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The coumarin core (i.e., 1-benzopyran-2 (2H)-one) is a structural motif highly

recurrent in both natural products and bioactive molecules. Indeed, depending

on the substituents and branching positions around the byciclic core,

coumarin-containing compounds have shown diverse pharmacological

activities, ranging from anticoagulant activities to anti-inflammatory,

antimicrobial, anti-HIV and antitumor effects. In this survey, we have

reported the main scientific results of the 20-years investigation on the

coumarin core, exploited by the research group headed by Prof. Angelo

Carotti (Bari, Italy) either as a scaffold or a pharmacophore moiety in

designing novel biologically active small molecules.
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Introduction

Due to its occurrence in both natural products and drugs, and the synthetic

accessibility of its derivatives as well, the coumarin core (i.e., 1-benzopyran-2 (2H)-

one) has been considered a privileged scaffold for drug design. Coumarin was isolated

from tonka bean by Vogel in 1820. After its structural elucidation, this chemical scaffold

was found in many bioactive natural compounds. Noteworthy, the anticoagulants

warfarin, the choleretics armillarisin A and the antibiotic novobiocin must be

mentioned as marketed drugs based on the coumarin scaffold. However, coumarin

based derivatives are not devoid of drawbacks concerning with solubility and multidrug

resistance (Wu et al., 2020; Al-Abass et al., 2021) and this makes the design even more

challenging. Indeed, depending upon feature and substitution pattern of the functional

groups, the coumarin nucleus has been widely decorated to develop compounds showing

diverse pharmacological activities, spanning from anticoagulant activities to anti-

inflammatory, antimicrobial, anti-HIV and antitumor effects (Stefanachi et al., 2018).

Herein, we review the scientific results in the last 2 decades of investigation around the

coumarin nucleus, developed in the research group of Prof. Angelo Carotti (Bari, Italy).
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FIGURE 1
Panel (A) general structures of coumarin-based MAO inhibitors and MTDLs. Panel (B) CoMFA isocontour maps for MAO B (A–C) and MAO A
(D–F) affinity of coumarin derivatives of general structure 1. In steric maps A and D, green and red regions show allowed and forbidden regions,
respectively. Electronic density areas (B,E) are depicted as favorable (magenta) and unfavorable (grey), respectively. Lipophilic interactions (C,F) are
reported as favorable (yellow) and unfavorable (cyan), respectively. CoMFA images were adapted with permission from Ref. (Catto et al., 2006).
Copyright 2006, American Chemical Society. Panel (C) in vitro inhibitory data for the selected coumarins.
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The interest toward coumarin derivatives by the Carotti’s

group began in the early 2000 s from a project aimed at

generating ligand-based models of neurotoxicity of MAO

substrates, using the classical Hansch quantitative structure-

activity relationships (QSARs) and comparative molecular

field analysis (CoMFA) (Youdim et al., 2006). In details, the

QSAR/CoMFA analyses focused on the MAO-catalyzed

oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) to 1-methyl-4-phenylpyridinium (MPP+), which

produces Parkinson-like symptoms in primates (Altomare

et al., 1992). The toxication of MPTP involves a two-step

oxidation into the brain by MAO B, and to a lesser extent by

MAO A. These CoMFA studies, combined with the Hansch 2D-

QSAR analyses, allowed to spot the main steric effects, along with

the electrostatic and hydrophobic interactions, most

discriminating the binding sites in the two isozymes.

