of the many

backpropagation variants (e.g., conjugate gradient method,
steepest descent, etc.) Though often reasonably e�ective,
there are fundamental problems with using backpropa-
gation to train networks with many hidden layers. Once
the errors get backpropagated to the �rst few layers, they
become minuscule, and quite ine�ective. This causes the
network to almost always learn to reconstruct the average
of all the training data. Though more advanced backprop-
agation methods (e.g., the conjugate gradient method) help
with this to some degree, it still results in very slow learning
and poor solutions. This problem is remedied by using ini-
tial weights that approximate the �nal solution. The process
to �nd these initial weights is often called pretraining.
A successful pretraining technique developed in [3] for

training deep autoencoders involves treating each neigh-
boring set of two layers such as an RBM for pretraining to
approximate a good solution and then using a backpropaga-
tion technique to �ne-tune so as the minimize the “coding”
error. This training technique is applied to construct a deep
autoencoder to map images to short binary code for fast,
content-based image retrieval. It is also applied to cod-
ing documents (called semantic hashing), and to coding
spectrogram-like speech features, which we review below.

B) Use of deep autoencoder to extract speech
features

Herewe review themore recent work of [30] in developing a
similar type of autoencoder for extracting bottleneck speech
instead of image features.Discovery of e�cient binary codes
related to such features can also be used in speech infor-
mation retrieval. Importantly, the potential bene�ts of using
discrete representations of speech constructed by this type
of deep autoencoder can be derived from an almost unlim-
ited supply of unlabeled data in future-generation speech
recognition and retrieval systems.

Fig. 1. The architecture of the deep autoencoder used in [30] for extracting
“bottle-neck” speech features from high-resolution spectrograms.

A deep generative model of patches of spectrograms that
contain 256 frequency bins and 1, 3, 9, or 13 frames is illus-
trated in Fig. 1. An undirected graphical model called a
Gaussian-binary RBM is built that has one visible layer
of linear variables with Gaussian noise and one hidden
layer of 500–3000 binary latent variables. After learning
the Gaussian-binary RBM, the activation probabilities of its
hidden units are treated as the data for training another
binary–binary RBM. These two RBMs can then be com-
posed to form a DBN in which it is easy to infer the states of
the second layer of binary hidden units from the input in a
single forward pass. TheDBNused in thiswork is illustrated
on the left side of Fig. 1, where the two RBMs are shown in
separate boxes. (See more detailed discussions on RBM and
DBN in the next section.)
The deep autoencoder with three hidden layers is formed

by “unrolling” theDBNusing its weightmatrices. The lower
layers of this deep autoencoder use the matrices to encode
the input and the upper layers use the matrices in reverse
order to decode the input. This deep autoencoder is then
�ne-tuned using backpropagation of error-derivatives to
make its output as similar as possible to its input, as shown
on the right side of Fig. 1. After learning is complete, any
variable-length spectrogram can be encoded and recon-
structed as follows. First, N-consecutive overlapping frames
of 256-point log power spectra are each normalized to zero-
mean and unit-variance to provide the input to the deep
autoencoder. The �rst hidden layer then uses the logistic
function to compute real-valued activations. These real val-
ues are fed to the next, coding layer to compute “codes”. The
real-valued activations of hidden units in the coding layer
are quantized to be either zero or one with 0.5 as the thresh-
old. These binary codes are then used to reconstruct the
original spectrogram, where individual �xed-frame patches
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Fig. 2. Top to Bottom: Original spectrogram; reconstructions using input window sizes of N = 1, 3, 9, and 13 while forcing the coding units to be zero or one (i.e.,
a binary code). The y-axis values indicate FFT bin numbers (i.e., 256-point FFT is used for constructing all spectrograms).

are reconstructed �rst using the two upper layers of net-
work weights. Finally, overlap-and-add technique is used
to reconstruct the full-length speech spectrogram from the
outputs produced by applying the deep autoencoder to
every possible window of N consecutive frames. We show
some illustrative encoding and reconstruction examples
below.

C) Illustrative examples

At the top of Fig. 2 is the original speech, followed by the
reconstructed speech utterances with forced binary values
(zero or one) at the 312 unit code layer for encoding window
lengths of N = 1, 3, 9, and 13, respectively. The lower coding
errors for N = 9 and 13 are clearly seen.
Encoding accuracy of the deep autoencoder is qualita-

tively examined to compare with themore traditional codes
via vector quantization (VQ). Figure 3 shows various aspects
of the encoding accuracy. At the top is the original speech
utterance’s spectrogram. The next two spectrograms are the
blurry reconstruction from the 312-bit VQ and the much
more faithful reconstruction from the 312-bit deep autoen-
coder. Coding errors fromboth coders, plotted as a function
of time, are shown below the spectrograms, demonstrat-
ing that the autoencoder (red curve) is producing lower
errors than theVQ coder (blue curve) throughout the entire
span of the utterance. The �nal two spectrograms show
the detailed coding error distributions over both time and
frequency bins.

D) Transforming autoencoder

The deep autoencoder described above can extract a com-
pact code for a feature vector due to its many layers and the
non-linearity. But the extracted code would change unpre-
dictably when the input feature vector is transformed. It is
desirable to be able to have the code change predictably that
re"ects the underlying transformation invariant to the per-
ceived content. This is the goal of transforming autoencoder
proposed in for image recognition [39].
The building block of the transforming autoencoder is a

“capsule”, which is an independent subnetwork that extracts
a single parameterized feature representing a single entity,
be it visual or audio. A transforming autoencoder receives
both an input vector and a target output vector, which is
related to the input vector by a simple global transforma-
tion; e.g., the translation of a whole image or frequency shift
due to vocal tract length di�erences for speech. An explicit
representation of the global transformation is known also.
The bottleneck or coding layer of the transforming autoen-
coder consists of the outputs of several capsules.
During the training phase, the di�erent capsules learn

to extract di�erent entities in order to minimize the error
between the �nal output and the target.
In addition to the deep autoencoder architectures

described in this section, there are many other types of gen-
erative architectures in the literature, all characterized by
the use of data alone (i.e., free of classi�cation labels) to
automatically derive higher-level features. Although such
more complex architectures have produced state of the
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Fig. 3. Top to bottom: Original spectrogram from the test set; reconstruction from the 312-bit VQ coder; reconstruction from the 312-bit autoencoder; coding errors
as a function of time for the VQ coder (blue) and autoencoder (red); spectrogram of the VQ coder residual; spectrogram of the deep autoencoder’s residual.

art results (e.g., [154]), their complexity does not permit
detailed treatment in this tutorial paper; rather, a brief sur-
vey of a broader range of the generative deep architectures
was included in Section III-A.

V . HYBR ID ARCH ITECTURE : DNN

PRETRA INED WITH DBN

A) Basics

In this section, we present the most widely studied hybrid
deep architecture of DNNs, consisting of both pretraining
(using generative DBN) and �ne-tuning stages in its param-
eter learning. Part of this review is based on the recent
publication of [6, 7, 25].
As the generative component of the DBN, it is a prob-

abilistic model composed of multiple layers of stochastic,
latent variables. The unobserved variables can have binary
values and are often called hidden units or feature detectors.
The top two layers have undirected, symmetric connec-
tions between them and form an associative memory. The
lower layers receive top-down, directed connections from
the layer above. The states of the units in the lowest layer, or
the visible units, represent an input data vector.
There is an e�cient, layer-by-layer procedure for learn-

ing the top-down, generative weights that determine how
the variables in one layer dependon the variables in the layer
above. After learning, the values of the latent variables in
every layer can be inferred by a single, bottom-up pass that

starts with an observed data vector in the bottom layer and
uses the generative weights in the reverse direction.
DBNs are learned one layer at a time by treating the val-

ues of the latent variables in one layer, when they are being
inferred from data, as the data for training the next layer.
This e�cient, greedy learning can be followed by, or com-
bined with, other learning procedures that �ne-tune all of
the weights to improve the generative or discriminative per-
formance of the full network. This latter learning procedure
constitutes the discriminative component of the DBN as the
hybrid architecture.
Discriminative �ne-tuning can be performed by adding

a �nal layer of variables that represent the desired out-
puts and backpropagating error derivatives.Whennetworks
with many hidden layers are applied to highly structured
input data, such as speech and images, backpropagation
worksmuch better if the feature detectors in the hidden lay-
ers are initialized by learning a DBN to model the structure
in the input data as originally proposed in [21].
A DBN can be viewed as a composition of simple learn-

ing modules via stacking them. This simple learning mod-
ule is called RBMs that we introduce next.

