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Abstract—The delayed feedback control (DFC) method
has been invented in 1992 (this year is a 20th anniversary).
Following the original paper by Pyragas [Phys. Lett. A,
170, 421, 1992], more than 1500 papers devoted or related
to the DFC have been published. Many different modifi-
cations of the algorithm have been proposed, and signifi-
cant achievements are attained in the theory of the DFC.
Although this theory is non-trivial, currently the mecha-
nism of the DFC action is rather well understood, and the
main limitations of the algorithm are established. The DFC
has been successfully implemented in a number of exper-
imental systems of different physical nature. The aim of
this talk is to present a brief review of important modifica-
tions of the DFC algorithm, significant theoretical results
and experimental implementations attained during the past
twenty years. The recent results concerning adaptive mod-
ifications of the DFC and analytical achievements based on
phase reduction of time-delay systems will be discussed as
well.

1. Brief review of experimental and theoretical results

The DFC algorithm [1] is a simple, robust, and effi-
cient method to stabilize unstable periodic orbits (UPOs)
in chaotic systems. Nowadays, it becomes one of the most
popular methods in the chaos control research [2]. The
method allows a noninvasive stabilization of UPOs of dy-
namical systems in the sense that the control force vanishes
when the target state is reached. The DFC algorithm is
reference-free and makes use of a control signal K∆s(t) ob-
tained from the difference ∆s(t) = s(t) − s(t − τ) between
the current state s(t) of the system and the state of the sys-
tem s(t−τ) delayed by one-period τ of the target orbit. The
UPO may become stable under the appropriate choice of
feedback strength K. Note that only the stability properties
of the orbit are changed, while the orbit itself and its period
remain unaltered. The controlled system can be treated as
a black box, since the method does not require any exact
knowledge of either the form of the periodic orbit or the
system’s equations. The method is particularly appealing
for experimentalists, since one does not need to know any-
thing about the target orbit beyond its period τ. The DFC
algorithm is notably superior to other control methods in
fast dynamical systems, since it does not require any real-
time computer processing.

Successful implementation of the DFC algorithm has
been attained in diverse experimental systems, includ-
ing electronic chaotic oscillators, mechanical pendulums,
lasers, gas discharge systems, a current-driven ion acous-
tic instability, a chaotic Taylor-Couette flow, chemical sys-
tems, high-power ferromagnetic resonance, helicopter ro-
tor blades, and a cardiac system. (cf. [3] for review up to
2006). An important practical application of the DFC al-
gorithm has been recently demonstrated by Yamasue et al.
[4]. The authors have successfully implemented the DFC
method in an atomic force microscope and managed to sta-
bilize cantilever oscillations. As a result, they remove arti-
facts on a surface image. Another interesting application of
the DFC for the analysis of bifurcations of periodic states
in experimental systems has been recently considered in
Ref. [5].

A reach variety of modifications of the DFC has been
suggested in order to improve its performance (cf. [3]).
Here we mention only the most important modification
known as an extended DFC (EDFC), which has been intro-
duced in Ref. [6]. The authors improved an original DFC
scheme by using an information from many previous states
of the system. The EDFC scheme achieves stabilization of
UPOs with a greater degree of instability [7, 8].

The theory of DFC is difficult because the delayed feed-
back induces an infinite number of degrees of freedom.
Even linear analysis of such systems is complicated due
to the infinite number of Floquet exponents characteriz-
ing the stability of controlled orbits. Nevertheless, some
analytical approaches have been developed in vicinity to
various bifurcations of periodic orbits, such as the period
doubling bifurcation [9, 10], the subcritical Hopf bifurca-
tion [11, 12, 13] and the Nejmark-Sacker (discrete Hopf)
bifurcation [14].

In 1997 Nakajima [15, 9] proved the so-called odd num-
ber limitation, which states that any UPOs with an odd
number of real Floquet multipliers greater than unity can
never be stabilized by any DFC technique. This limi-
tation has been commonly accepted and intensively dis-
cussed in the literature. However, in 2007, Fiedler at al
[16] have shown by a simple example that this limitation
does not hold in general for autonomous systems (note that
for non-autonomous systems it remains valid in general).
Recently, a modified (corrected) proof of the limitation for
autonomous systems has been presented by Hooton and
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Amann [17]. To overcome the odd number limitation a
counterintuitive idea based on an unstable controller has
been proposed [11, 12, 13].

The group of Pikovsky has proposed to use the DFC for
controlling oscillation coherence in noisy systems [18, 19].
This research was further developed by the group of Schöll
[20, 33, 22]. The recent achievements in this field are pre-
sented in Refs. [23, 24]. The DFC has been also used to
control the motion of an overdamped Brownian particle in
a washboard potential exerted to a static tilting force [25].

Another interesting proposal of the Pikovsky’s group
is related to the DFC control of synchronization in glob-
ally coupled oscillator networks [26, 28]. This research
has a potential application for suppression of pathologi-
cal rhythms in neural ensembles, which appear due to syn-
chronization of individual neurons and is believed to play
the crucial role in Parkinsons disease, essential tremor,
and epilepsies. These ideas were further developed by the
group of Tass [29, 30].

A number of publications are devoted to the use of
DFC for controlling spatio-temporal patterns in reaction-
diffusion systems [31, 32, 33, 34].