Besides the 3D QSAR studies on MPTP analogs, Carotti and

coworkers investigated a number of fused azaheterocycles, like

5H-indeno [1,2-c] pyridazines and other condensed pyridazines

and pyrimidines (Altomare et al., 1991), as MAO inhibitors, and

derived QSAR and CoMFA models which highlighted key

physicochemical interactions responsible for inhibition

potency and A/B isoform selectivity (Kneubühler et al., 1993;

Kneubühler et al., 1995) and, among them, coumarins showed

really interesting results (Altomare et al., 1998; Gnerre et al.,

2000)

Indeed, Carotti’s synthetic efforts towards several

coumarin derivatives, along with 3D QSAR models, helped

to unravel the key molecular features responsible for binding

affinity to MAO A/B, inhibition potency and isoform

selectivity (Altomare et al., 1998; Gnerre et al., 2000), even

before that the co-crystal structures of MAOs with small

molecule binders (Binda et al., 2007) opened the way to

structure-based drug design of novel inhibitors. Since then,

as discussed below, many of the group’s publications focused

on potential applications of diverse coumarin-containing

compounds in neurodegeneration and oncology.

Coumarins as inhibitors of MAOs

Due to higher synthetic feasibility, seminal explorations

focusing on MAO inhibitors mainly addressed the coumarin

substituent at the 7-position, while limiting the structural

variations at position 3 and 4 to methyl groups (Figure 1,

general structures 1–2). The modulation of MAO B activity

was linearly correlated to the substituent’s lipophilicity at C7

(Carotti et al., 2006). Different linkers were installed at C7,

probing both size and electronic features, with the OCH2Ph

group being the most effective in promoting MAO B inhibitory

activity. Among 7-benzyloxy derivatives (Figure 1, general

structure 3), activity was highly dependent on the phenyl

meta-substituent, whose lipophilicity governed MAO B

inhibitory potencies rather than electronic properties, as

outlined by a reliable QSAR model showing a parabolic

correlation of potency with the hydrophobic Hansch

constant π (Gnerre et al., 2000). These findings were later

confirmed by disclosing a linear correlation between MAO B

potency and calculated partition coefficient (ClogP) from a data

set of coumarin derivatives exploring even more diverse

substituents (De Colibus et al., 2005). A more extensive

CoMFA-GOLPE study encompassing larger substitution

patterns at the 7-position of the coumarin allowed to derive

easily interpretable isocontour maps for both MAO A and

MAO B affinity (Catto et al., 2006) (Figure 1). All steric,

lipophilic, and electrostatic potential maps were found to

slightly differ in the two isozymes, with some common

features (e.g., a detrimental effect of ortho substitution).

Noteworthy, CoMFA maps were successfully applied to

shed light on MAO B/A selectivity, which was mainly

modulated by the electronic and steric properties of

the bridge connecting the coumarin core to the aryl

substituent. Interestingly, the insertion of 7-phenylsulfonate

esters reversed the selectivity profile yielding potent MAO A

inhibitors (Catto et al., 2006). Complex stabilization was

strongly promoted by sulfonate-group hydrogen bonding to

the sidechain of Gln215 as supported by both molecular

dynamics and molecular mechanics generalized Born

surface area (MM-GBSA) calculations (Mangiatordi et al.,

2017). With the aim of improving the drug-like properties

of neutral coumarin hits, differently sized and substituted

polar and/or protonatable moieties were introduced at the 4-

position of 7-benzyloxy derivatives (Figure 1, general structure

5–6) leading to the discovery of NW-1772 (Pisani et al.,

2009), an in vivo potent, bioavailable, reversible and CNS-

acting MAO B inhibitor devoid of safety issues. X-ray

crystallography pointed out its binding within the MAO

enzymatic cleft, fully buried from the entrance cavity to FAD

in a safinamide-superimposable pose (Binda et al., 2007). While

maintaining a meta-halobenzyloxy group at C7 (Figure 1,

general structure 4), fine-tuning the substituent at the 4-

position returned nanomolar inhibitors that laid the

groundwork for developing a robust and highly predictive

Gaussian field-based 3D-QSAR model (Pisani et al., 2015),

indicating that target recognition was dominated by steric

hindrance whereas hydrogen bonding and electrostatic

interactions tempered affinity to a lesser extent. During our

investigation, serendipitously, while reacting 4-chloromethyl-

7-substituted coumarins with excess primary amines, we

faced an unexpected lactone opening reaction followed

by intramolecular nucleophilic substitution (Pisani et al.,

2013). This mechanism gave straightforward and

efficient access to a novel scaffold for MAO inhibition,

namely 6′-substituted (E)-2-(benzofuran-3 (2H)-ylidene)-
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N-alkylacetamides. Depending on the linker, sulfonate and

benzyl derivatives confirmed A/B selectivity profiles obtained

for the coumarin isomers.