B) Restricted BM

An RBM is a special type of Markov random �eld that has
one layer of (typically Bernoulli) stochastic hidden units
and one layer of (typically Bernoulli or Gaussian) stochas-
tic visible or observable units. RBMs can be represented as
bipartite graphs, where all visible units are connected to all
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hidden units, and there are no visible–visible or hidden–
hidden connections.
In an RBM, the joint distribution p(v, h; θ) over the visi-

ble units v and hidden units h, given the model parameters
θ , is de�ned in terms of an energy function E (v, h; θ) of

p(v, h; θ) =
exp(−E (v, h; θ))

Z
,

where Z =
∑

v

∑

h exp(−E (v, h; θ)) is a normalization
factor or partition function, and the marginal probability
that the model assigns to a visible vector v is

p(v; θ) =

∑

h exp(−E (v, h; θ))

Z
.

For a Bernoulli (visible)–Bernoulli (hidden) RBM, the
energy function is de�ned as

E (v, h; θ) = −

I
∑

i=1

J
∑

j=1

wi jvi hj −

I
∑

i=1

bivi −

J
∑

j=1

a j hj ,

where wi j represents the symmetric interaction term
between visible unit vi and hidden unit hj , bi and a j the
bias terms, and I and J are the numbers of visible and hid-
den units. The conditional probabilities can be e�ciently
calculated as

p(hj = 1|v; θ) = σ

(

I
∑

i=1

wijvi + a j

)

,

p(vi = 1|h; θ) = σ

⎛

⎝

J
∑

j=1

wijhj + bi

⎞

⎠ ,

where σ(x) = 1/(1 + exp(x)).
Similarly, for a Gaussian (visible)–Bernoulli (hidden)

RBM, the energy is

E (v, h; θ) = −

I
∑

i=1

J
∑

j=1

wi jvi hj

−
1

2

I
∑

i=1

(vi − bi )
2 −

J
∑

j=1

a j hj ,

The corresponding conditional probabilities become

p(hj = 1|v; θ) = σ

(

I
∑

i=1

wi jvi + a j

)

,

p(vi |h; θ) = N

⎛

⎝

J
∑

j=1

wi j hj + bi , 1

⎞

⎠ ,

where vi takes real values and follows a Gaussian dis-
tribution with mean

∑J
j=1 wi j hj + bi and variance one.

Gaussian–Bernoulli RBMs can be used to convert real-
valued stochastic variables to binary stochastic variables,

Fig. 4. A pictorial view of sampling from a RBM during the “negative” learning
phase of the RBM (courtesy of G. Hinton).

which can then be further processed using the Bernoulli–
Bernoulli RBMs.
The above discussion used two most common condi-

tional distributions for the visible data in the RBM – Gaus-
sian (for continuous-valued data) and binomial (for binary
data). More general types of distributions in the RBM can
also be used. See [157] for the use of general exponential-
family distributions for this purpose.
Taking the gradient of the log likelihood log p(v; θ) we

can derive the update rule for the RBM weights as:

�wi j = Edata(vi hj ) − Emodel(vi hj ),

where Edata(vi hj ) is the expectation observed in the train-
ing set and Emodel(vi hj ) is that same expectation under
the distribution de�ned by the model. Unfortunately,
Emodel(vi hj ) is intractable to compute so the contrastive
divergence (CD) approximation to the gradient is used
where Emodel(vi hj ) is replaced by running the Gibbs sam-
pler initialized at the data for one full step. The steps in
approximating Emodel(vi hj ) is as follows:

• Initialize v0 at data
• Sample h0 ∼ p(h|v0)

• Sample v1 ∼ p(v|h0)

• Sample h1 ∼ p(h|v1)

Then (v1, h1) is a sample from the model, as a very rough
estimate of Emodel(vi hj ) = (v∞, h∞), which is a true sample
from the model. Use of (v1, h1) to approximate Emodel(vi hj )

gives rise to the algorithm of CD-1. The sampling process
can be pictorially depicted as below in Fig. 4 below.
Careful training of RBMs is essential to the success of

applying RBMand related deep learning techniques to solve
practical problems. See the Technical Report [158] for a very
useful practical guide for training RBMs.
The RBM discussed above is a generative model, which

characterizes the input data distribution using hidden vari-
ables and there is no label information involved. However,
when the label information is available, it can be used
together with the data to form the joint “data” set. Then the
same CD learning can be applied to optimize the approx-
imate “generative” objective function related to data like-
lihood. Further, and more interestingly, a “discriminative”
objective function can be de�ned in terms of conditional
likelihood of labels. This discriminative RBM can be used
to “�ne tune” RBM for classi�cation tasks [142].
Note the SESM architecture by Ranzato et al. [29] sur-

veyed in Section III is quite similar to the RBM described
above. While they both have a symmetric encoder and
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Fig. 5. Illustration of a DBN/DNN architecture.

decoder, and a logistic non-linearity on the top of the
encoder, the main di�erence is that RBM is trained using
(approximate) maximum likelihood, but SESM is trained
by simply minimizing the average energy plus an additional
code sparsity term. SESM relies on the sparsity term to pre-
vent "at energy surfaces, while RBM relies on an explicit
contrastive term in the loss, an approximation of the log par-
tition function. Another di�erence is in the coding strategy
in that the code units are “noisy” and binary in RBM, while
they are quasi-binary and sparse in SESM.

C) Stacking up RBMs to form a DBN/DNN
architecture

Stacking a number of the RBMs learned layer by layer from
bottom up gives rise to a DBN, an example of which is
shown in Fig. 5. The stacking procedure is as follows. After
learning a Gaussian–Bernoulli RBM (for applications with
continuous features such as speech) or Bernoulli–Bernoulli
RBM (for applications with nominal or binary features such
as black–white image or coded text), we treat the activa-
tion probabilities of its hidden units as the data for training
the Bernoulli–Bernoulli RBM one layer up. The activation
probabilities of the second-layer Bernoulli–Bernoulli RBM
are then used as the visible data input for the third-layer
Bernoulli–Bernoulli RBM, and so on. Some theoretical jus-
ti�cations of this e�cient layer-by-layer greedy learning
strategy is given in [3], where it is shown that the stacking
procedure above improves a variational lower bound on the
likelihood of the training data under the composite model.
That is, the greedy procedure above achieves approximate
maximum-likelihood learning. Note that this learning pro-
cedure is unsupervised and requires no class label.

When applied to classi�cation tasks, the generative pre-
training can be followed by or combined with other, typi-
cally discriminative, learning procedures that �ne-tune all
of the weights jointly to improve the performance of the
network. This discriminative �ne-tuning is performed by
adding a �nal layer of variables that represent the desired
outputs or labels provided in the training data. Then, the
backpropagation algorithm can be used to adjust or �ne-
tune the DBN weights and use the �nal set of weights in
the same way as for the standard feedforward neural net-
work.What goes to the top, label layer of this DNNdepends
on the application. For speech recognition applications, the
top layer, denoted by “l1, l2, . . . l j , . . . , lL ,” in Fig. 5, can rep-
resent either syllables, phones, subphones, phone states, or
other speech units used in the HMM-based speech recog-
nition system.
The generative pretraining described above has pro-

duced excellent phone and speech recognition results on a
wide variety of tasks, which will be surveyed in Section VII.
Further research has also shown the e�ectiveness of other
pretraining strategies. As an example, greedy layer-by-layer
training may be carried out with an additional discrimi-
native term to the generative cost function at each level.
And without generative pretraining, purely discriminative
training ofDNNs from random initial weights using the tra-
ditional stochastic gradient decent method has been shown
to work very well when the scales of the initial weights are
set carefully and the mini-batch sizes, which trade o� noisy
gradients with convergence speed, used in stochastic gradi-
ent decent are adapted prudently (e.g., with an increasing
size over training epochs). Also, randomization order in
creating mini-batches needs to be judiciously determined.
Importantly, it was found e�ective to learn a DNN by start-
ing with a shallow neural net with a single hidden layer.
Once this has been trained discriminatively (using early
stops to avoid over�tting), a second hidden layer is inserted
between the �rst hidden layer and the labeled softmax out-
put units and the expanded deeper network is again trained
discriminatively. This can be continued until the desired
number of hidden layers is reached, after which a full back-
propagation “�ne tuning” is applied. This discriminative
“pretraining” procedure is found to work well in practice
(e.g., [155]).
This type of discriminative “pretraining” procedure is

closely related to the learning algorithm developed for the
deep architectures called deep convex/stacking network, to
be described in Section VI, where interleaving linear and
non-linear layers are used in building up the deep architec-
tures in a modular manner, and the original input vectors
are concatenated with the output vectors of each module
consisting of a shallow neural net. Discriminative “pretrain-
ing” is used for positioning a subset of weights in each
module in a reasonable space using parallelizable convex
optimization, followed by a batch-mode “�ne tuning” pro-
cedure, which is also parallelizable due to the closed-form
constraint between two subsets of weights in each module.
Further, purely discriminative training of the full DNN

from random initial weights is now known to work much

https://doi.org/10.1017/atsip.2013.9 Published online by Cambridge University Press

https://doi.org/10.1017/atsip.2013.9


14 li deng

Fig. 6. Interface between DBN–DNN and HMM to form a DNN–HMM. This architecture has been successfully used in speech recognition experiments
reported in [25].

better than had been thought in early days, provided that
the scales of the initial weights are set carefully, a large
amount of labeled training data is available, and mini-batch
sizes over training epochs are set appropriately. Neverthe-
less, generative pretraining still improves test performance,
sometimes by a signi�cant amount especially for small
tasks. Layer-by-layer generative pretraining was originally
done using RBMs, but various types of autoencoder with
one hidden layer can also be used.

D) Interfacing DNN with HMM

ADBN/DNNdiscussed above is a static classi�er with input
vectors having a �xed dimensionality. However, many prac-
tical pattern recognition and information-processing prob-
lems, including speech recognition, machine translation,

natural language understanding, video processing and bio-
information processing, require sequence recognition. In
sequence recognition, sometimes called classi�cation with
structured input/output, the dimensionality of both inputs
and outputs are variable.
The HMM, based on dynamic programming operations,

is a convenient tool to help port the strength of a static clas-
si�er to handle dynamic or sequential patterns. Thus, it is
natural to combine DBN/DNN andHMM to bridge the gap
between static and sequence pattern recognition. An archi-
tecture that shows the interface between a DNN and HMM
is provided in Fig. 6. This architecture has been successfully
used in speech recognition experiments as reported in [25].
It is important to note that the unique elasticity of tem-

poral dynamic of speech as elaborated in [53] would require
temporally-correlated models better than HMM for the
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ultimate success of speech recognition. Integrating such
dynamic models having realistic co-articulatory properties
with the DNN and possibly other deep learning models to
form the coherent dynamic deep architecture is a challeng-
ing new research.

V I . D ISCR IM INAT IVE

ARCH ITECTURES : DSN AND

RECURRENT NETWORK

A) Introduction

While the DNN just reviewed has been shown to be
extremely powerful in connection with performing recog-
nition and classi�cation tasks including speech recognition
and image classi�cation, training a DBN has proven to
be more di�cult computationally. In particular, conven-
tional techniques for training DNN at the �ne tuning phase
involve the utilization of a stochastic gradient descent learn-
ing algorithm, which is extremely di�cult to parallelize
across-machines. This makes learning at large scale practi-
cally impossible. For example, it has been possible to use one
single, very powerful GPU machine to train DNN-based
speech recognizers with dozens to a few hundreds of hours
of speech training data with remarkable results. It is very
di�cult, however, to scale up this success with thousands
or more hours of training data.
Here we describe a new deep learning architecture, DSN,

which attacks the learning scalability problem. This section
is based in part on the recent publications of [11, 107, 111, 112]
with expanded discussions.
The central idea of DSN design relates to the concept of

stacking, as proposed originally in [159], where simplemod-
ules of functions or classi�ers are composed �rst and then
they are “stacked” on top of each other in order to learn
complex functions or classi�ers. Various ways of imple-
menting stacking operations have been developed in the
past, typically making use of supervised information in the
simple modules. The new features for the stacked classi�er
at a higher level of the stacking architecture often come from
concatenation of the classi�er output of a lower module and
the raw input features. In [160], the simple module used
for stacking was a CRF. This type of deep architecture was
further developed with hidden states added for successful
natural language and speech recognition applications where
segmentation information in unknown in the training data
[96]. Convolutional neural networks, as in [161], can also
be considered as a stacking architecture but the supervision
information is typically not used until in the �nal stacking
module.
The DSN architecture was originally presented in [107],

which also used the nameDeepConvexNetwork orDCN to
emphasize the convex nature of themain learning algorithm
used for learning the network. The DSN discussed in this
section makes use of supervision information for stack-
ing each of the basic modules, which takes the simpli�ed
form of multi-layer perceptron. In the basic module, the

Fig. 7. A DSN architecture with input–output stacking. Only four modules are
illustrated, each with a distinct color. Dashed lines denote copying layers.

output units are linear and the hidden units are sigmoidal
non-linear. The linearity in the output units permits highly
e�cient, parallelizable, and closed-form estimation (a result
of convex optimization) for the output network weights
given the hidden units’ activities. Owing to the closed-
form constraints between the input and output weights, the
input weights can also be elegantly estimated in an e�cient,
parallelizable, batch-mode manner.
The name “convex” used in [107] accentuates the role

of convex optimization in learning the output network
weights given the hidden units’ activities in each basicmod-
ule. It also points to the importance of the closed-form
constraints, derived from the convexity, between the input
and output weights. Such constraints make the learning
the remaining network parameters (i.e., the input network
weights) much easier than otherwise, enabling batch-mode
learning of DSN that can be distributed over CPU clusters.
And in more recent publications, DSN was used when the
key operation of stacking is emphasized.

B) An architectural overview of DSN

A DSN, shown in Fig. 7, includes a variable number of
layeredmodules, wherein eachmodule is a specialized neu-
ral network consisting of a single hidden layer and two
trainable sets of weights. In Fig. 7, only four such modules
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are illustrated, where each module is shown with a sepa-
rate color. (In practice, up to a few hundreds of modules
have been e�ciently trained and used in image and speech
classi�cation experiments.)
The lowest module in the DSN comprises a �rst linear

layer with a set of linear input units, a non-linear layer with
a set of non-linear hidden units, and a second linear layer
with a set of linear output units.
The hidden layer of the lowest module of a DSN com-

prises a set of non-linear units that are mapped to the input
units by way of a �rst, lower-layer weight matrix, which we
denote byW. For instance, the weight matrix may comprise
a plurality of randomly generated values between zero and
one, or the weights of an RBM trained separately. The non-
linear units may be sigmoidal units that are con�gured to
perform non-linear operations on weighted outputs from
the input units (weighted in accordancewith the �rst weight
matrixW).
The second, linear layer in anymodule of a DSN includes