Coumarins as inhibitors of
Acetylcholinesterase

Acetylcholinesterase (AChE) is the enzyme responsible for

the hydrolysis of the neurotransmitter acetylcholine (ACh) at

the synaptic cleft. Because of many physiological effects

mediated both in central and peripheral tissues, AChE is by

far a validated pharmacological target. AChE inhibitors

(AChEIs) are currently the first-line drugs for the

symptomatic treatment of Alzheimer’s disease (AD), where

AChEIs may sustain the cholinergic transmission in early to

moderate AD stages (Mufson et al., 2008). The early crystal

structures of AChE-inhibitor complexes revealed the presence

of two binding pockets, a catalytic active site (CAS),

surrounded by aromatic amino acids and neighbouring the

so-called catalytic triad, and a peripheral binding site (PAS),

separated by a deep gorge (Sussman et al., 1991). The presence

of ammonium cationic warheads warrants the tight binding

with both CAS and PAS, by means of cation-π interactions, as

suggested by decamethonium and other neuromuscular

blockers. To limit the peripheral effects of AChEIs and

obtain CNS-active drugs, a protonatable nitrogen usually

replaces the net positive charge of the ammonium ions for

binding at the CAS, while a lipophilic moiety brought as the

distal substituent acts as a second pharmacophore motif for π-
π interactions with aromatic amino acids at the PAS. Such

archetypal dual binding site (DBS) feature is represented

by donepezil (Figure 2), the reference drug for the

treatment of AD. Since the PAS is involved in the

FIGURE 2
Rational design of AChE inhibitors by conjugative approach.
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aggregation of beta-amyloid (Aβ) protein (Inestrosa et al.,

1996), DBS inhibitors may exert antiamyloidogenic activity by

disrupting protein-protein interactions triggered at the PAS.

Starting from the disclosure of a fair AChE inhibitory

activity for the 7-benzyloxy coumarin derivatives

(Brühlmann et al., 2001), our group focused on the

exploitation of the synthetic versatility of the coumarin

scaffold to obtain DBS reversible inhibitors. By

conjugating in a fragment-based design an edrophonium-

like moiety with hydroxycoumarin through a polymethylene

bridge, we obtained chimeric derivatives 11 (Figure 2)

(Leonetti et al., 2008; Pisani et al., 2010), with good IC50

values in the submicromolar range, and in some cases hitting

subnanomolar values. Docking studies evidenced the

interaction of the coumarin residue at the PAS through

hydrophobic and π-stacking interactions and of the

cationic head at the CAS as the key interactions for

binding. A systematic exploration of the substitution

pattern around the coumarin core outlined the best

solutions for its decoration. An “extended” substitution in

3-, 6- and 7-position of the coumarin led to higher potencies

than in case of “folded” substitution in 4-, 5- and 8-position.

The same activity trend was later confirmed by coumarins 12

and 13 (Figure 2), where the putative toxicophore fragment

represented by the hydroxyaniline moiety was replaced with a

simple benzylamine substituent or a protonatable coumarin

building block. Such substitution, still matching the donepezil-

like pharmacophore, retained an effective binding at both the

CAS and the PAS (Catto et al., 2013), and was later confirmed by

X-ray analysis of AChE in complex with inhibitor 12 (Catto et al.,

2020). By following a conjugation approach, we disclosed a series

of homo- and heterodimers 13 (Figure 2) (Pisani et al., 2017)

where at least one coumarin residue presented a protonatable

nitrogen as the key substituent. Moreover, the DBS interaction of

these coumarin hybrids was accompanied with a direct

antiaggregating activity against Aβ self-aggregation, thus

representing an appealing example of multitarget activity

directly related to AChE inhibition.