a set of output units that are representative of the tar-
gets of classi�cation. The non-linear units in each module
of the DSN may be mapped to a set of the linear out-
put units by way of a second, upper-layer weight matrix,
which we denote by U . This second weight matrix can be
learned by way of a batch learning process, such that learn-
ing can be undertaken in parallel. Convex optimization can
be employed in connection with learning U . For instance,
U can be learned based at least in part upon the �rst weight
matrix W, values of the coded classi�cation targets, and
values of the input units.
As indicated above, the DSN includes a set of serially

connected, overlapping, and layeredmodules, wherein each
module includes the aforementioned three layers – a �rst
linear layer that includes a set of linear input units whose
number equals the dimensionality of the input features, a
hidden layer that comprises a set of non-linear units whose
number is a tunable hyper-parameter, and a second linear
layer that comprises a plurality of linear output units whose
number equals that of the target classi�cation classes. The
modules are referred to herein as being layered because the
output units of a lowermodule are a subset of the input units
of an adjacent higher module in the DSN.More speci�cally,
in a second module that is directly above the lowest mod-
ule in the DSN, the input units can include the output units
or hidden units of the lower module(s). The input units can
additionally include the raw training data – in other words,
the output units of the lowest module can be appended to
the input units in the second module, such that the input
units of the second module also include the output units of
the lowest module.
The pattern discussed above of including output units in

a lower module as a portion of the input units in an adja-
cent higher module in the DBN and thereafter learning a
weight matrix that describes connection weights between
hidden units and linear output units via convex optimiza-
tion can continue for many modules. A resultant learned
DSN may then be deployed in connection with an auto-
matic classi�cation task such as frame-level speech phone

or state classi�cation. Connecting DSNs output to anHMM
or any dynamic programming device enables continuous
speech recognition and other forms of sequential pattern
recognition.

C) Learning DSN weights

Here, some technical detail is provided as to how the use
of linear output units in DSN facilitates the learning of
the DSN weights. A single module is used to illustrate the
advantage for simplicity reasons. First, it is clear that the
upper layer weight matrix U can be e�ciently learned once
the activity matrix H over all training samples in the hid-
den layer is known. Let us denote the training vectors by
X = [x1, . . . , xi , . . . , xN ], in which each vector is denoted
by xi = [x1i , . . . , x j i , . . . , xDi ]

T where D is the dimension
of the input vector, which is a function of the block, and
N is the total number of training samples. Denote by L the
number of hidden units and by C the dimension of the out-
put vector. Then, the output of a DSN block is yi = UThi ,
where hi = σ(WTxi ) is the hidden-layer vector for sample
i , U is an L × C weight matrix at the upper layer of a block.
W is aD × Lweightmatrix at the lower layer of a block, and
σ(·) is a sigmoid function. Bias terms are implicitly repre-
sented in the above formulation if xi and hi are augmented
with ones.
Given target vectors in the full training set with a total

of N samples, T = [t1, . . . , ti , . . . , tN ], where each vector
is ti = [t1i , . . . , t j i , . . . , tCi ]

T , the parameters U andW are
learned so as to minimize the average of the total square
error below:

E =
1

2

∑

n

‖yn − tn‖
2 =

1

2
Tr[(Y − T)(Y − T)T],

where the output of the network is

yn = UThn = UTσ(WTxn) = Gn(U ,W)

which depends on both weight matrices, as in the standard
neural net. Assuming H = [h1, . . . , hi , . . . , hN ] is known,
or equivalently,W is known. Then, setting the error deriva-
tive with respective to U to zero gives

U = (HHT)−1HTT = F(W), where hn = σ(WTxn)

This provides an explicit constraint between U , and W,
which were treated independently in the popular backprop
algorithm.
Now, given the equality constraintU = F (W), let us use

the Lagrangianmultiplier method to solve the optimization
problem in learningW. Optimizing the Lagrangian:

E =
1

2

∑

n

‖Gn(U ,W) − tn‖
2 + λ‖U − F(W)‖,

we can derive batch-mode gradient descent learning
algorithmwhere the gradient takes the following form [108]:

∂E

∂W
= 2X[HT ◦ (1 − H)T ◦ [H†(HTT )(TH†)

− TT (TH†)]]
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Fig. 8. Comparisons of one single module of a DSN (left) and that of a tensorized-DSN (TDSN). Two equivalent forms of a TDSNmodule are shown to the right.

whereH† = HT (HHT )−1 is pseudo-inverse ofH and sym-
bol ◦ denotes component-wise multiplication.
Compared with backprop, the above method has less

noise in gradient computation due to the exploitation of the
explicit constraintU = F (W). As such, it was found exper-
imentally that, unlike backprop, batch training is e�ective,
which aids parallel learning of DSN.

D) Tensorized DSN

The DSN architecture discussed so far has recently been
generalized to its tensorized version, which we call TDSN
[111, 112]. It has the same scalability as DSN in terms of par-
allelizability in learning, but it generalizesDSNby providing
higher-order feature interactions missing in DSN.
The architecture of TDSN is similar to that of DSN in the

way that stacking operation is carried out. That is, modules
of the TDSN are stacking up in a similar way to form a deep
architecture. The di�erences of TDSN and DSN lie mainly
in how each module is constructed. In DSN, we have one
set of hidden units forming a hidden layer, as denoted at the
left panel of Fig. 8. In contrast, eachmodule of a TDSD con-
tains two independent hidden layers, denoted as “Hidden 1”
and “Hidden 2” in the middle and right panels of Fig. 8. As
a result of this di�erent, the upper-layer weights, denoted
by “U” in Fig. 8, changes from a matrix (a two-dimensional
array) in DSN to a tensor (a three-dimensional array) in
TDSN, shown as a cube labeled by “U” in the middle panel.
The tensor U has a three-way connection, one to the

prediction layer and the remaining to the two separate hid-
den layers. An equivalent form of this TDSN module is
shown in the right panel of Fig. 8, where the implicit hidden
layer is formed by expanding the two separate hidden layers
into their outer product. The resulting large vector contains
all possible pair-wise products for the two sets of hidden-
layer vectors. This turns tensor U into a matrix again whose
dimensions are (1) size of the prediction layer; and (2) prod-
uct of the two hidden layers’ sizes. Such equivalence enables
the same convex optimization for learning U developed for
DSN to be applied to learning tensorU. Importantly, higher-
order hidden feature interactions are enabled in TDSN via
the outer product construction for the large, implicit hidden
layer.
Stacking TDSN modules to form a deep architecture

pursues in a similar way to DSN by concatenating various

Fig. 9. Stacking of TDSN modules by concatenating prediction vector with
input vector.

vectors. Two examples are shown in Figs 9 and 10. Note
stacking by concatenating hidden layers with input (Fig. 10)
would be di�cult for DSN since its hidden layer tends to be
too large for practical purposes.

E) Recurrent neural networks

If we consider the increasingly higher modules of a DSN as
time-shifted versions of a “shallow” neural network, then
we can turn a DSN (with input-hidden stacking instead
of input-output stacking) into a temporally-RNN, where
the discrete time index corresponds to the depth in the
DSN. The constraints in the DSN among weight matrices
can be similarly applied to this type of RNN in learning
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Fig. 10. Stacking of TDSN modules by concatenating two hidden-layers’ vec-
tors with the input vector.

its weight parameters, provided that the output units are
linear. (In fact, the concepts of RNN and DSN can be com-
bined to form a recurrent version of the DSN, or equiva-
lently, a stacked version of a simple RNN, which will not be
discussed in this paper).
One way of learning the RNNs with linear outputs is to

adopt the approach shown to be e�ective for DSN learning
outlined in Section VI-C above. This would capture a short
memory of one time step. To increase the memory length,
we can apply the traditional method of Backprop through
time (BPTT) but exploit the relationship among various
weight matrices to turn the recursive procedure to a simpler
analytical form. However, this is more di�cult to formulate
and derive than for theDSN case discussed in SectionVI-C.
The use of the general BPTT [162] has the advantage of han-
dling non-linear output units, shown to speed up learning
substantially comparedwith the use of linear output units in
an RNN. The commonly discussed problem of vanishing or
exploding gradients in BPTT can be mitigated by applying
constraints regarding the RNN’s recurrent matrices during
the optimization process.
In the remainder of this section, let us formulate the

RNN in terms of the non-linear state space model com-
monly used in signal processing. I will compare it with the
same state-space formulation of non-linear dynamic sys-
tems used as generative models for speech acoustics. The
contrast between the discriminative RNN and the use of the
same mathematical model in the generative mode allows
us to shed light onto why one approach works better than
another.
In the RNN, the state dynamic (noise free) is expressed as

ht = f (Wxhxt + Whhht−1).

The “observation” is the predicted “labels” or target vector,
lt , a vector of one-hot coded class labels. The “observation

equation” in the state-space formulation becomes [116]:

yt = Whyht or yt = g (Whyht).

De�ne the error function as a sum of squared di�erences
between yt and lt over time, or cross-entropy between
them. Then BPTT unfolds the RNN over time in comput-
ing the gradients with respect toWhy ,Wxh , andWhh , and
stochastic gradient descent is applied to update these weight
matrices.
Using a similar state-space formulation of the RNN

model above but in a generative mode, known as the hid-
den dynamic model as brie"y discussed in Section III-A,
speech recognition researchers have built many types of
speech recognizers over the past 20 some years; see a sur-
vey in Sections III-D and III-E of [34]. In particular, the
corresponding state and observation equations in the gen-
erative are

ht = G(ht−1 + �lt ) + State Noise

xt = H(ht , �lt ) + ObsNoise

[Rewritten from equations (13) and (14) in [34] to be con-
sistent with the RNN variables]. Here, �lt is the system
matrix driving the (articulatory-like) state dynamics, which
is dependent on the label lt at time t, hence themodel is also
called a switching dynamic system. These system matrix
parameters are analogous to Whh in the RNN. �lt is the
parameter set that governs the non-linear mapping from
the hidden (articulatory-like) states in speech production to
acoustic features of speech. In one implementation,�lt took
the form of shallow MLP weights [69, 163, 164]. In another
implementation, �lt took the form of a set of matrices in a
mixture of linear experts [73].
The state equation in many existing implementations of

the hidden dynamic models of speech does not take non-
linear forms. Rather, the following linear form was used
(e.g., [163]):

ht = Whh(lt)ht−1 + [I − Whh(lt)]t(lt) + State Noise

which exhibits the target-directed property for the
articulatory-like dynamics. Here, the parameters Whh is a
function of the (phonetic) label lt at a particular time t,
and t(lt) is a mapping between the symbolic quantity lt to a
continuous-valued “target” vector.
On the surface and based on the mathematical descrip-

tion, there are striking similarities between the discrimina-
tive RNN and generative hidden dynamic model. However,
the essence as well as the representational substance of the
two models are very di�erent, which we summarize below.
First, the RNN adopts the strategy of using distributed

representations for the supervision information (i.e., labels),
whereas in the hidden dynamic model, the labels are locally
represented and used to index separate sets of time-varying
parameters �lt and �lt leading to “switching” dynamics,
which considerably complicates the decoding computation.
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Second, the RNN runs “bottom-up”, directly producing
posterior probabilities of all classes. In contrast, the hidden
dynamic model runs “top down”, generating likelihood val-
ues for each class individually. This di�erence is most clear
by comparing the two observations equations, one gives
label prediction and another gives input feature prediction.
In the state equations, the RNNmodel has the input to drive
the system dynamics, whereas the generative model has
the label index to drive the dynamics (via an intermediate
representation of articulatory or vocal tract resonance “tar-
gets”). Third, the learning algorithms of BPTT for the RNN
directly minimize the label prediction errors. In contrast,
non-linear Kalman �ltering (E step of the EM algorithm)
used for learning the generativemodel does not do discrim-
ination explicitly. Given the known di�culties of BPTT for
RNN [162], one obvious direction is to adopt the hybrid
deep architecture by using the generative hidden dynamic
model to pretrain the discriminative RNN, analogous to
using the generative DBN to pretrain the DNN discussed
in the preceding subsection.

V I I . APPL ICAT IONS OF DEEP

LEARN ING TO S IGNAL AND

INFORMAT ION PROCESS ING

In the expanded technical scope of signal processing, the
signal is endowed with not only the traditional types such
as audio, speech, image and video, but also text, language,
and document that convey high-level, semantic informa-
tion for human consumption. In addition, the scope of
processing has been extended from the conventional cod-
ing, enhancement, analysis, and recognition to include
more human-centric tasks of interpretation, understanding,
retrieval, mining, and user interface [2]. Signal processing
researchers have been working on one or more of the signal
processing areas de�ned by the matrix constructed with the
two axes of signal and processing discussed here. The deep
learning techniques discussed in this paper have recently
been applied to a large number of traditional and extended
signal-processing areas, with some recent interesting appli-
cation of predicting protein structure [110], which we will
not cover here. We now provide a brief survey of this body
of work in four main categories pertaining closely to signal
and information processing.

A) Speech and audio

The traditional neural network or MLP has been in use
for speech recognition for many years. When used alone,
its performance is typically lower than the state-of-the-art
HMMsystemswith observation probabilities approximated
with GMMs. Recently, the deep learning technique was
successfully applied to phone recognition [23, 24, 116, 126,
165, 166] and large vocabulary speech recognition tasks
[22, 25, 135, 155, 156, 167–169] by integrating the powerful
discriminative training ability of DNNs with the sequential
modeling ability of HMMs.

Speech recognition has long been dominated by the
GMM–HMM method, with an underlying shallow gener-
ative model [129, 170, 171]. Neural networks once were a
popular approach but had not been competitive with the
GMM–HMM[32, 33, 113, 129]. Generativemodels with deep
hidden dynamics likewise have not been competitive either
[69, 74]. Deep learning and DNN started making impact
in speech recognition in 2010, after close collaborations
between academic and industrial researchers (see reviews
in [6, 169]. The collaborative work started in small vocab-
ulary tasks [23, 24, 30, 126, 165], demonstrating the power
of hybrid deep architectures. The work also showed the
importance of raw speech features of spectrogram – back
from the long-popular MFCC features, but not yet reaching
the raw speech-waveform level [173, 174]. The collaboration
continued to large vocabulary tasks with more convinc-
ing, highly positive results [22, 25, 103]. This success is in
large part attributed to the use of a very large DNN out-
put layer structured in the same way as the GMM–HMM
speech units (senones), motivated initially by the speech
industry’s desire to keep the change of the already highly
e�cient decoder software’s infrastructure to a minimum.
In the meantime, this body of work also demonstrated the
possibility to reduce the need for the DBN-like pretrain-
ing in e�ective learning of DNNs when a large amount
of labeled data is available. A combination of three fac-
tors quickly spread the success of deep learning in speech
recognition to the entire speech industry and academia: (1)
minimally required decoder changes under the new DNN-
based speech recognizer deployment conditions enabled by
the use of senones as the DNN output; (2) signi�cantly low-
ered errors compared with the then-state-of-the-art GMM-
HMMsystem; and (3) training simplicity empowered by big
data for training. By the ICASSP-2013 timeframe, at least
15 major speech recognition groups worldwide con�rmed
the experimental success of DNNs with very large tasks
and with the use of raw speech spectral features away from
MFCCs. The most notable groups include all major indus-
trial speech labs worldwide: Microsoft [155, 156, 168, 169],
IBM [125, 141, 175], Google [120, 176], and Baidu. Their
results represent a new state-of-the-art in speech recogni-
tion widely deployed in these companies’ voice products
and services with extensive media coverage.
As discussed in Section III-B, the concept of convolution