Coumarin-based multitarget-
directed ligands

Our contribution to the field of multi-targeting ligands has

long been devoted to the development of dual coumarin-based

AChE-MAO B inhibitors as potential polypharmacological

weapons to combat AD. Apart from the well-established role

of cholinergic transmission in AD, the rationale lies in the

synergistic or additive effect coming from the oxidative stress

restriction as a consequence of MAO blockade. In a seminal

paper by some of us, the in vitro screening enrolling a small

subset of 7-benzyloxycoumarins (Figure 1, general structure 3),

previously characterized as nanomolar MAO inhibitors, led us

identifying AChE inhibitors in the low micromolar IC50 range

and with a non-competitive mechanism (Brühlmann et al.,

2001). These encouraging preliminary results draw attention

to the likelihood of decorating the coumarin skeleton to

obtain dual-acting compounds with a particular attention to

the substitution pattern branching position 3, 4, and 7 in line

with steric prerequisites and synthetic handling.

The introduction of diverse basic functionalities at the 3-

position of the 6,7-dimethoxycoumarin furnished promising

molecules (Figure 1, general structure 8), although their activity

was biased against MAO B inhibition at the nanomolar level

while showing only moderate anti-AChE activity in the low

micromolar range (Pisani et al., 2016). Similarly, unbalanced

profiles were observed after the design and the screening of a

small collection bearing head-or-tail modifications on 4-

aminomethyl-7-benzyloxy-2H-chromen-2-one motif

(Figure 1, general structure 7) (Rullo et al., 2019). The SAR

indicated a preference for halogens as the meta-substituents of

the benzyl ring to increase multitargeting activity. Interestingly,

during these efforts triple-acting AChE/BChE/MAO B

inhibitors were discovered, which could benefit from the

additional inhibition of BChE whose increased expression

and activity has been documented in chronic AD (Arendt

et al., 1992). Upon applying “design-in” approaches (Farina

et al., 2015) the molecular framework of coumarin-based

multitarget ligands was built by exploiting the ability of

the MAO B active site to accommodate 4-unhindered 7-

benzyloxy-2H-chromen-2-one rings, which were tethered to

N-benzylaminomethyl basic heads in order to improve AChE

inhibition (Figure 1, general structure 9). By hybridizing the

coumarin core with a protonatable group and a nitrate ester, we

obtained triple-acting chemotypes able to inhibit AChE and

MAO B, and to release low neuroprotective doses of nitric oxide

(Pisani et al., 2019). Furthermore, structural variations led to

improve the drug-likeness of the hybrid hit compounds, e.g.,

water solubility (Pisani et al., 2016). To this scope, the entropic

penalties introduced by more flexible spacers were mitigated by

the xylyl/polymethylene chain to piperidine ring exchange

that allowed more favorable pKa values thanks to the

N-benzylpiperidine moiety (Figure 1, general structure 10),

inspired by donepezil. Cell-based assays showed that some of

the hits presented low cytotoxicity and increased cell viability in

neuroblastoma cell lines insulted by pro-oxidative toxins such

as hydrogen peroxide, along with in vitro dual target’s

inhibition from sub-micromolar to low nanomolar range and

outstanding MAO B/A selectivity. Moreover hits 9a (Farina

et al., 2015) (IC50 = 10 and 120 nM toward MAO B and AChE,

respectively; MAO B/A selectivity >1,000) and 10a (Pisani et al.,
2016) (IC50 = 30 nM and 1.0 μM toward MAO B and AChE,

respectively; MAO B/A selectivity >90) behaved as CNS-

permeant compounds in a BBB-mimicking model without

efflux pump liabilities arising from P-glycoprotein

interactions. For dual-targeting compound 9a the earliest
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X-ray crystallographic structures upon binding mutually to

MAO B and AChE have been recently reported (Ekström

et al., 2022). As challenging alternative, H/F and OH/CF2H

bioisosteric mimicry led to a potent, reversible, and drug-like

derivative as proved in early-ADME studies (compound 9b;

IC50 = 8.2 and 550 nM toward MAO B and AChE, respectively;

MAO B/A selectivity >1,200 (Rullo et al., 2022).