in timewas originated inTDNNas a shallowneural net [127,
129] developed in early speech recognition. Only recently
and when deep architectures (e.g., deep CNN) are used, it
has been found that frequency-dimension weight sharing
is more e�ective for high-performance phone recognition
than time domain as in the previous TDNN [122–124, 126].
These studies also show that designing the pooling in deep
CNN to properly trade-o� between invariance to vocal tract
length and discrimination between speech sounds (together
with a regularization technique of “dropout” [177] leads
to even better phone recognition performance. This set of
work also points to the direction of trading-o� between
trajectory discrimination and invariance expressed in the
whole dynamic pattern of speech de�ned inmixed time and
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frequency domains using convolution and pooling. More-
over, the most recent work of [125] shows that CNNs are
also useful for large vocabulary continuous speech recogni-
tion and further demonstrates that multiple convolutional
layers provide even more improvement when the convolu-
tional layers use a large number of convolution kernels or
feature maps.
In addition to the RBM, DBN, CNN, and DSN, other

deep models have also been developed and reported in
the literature for speech and audio processing and related
applications. For example, the deep-structured CRF, which
stacks many layers of CRFs, have been successfully used
in the task of language identi�cation [103], phone recogni-
tion [102], sequential labeling in natural language process-
ing [96], and con�dence calibration in speech recognition
[178, 179]. Furthermore, while RNN has early success in
phone recognition [114], it was not easy to duplicate due
to the intricacy in training, let alone to scale up for larger
speech recognition tasks. Learning algorithms for RNNs
have been dramatically improved since then, and better
results have been obtained recently using RNNs [115, 180],
especially when the structure of long short-term memory
(LSTM) is embedded into the RNN with several layers and
trained bi-directionally [116] RNNs have also been recently
applied to audio/music processing applications [49], where
the use of recti�ed linear hidden units instead of logistic
or tanh non-linearities is explored in RNN. Recti�ed linear
units (ReLU) compute y = max(x, 0), and lead to sparser
gradients, less di�usion of credit and blame in the RNN, and
faster training.
In addition to speech recognition, the impact of deep

learning has recently spread to speech synthesis, aimed
to overcome the limitations of the conventional approach
in statistical parametric synthesis based on Gaussian-
HMM and decision-tree-based model clustering. At con-
ference ICASSP (May, 2013), four di�erent deep learning
approaches are reported to improve the traditional HMM-
based speech synthesis systems. In Ling et al. [64, 181], the
RBM and DBN as generative models are used to replace the
traditional Gaussian models, achieving signi�cant quality
improvement, in both subjective and objective measures, of
the synthesized voice. In the approach developed in [182],
the DBN as a generative model is used to represent joint
distribution of linguistic and acoustic features. Both the
decision trees and Gaussian models are replaced by the
DBN. On the other hand, the study reported in [183] makes
use of the discriminative model of the DNN to represent
the conditional distribution of the acoustic features given
the linguistic features. No joint distributions are modeled.
Finally, in [184], the discriminative model of DNN is used
as a feature extractor that summarizes high-level structure
from the raw acoustic features. Such DNN features are then
used as the input for the second stage of the system for the
prediction of prosodic contour targets from contextual fea-
tures in the �ll speech synthesis system. The application
of deep learning to speech synthesis is in its infancy, and
much more work is expected from that community in the
near future.

Likewise, in audio and music processing, deep learn-
ing has also become of intense interest only recently. The
impacted areas include mainly music signal processing and
music information retrieval [49, 185–187]. Deep learning
presents a unique set of challenges in these areas. Music
audio signals are time series where events are organized in
musical time, rather than in real time, which changes as a
function of rhythm and expression. The measured signals
typically combine multiple voices that are synchronized in
time and overlapping in frequency, mixing both short-term
and long-term temporal dependencies. The in"uencing fac-
tors include musical tradition, style, composer and inter-
pretation. The high complexity and variety give rise to the
signal representation problemswell-suited to the high levels
of abstraction a�orded by the perceptually and biologically
motivated processing techniques of deep learning. Again,
much more work is expected from the music and audio
signal processing community in the near future.

B) Image, video, and multimodality

The original DBN and deep autoencoder were devel-
oped and demonstrated with success on the simple image
recognition and dimensionality reduction (coding) tasks
(MNIST) in [21]. It is interesting to note that the gain of
coding e�ciency using the DBN-based autoencoder on the
image data over the conventional method of principal com-
ponent analysis as demonstrated in [21] is very similar to the
gain reported in [30] on the speech data over the traditional
technique of VQ.
In [188], a modi�ed DBN is developed where the top-

layer model uses a third-order BM. This type of DBN is
applied to the NORB database – a three-dimensional object
recognition task. An error rate close to the best published
result on this task is reported. In particular, it is shown that
the DBN substantially outperforms shallow models such
as SVMs.
Deep architectures with convolution structure have been

found highly e�ective and been commonly used in com-
puter vision and image recognition [118–121, 154, 161, 189,
190]. The most notable advance was recently achieved in
the 2012 ImageNet LSVRC contest, where 1000 di�erent
image classes are the targets with 1.2million high-resolution
images in the training set. On the test set consisting of
150 000 images, the deep CNN approach described in [121]
achieved the error rates considerably lower than the previ-
ous state-of-the-art. Very large deep CNNs are used, con-
sisting of 60 million weights, and 650 000 neurons, and
�ve convolutional layers together with max-pooling lay-
ers. Additional three fully-connected layers as in the DNN
described previously are used on top of the deep CNN
layers. Although all the above structures were developed
separately in earlier work, their best combination accounted
for part of the success. Additional factors contributing to
the �nal success are: (1) a powerful regularization technique
called “dropout” (see details in [177]; and (2) use of non-
saturating neurons or ReLU that compute y = max(x, 0),
signi�cantly speeding up the training process especially
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with a very e�cient GPU implementation. More recently,
a similar deep CNN approach with stochastic pooling also
reported excellent results in four image datasets [191]. Deep
networks are shown to be powerful for computer vision and
image recognition tasks because they extract appropriate
features while jointly performing discrimination [192].
In another type of deep architecture that has created sub-

stantial impact in image recognition, Le et al. [154] reported
excellent results using a generative model based on sparse
autoencoders in a largely un-supervised framework. This
type of extremely large networks (11 billion parameters) was
trained using thousands of CPU cores. The most recent
work along this direction reported that of the same size of
the network can be alternatively trained using a cluster of
only 16 GPU server machines [193].
The use of a temporally conditional DBN for video

sequence and human motion synthesis is reported in [85].
The conditional DBN makes the DBN weights associated
with a �xed time window conditioned on the data from
previous time steps. The computational tool o�ered in this
type of temporal DBN and the related recurrent networks
may provide the opportunity to improve the DBN–HMMs
toward e�cient integration of temporal-centric human
speech production mechanisms into DBN-based speech
production model.
An interesting study appeared in [37, 38], where the

authors propose and evaluate a novel application of
deep networks to learn features over both audio and
video modalities. A similar deep autoencoder architecture
described in Section IV and in [30] is used but it can be
considered as a generalization from a single modality to
two modalities. Cross-modality feature learning has been
demonstrated – better features for video can be learned
if both audio and video information sources are avail-
able at feature learning time. The authors further show
how to learn a shared audio and video representation,
and evaluate it on a �xed task, where the classi�er is
trained with audio-only data but tested with video-only
data and vice versa. The work concludes that deep learn-
ing architectures are generally e�ective in learning multi-
modal features from unlabeled data and in improving sin-
gle modality features through cross-modality learning. One
exception is the cross-modality setting using the CUAVE
dataset. The results presented in [37, 38] show that there
is an improvement by learning video features with both
video and audio compared to learning features with only
video data. However, the same paper also shows that a
model of [194] in which a sophisticated signal process-
ing technique for extracting visual features, together with
the uncertainty-compensation method developed origi-
nally from robust speech recognition [195], gives the best
classi�cation accuracy in the cross-modeling learning task,
beating the features derived from the generative deep archi-
tecture designed for this task.
While the deep generative architecture for multimodal

learning described in [37, 38] is based on non-probabilistic
autoencoder neural nets, a probabilistic version based on
DBM has appeared more recently for the same multimodal

application. In [42], a DBM is used to extract a uni�ed
representation integrating separate modalities, useful for
both classi�cation and information retrieval tasks. Rather
than using the “bottleneck” layers in the deep autoencoder
to represent multimodal inputs, here a probability density
is de�ned on the joint space of multimodal inputs, and
states of suitably de�ned latent variables are used for the
representation. The advantage of this probabilistic formu-
lation, lacking in the deep autoencoder, is that the missing
modality’s information can be �lled in naturally by sam-
pling from its conditional distribution. For the bimodal
data consisting of image and text, the multimodal DBM
is shown to outperform deep multimodal autoencoder as
well as multimodal DBN in classi�cation and information
retrieval tasks.

C) Language modeling

Research in language, document, and text processing has
seen increasing popularity recently in the signal process-
ing community, and has been designated as one of the
main focus areas by the society’s audio, speech, and lan-
guage processing technical committee. There has been a
long history (e.g., [196, 197]) of using (shallow) neural net-
works in LM – an important component in speech recog-
nition, machine translation, text information retrieval, and
in natural language processing. Recently, DNNs have been
attracting more and more attention in statistical LM.
An LM is a function that captures the salient statistical

characteristics of the distribution of sequences of words in
a natural language. It allows one to make probabilistic pre-
dictions of the next word given preceding ones. A neural
network LM is one that exploits the neural network ability
to learn distributed representations to reduce the impact of
the curse of dimensionality.
A distributed representation of a symbol is a vector

of features which characterize the meaning of the sym-
bol. With a neural network LM, one relies on the learning
algorithm to discover meaningful, continuous-valued fea-
tures. The basic idea is to learn to associate each word in
the dictionary with a continuous-valued vector representa-
tion, where each word corresponds to a point in a feature
space. One can imagine that each dimension of that space
corresponds to a semantic or grammatical characteristic of
words. The hope is that functionally similar words get to be
closer to each other in that space, at least along some direc-
tions. A sequence of words can thus be transformed into a
sequence of these learned feature vectors. The neural net-
work learns to map that sequence of feature vectors to the
probability distribution over the next word in the sequence.
The distributed representation approach to LM has the

advantage that it allows the model to generalize well to
sequences that are not in the set of training word sequences,
but that are similar in terms of their features, i.e., their
distributed representation. Because neural networks tend
to map nearby inputs to nearby outputs, the predictions
corresponding to word sequences with similar features are
mapped to similar predictions.
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The above ideas of neural network LM have been imple-
mented in various studies, some involving deep archi-
tecture. In [198], temporally factored RBM was used for
LM. Unlike the traditional N-gram model the factored
RBM uses distributed representations not only for con-
text words but also for the words being predicted. This
approach is generalized to deeper structures as reported
in [199].
More recent work on neural network LM with deep

architectures can be found in [51, 200–203]. In particular,
the work described in [202, 203] makes use RNNs to build
large scale language models. It achieves stability and fast
convergence in training, helped by capping the growing gra-
dient in training RNNs. It also develops adaptation schemes
for the RNN-based LM by sorting the training data with
respect to their relevance and by training the model dur-
ing processing of the test data. Empirical comparisons with
other LM state-of-the-art show much better performance
of RNN especially in the perplexity measure. A separate
work on applying RNN as an LM on the unit of charac-
ters instead of words can be found in [46]. Very interesting
properties such as predicting long-term dependency (e.g.,
making open and closing quotes in a paragraph) are demon-
strated. But its usefulness in practical applications has not
been clear because word is such a powerful representation
for natural language and changing word to character in LM
limits most practical application scenarios.
Furthermore, the use of hierarchical Bayesian priors in

building up deep and recursive structure in LM appeared in
[204]. Speci�cally, Pitman–Yor process is exploited as the
Bayesian prior, from which a deep (four layers) probabilis-
tic generative model is built. It o�ers a principled approach
to LM smoothing by incorporating the power-law distribu-
tion for natural language. As discussed in Section III, this
type of prior knowledge embedding is more readily achiev-
able in the probabilistic modeling setup than in the neural
network one.

D) Natural language processing

In the well-known and sometimes debatable work on natu-
ral language processing, Collobert and Weston [205] devel-
oped and employed a convolutional DBN as the common
model to simultaneously solve a number of classic prob-
lems including part-of-speech tagging, chunking, named
entity tagging, semantic role identi�cation, and similar
word identi�cation. More recent work reported in [206]
further developed a fast purely discriminative approach for
parsing based on the deep recurrent convolutional archi-
tecture called Graph Transformer Network. Collobert et al.
[207] provides a comprehensive review on this line of
work, speci�cally on ways of applying a uni�ed neural net-
work architectures and related deep learning algorithms to
solve natural language processing problems from “scratch”.
The theme of this line of work is to avoid task-speci�c,
“man-made” feature engineering while providing versatility
and uni�ed features constructed automatically from deep
learning applicable to all natural language-processing tasks.

The system described in [207] automatically learns inter-
nal representation from vast amounts of mostly unlabeled
training data.
One most important aspect of the work described in

[205, 207] is the transformation of raw word representa-
tions in terms of sparse vectors with a very high dimen-
sion (vocabulary size or its square or even its cubic) into
low-dimensional, real-valued vectors for processing by sub-
sequent neural network layers. This is known as “word
embedding”, widely used in natural language processing and
LM nowadays. Unsupervised learning is used where “con-
text” of the word is used as the learning signal in neural
networks. An excellent tutorial was recently given [208]
that explains how the neural network is trained to per-
form word embedding originally proposed in [205]. More
recent work proposes new ways of doing word embedding
that better capture the semantics of words by incorporating
both local and global document context and better account
for homonymy and polysemy by learning multiple embed-
dings per word [209]. Also, there is evidence that the use
of RNN can also provide empirically good performance in
word embedding [203].
The concept of word embedding was very recently

extended from a single language to two, producing bilin-
gual word embeddings for machine translation applications
[210, 211]. Good performance was shown by Zou et al.
[210] on Chinese semantic similarity with bilingual trained
embeddings. Use of such embeddings to compute semantic
similarity of phrase pairs was shown to improve the BLEU
score slightly in Chinese–English machine translation. On
the other hand, Gao et al. [211] made use word embeddings
in both source and target languages as the “raw” input fea-
tures in DNNs to extract higher-level, semantic features.
Then the translation score is computed by measuring the
distance between the semantic features in the new feature
space. The DNN weights are learned so as to directly opti-
mize the quality of end-to-end BLEU score in machine
translation.
Another area of applying deep learning to natural

language processing appeared in [86], where a recursive
neural network is used to build a deep, tree-like archi-
tecture. The network is shown to be capable of successful
merging of natural language words based on the learned
semantic transformations of their original features. This
deep learning approach provides an excellent performance
on natural language parsing. The same approach is also
demonstrated by the same authors to be successful in
parsing natural scene images. In related studies, a similar
recursive deep architecture is used for paraphrase detec-
tion [212], and for predicting sentiment distributions from
text [213]. In the most recent work, Socher et al. [214]
extended the recursive neural network to its tensor, in a
similar way that the DNN was extended to its tensor ver-
sion [215], and applied it to semantic compositionality. This
recursive neural tensor network resulted in semantic word
space capable of expressing the meaning of longer phrases,
and drastically improved the prediction accuracy of
sentiment labels.
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E) Information retrieval