Coumarins as antitumor agents

Coumarin itself or many of its derivatives showed antitumor

activity by inhibiting the proliferation of the tumor cells at very

low concentration without showing toxicity towards healthy

cells. Their antitumor activity is due to (Wu et al., 2020) the

inhibition of many signalling pathways such as PI3K/AKT/

mTOR (Ma et al., 2020), microtubule polymerization (Madari

et al., 2003; Liu et al., 2015) and angiogenesis. They also act on

apoptotic proteins (Chuang et al., 2007) and on ROS regulation

(Kontogiorgis et al., 2007), and through the inhibition of

enzymes such as aromatase (Chen et al., 2004) and estrogen

sulfatase (Stanway et al., 2006) both involved in breast cancer

progression.

Aromatase (AR) is a multienzymatic complex, composed by

cytochrome P450 (CYP19) and a NADPH-cytochrome

P450 flavoprotein reductase, and it is localized in the

endoplasmic reticulum of the cell.

AR controls the conversion of androgens to estrogens,

catalyzing the aromatization of the steroidal enone, present in the

A ring, into the corresponding phenolic ring trough the oxidation

and the consequent elimination of the C19 methyl group. Many AR

inhibitors contain an azole ring able to coordinate the iron ion of the

AR heme group by means of their lone pair.

The design of our inhibitors started with the evaluation of the

introduction of the appropriate azole substituent on our

coumarin core. The best results were obtained by 4-imidazolyl

coumarin derivatives (Leonetti et al., 2004; Stefanachi et al., 2011)

bearing in 7-position a phenoxy or benzyloxy substituent as

illustrated in Figure 3 (14).

A three sites interaction model was proposed: 1) the binding

driving interaction is the heme iron coordination by the lone pair

of the electron rich imidazole, 2) the coumarin ring is positioned

perpendicularly to the imidazole ring, and its lactone group

establish a key hydrogen bond with S478, 3) the phenoxy and

benzyloxy groups fill a hydrophobic pocket. We were able to

obtain inhibitory activities in the range of 40–400 nM,

comparable with that of fadrozole, in particular for the

phenoxy derivatives.

All the synthesized compounds showed selectivity for AR

with no activity towards other cytochromes P such as CYP17

(C17,20-lyase), CYP11B1 (steroid 11β-hydroxylase) and

CYP11B2 (aldosterone synthase).

We also designed and synthesized acyclic analogs of

coumarin derivatives (16, Figure 3), and the data showed that

the absence of the coumarin ring does decrease the aromatase

inhibitory activity, while increasing the potency at CYP11B1 and

selectivity over CYP11B2, CYP19, and CYP17 (Stefanachi et al.,

2015).

Conclusion

Herein, we review the main results of the pioneering

scientific journey started about 20 years ago under the wise

guide of Prof. Angelo Carotti (Bari, Italy) to explore the

bioactivity potential of the coumarin core. Several

FIGURE 3
General structure of aromatase inhibitors. (Stefanachi et al., 2011; Stefanachi et al., 2015).
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programs on coumarin derivatives as single-targeting MAO,

followed by AChE inhibitors as well as MTDLs, have been

carried out focusing on the potential pharmacological

treatment of neurodegenerative syndromes. Moreover, some

coumarin derivatives also showed aromatase inhibitory

activity and, therefore, have been developed as potential

therapeutic agents for the treatment of breast cancer.Cao

et al., 2016, Pisani et al., 2013.
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