Here we discuss applications of the DBN, the related deep
autoencoder, and more advanced deep learning methods
developed more recently to document indexing and infor-
mation retrieval.
Salakhutdinov and Hinton [216, 217] showed that the

hidden variables in the �nal layer of aDBNnot only are easy
to infer but also give a better representation of each doc-
ument, based on the word-count features, than the widely
used latent semantic analysis and the traditional TF-IDF
approach for information retrieval. With the use of com-
pact codes produced by a deep autoencoder, documents are
mapped to memory addresses in such a way that semanti-
cally similar text documents are located at nearby address to
facilitate rapid document retrieval. And the mapping from
a word-count vector to its compact code is highly e�cient,
requiring only a matrix multiplication and a subsequent
sigmoid function evaluation for each hidden layer in the
encoder part of the network.
Brie"y, the lowest layer of the DBN represents the word-

count vector of a document and the top layer represents a
leaned binary code for that document. The top two layers
of the DBN form an undirected associative memory and
the remaining layers form a Bayesian (also called belief)
network with directed, top-down connections. This DBN,
composed of a set of stacked RBMs as we reviewed in
Section V, produces a feedforward “encoder” network that
converts word-count vectors to compact codes. By compos-
ing the RBMs in the opposite order, a “decoder” network
is constructed that maps compact code vectors into recon-
structed word-count vectors. Combining the encoder and
decoder, one obtains a deep autoencoder (subject to fur-
ther �ne-tuning as discussed in Section IV) for document
coding and subsequent retrieval.
After the deep model is trained, the retrieval process

starts with mapping each query document into a 128-bit
binary code by performing a forward pass through the
model with thresholding. Then, the similarity, with Ham-
ming distance, between the query binary code and all other
documents’ 128-bit binary codes are computed e�ciently.
While the “semantic hashing”method described above is

intended to extract hierarchical semantic structure embed-
ded in the query and the document, it nevertheless adopts
an unsupervised learning approach where the DBN and
deep autoencoder parameters are optimized for the recon-
struction of the documents rather than for the real goal
of information retrieval; i.e., to di�erentiate the relevant
documents from the irrelevant ones for a given query.
As a result, it fails to signi�cantly outperform the base-
line retrieval models based on keyword matching. More-
over, the semantic hashing model also faces the scalability
challenge regarding large-scale matrix multiplication. Both
of these problems are very recently addressed by Huang
et al. [218], where a weakly supervised approach is taken.
Speci�cally, in a series of deep structured semantic models
(DSSM) developed in this work, deterministic word hash-
ing is constructed from the documents and queries �rst,

which produces vectors with relatively low dimensional-
ity to feed to DNNs for extracting semantic features from
the document-query pairs. In learning the DNNs, instead
of using a cross-entropy as the optimization criterion, the
DSSM constructs a novel objective function that directly
targets the goal of document ranking, enabled by the avail-
ability of click-through data as the “supervision” informa-
tion. This objective function is de�ned on the basis of the
cosine similarity measure between the semantic features
of document–query pairs extracted by the DNNs. Excel-
lent results, based on the NDCG performance measure,
are reported on real-world, large-scale Web search tasks
using the semantic features produced by the DSSM in a
discriminative manner.
Instead of using deep nets to produce semantic feature

to aid information retrieval, Deng et al. [152] applies the
DSN, as described in Section IV-A–C, to directly perform
the task of learning-to-rank in information retrieval, based
on a rich set of traditional features (e.g., query length, text
match, translation probabilities between query and docu-
ment, etc.).
Applications of deep learning to information retrieval are

in its infancy. We expect more work in this area to emerge
in coming years, including both open and constrained (e.g.,
ads) document search, aimed to predict document relevant
to the input query.

V I I I . SUMMARY AND D ISCUSS IONS

This paper presents a brief history of deep learning, and
develops a categorization scheme to analyze the existing
deep architectures in the literature into generative, discrim-
inative, and hybrid classes. The deep autoencoder, DSN
(including its generalization to tensor-DSN and RNN), and
DBN-DNN architectures, one in each of the three classes,
are discussed and analyzed in detail, as they appear to be
popular and promising approaches with author’s personal
research experience. Applications of deep learning in �ve
broad areas of information processing are then reviewed.
The literature on deep learning is vast, mostly com-

ing from the machine learning community. The signal-
processing community embraced deep learning only within
the past 4 years or so and the momentum is growing fast.
This overview paper is written mainly from the signal-
processing perspective. Beyond just surveying existing deep
learningwork, a classi�catory schemebased on the architec-
ture and the nature of learning algorithms is developed and
in-depth analysis with concrete examples conducted. This
will hopefully provide insight for readers to better under-
stand the capability of the various deep learning systems
discussed in the paper, the connection among di�erent but
similar deep learning methods, and ways to design proper
deep learning algorithms under di�erent circumstances.
Throughout this review, the important message is con-

veyed that building/learning deep architectures and hier-
archies of features is highly desirable. We have discussed
the di�culty of learning parameters in all layers at once
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due to pervasive local optima and diminishing or exploding
gradient. The generative, pretraining method in the hybrid
architecture of DBN–DNN, which we reviewed in detail in
Section V, appears to have o�ered a useful, albeit empiri-
cal, solution to poor local optima in optimization, especially
when the labeled training data is limited.
Deep learning is an emerging technology. Despite the

empirical promising results reported so far, much need to
be developed. Importantly, it has not been the experience
of deep learning researchers that a single deep learning
technique can be successful for all classi�cation tasks. For
example, while the popular learning strategy of generative
pretraining followed by discriminative �ne-tuning seems to
work well empirically for many tasks, it failed to work for
some other tasks. We have reviewed the success of deep
learning in a number of “perceptual” tasks, such as speech,
language, and vision, and in the tasks that require non-
trivial internal representations, such as text-based informa-
tion retrieval and natural language processing. For other
tasks in arti�cial intelligence, e.g., causality inference and
decision making, what would be most likely to bene�t
from the deep learning approach? How deep learning and
other branches of machine learning, e.g., graphical models
and kernel methods, can enhance each other? These issues
remain to be explored.
Recent published work showed that there is vast room to

improve the current optimization techniques for learning
deep architectures [47, 48, 50, 120, 219]. To what extent pre-
training is important to learning the full set of parameters in
deep architectures has been currently under investigation,
especially when very large amounts of labeled training data
are available which reduces or even obliterates the need for
model regularization. Some experimental results have been
discussed in this paper and in [6].
E�ective and scalable parallel algorithms are critical for

training deep models with very large data, as in many com-
mon information-processing applications such as speech
recognition, machine translation, and information retrieval
at the Web scale. The popular mini-batch stochastic gradi-
ent technique is known to be non-trivial for parallelization
over computers. Recent advances in developing asyn-
chronous stochastic gradient learning showed promises by
using large-scale CPU clusters (e.g., [120, 219]) and GPU
clusters [193]. To make deep learning techniques scalable to
very large training data, theoretically sound parallel learn-
ing algorithms ormore e�ective architectures than the exist-
ing ones need to be further developed (e.g., [49, 50, 112, 120,
220]).
One major barrier to the application of DNNs and

related deep models is that it currently requires consid-
erable skills and experience to choose sensible values for
hyper-parameters such as the learning rate schedule, the
strength of the regularizer, the number of layers and the
number of units per layer, etc. Sensible values for one hyper-
parameter may depend on the values chosen for other
hyper-parameters and hyper-parameter tuning in DNNs is
especially expensive. Some interesting methods for solv-
ing the problem have been developed recently, including

random sampling [221] and Bayesian optimization pro-
cedure [222]. Further research is needed in this impor-
tant area.
Finally, solid theoretical foundations of deep learning

need to be established in a myriad of aspects. As an
example, the success of deep learning in the unsuper-
vised mode has not been demonstrated as much as for
supervised learning; yet the essence and major motiva-
tion of deep learning lie right in unsupervised learning
aimed at automatic discovery of data representation. What
are the appropriate objectives for learning e�ective repre-
sentations? How may the deep learning architectures and
algorithms use distributed representations to e�ectively dis-
entangle the hidden explanatory factors of variation in
the data? How can computational neuroscience models
about hierarchical brain structure and learning style help
improve engineering deep learning architectures and algo-
rithms? All these important questions will need intensive
research in order to further push the frontier of deep
learning.
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