An interesting idea of implementing a variable or dis-
tributed delay time into DFC algorithm is reported in Refs.
[35, 36]. It is shown that such a modification may substan-
tially enlarge the domain of stability of controlled orbits or
steady-states.

2. Recent theoretical developments

Recent works in the theory of DFC have been mainly
devoted to the analysis of the global properties (basins of
attraction) of stabilized UPOs [37, 38, 39], adaptive mod-
ifications [40, 41], and analytical approaches based on ex-
tension of the phase reduction theory to time-delay systems
[42, 43].

2.1. Basins of attraction

The standard tool for discussing the control performance
of DFC systems consists in linear stability analysis. How-
ever, even if such a local analysis predicts stable states, ex-
perimental success is not guaranteed because the control
performance may strongly depend on initial conditions. To
improve the global properties of the linear DFC algorithm
several modifications have been proposed. A first heuris-
tic idea has been suggested in the original paper [1]. It has
been shown that limiting the size of the control force by
a simple cutoff increases a basin of attraction of the sta-
bilized orbit. This idea has proven itself in a number of
chaotic systems, and now it is widely used in experimental
implementations of DFC method. An alternative two-step
DFC algorithm has been proposed in [38]. In [44, 37], the
authors have developed a theory which stated that depend-
ing on the type of transition at the control boundary there
appear basins of attraction of different size; for a contin-

uous transition the basin of attraction is large, while for a
discontinuous transition it is small.

Unfortunately, the above-proposed nonlinear DFC
schemes are not universal. In recent paper [39], we have
elaborated a DFC algorithm with the improved global prop-
erties by invoking an egodicity — the universal feature of
chaotic systems. The ergodicity means the fact that a tra-
jectory of any chaotic system visits a neighborhood of each
periodic orbit with finite probability. We do not perturb
the system until it comes in a small neighborhood of the
desired orbit and then activate the control. Note that the
problem of evaluating the moment when the state of the
free system approaches the target orbit has to be considered
in an infinite-dimensional phase space, since the DFC force
increases the phase space dimension. Using a scalar ob-
servable, we have developed a technique based on a linear
filter which evaluates the running closeness of the system
to the desired orbit in infinite-dimensional phase space.

2.2. Adaptive DFC with a state dependent time delay

Experimental implementation of the DFC method re-
quires a knowledge of delay time, which is equal to the
period of actual UPO. However, for autonomous systems,
this period is not known a priori. Furthermore, in real ex-
perimental situation, the period of actual UPO may evolve
due to the evolution of the system parameters under the ef-
fects of exogenous, unpredictable factors. In this context,
adaptive control techniques with an automatic adjustment
of the delay time are desired. The problem of estimating
the period of a target UPO from observed experiential data
has been considered in several publications. In the origi-
nal paper [1], it has been shown that the amplitude of DFC
perturbation has a resonance-type dependence on the delay
time, and the periods of UPOs can be extracted from the
minima of this dependence. The first adaptive technique
employing online variation of the delay time has been pro-
posed [45]. Here the delay time is adjusted in a discrete
way according to the distance between successive maxima
of the output signal.

Recently, we have proposed [40] an adaptive DFC al-
gorithm with a state-dependent delay, which is based on
resonance dependence of the DFC perturbation on the de-
lay time pointed out in [1]. The state-dependent time delay
is varied continuously towards the period of controlled or-
bit according to a gradient-descent method realized through
three simple ordinary differential equations. Another adap-
tive algorithm has been recently proposed in Ref. [41].

2.3. Phase reduction theory-based treatment of DFC

A sophisticated theoretical foundation for obtaining the
UPO period from the observed control signal has been de-
veloped in [46]. The control signal in the DFC algorithm
vanishes if the delay time is adjusted to be equal to the pe-
riod of a target UPO. If the delay time differs slightly from
the UPO period, a non-vanishing periodic control signal is
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observed. In Ref. [46] an analytical expression for this pe-
riod has been derived in the case of the DFC algorithm ap-
plied to the systems having a single scalar input. Recently,
we have generalized this expression for the multiple-input
multiple-output systems controlled by an extended DFC
(EDFC) algorithm [43]. Our approach is based on the
phase reduction theory of weakly perturbed limit cycle os-
cillations in systems with time delay, which is developed
in our recent publication [42]. This result is important for
the experimental implementation of the EDFC algorithm,
since it can facilitate the determination of unknown period
of control-free UPO. Using an analytical relationship be-
tween the period of control signal and the control param-
eters, the unknown period of the UPO can be determined
from only few experimental measurements (c.f. [46]).

3. Conclusions

Based on the above review, we can conclude that the de-
layed feedback control is still an active area of research.
Hopefully, new interesting theoretical and experimental re-
sults will appear in the near future.

Acknowledgments

This research was funded by the European Social Fund
under the Global Grant measure (grant No. VP1-3.1-ŠMM-
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Feedback as a Means of Control of Noise-Induced Mo-
tion,” Phys. Rev. Lett., vol.93, p.010601, 2004.

[21] A. G. Balanov, V. Beato, N. B. Janson, H. Engel,
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term correlations in stochastic systems with ex-
tended time-delayed feedback,” Phys. Rev. E, vol.75,
p.040101(R), 2007.

[23] S. Patidar, A. Pototsky, and N. B. Janson, “Control-
ling noise-induced behavior of excitable networks,”
New Journal of Physics, vol.11, p.073001, 2009.

[24] D. S. Goldobin, “Anharmonic resonances with recur-
sive delay feedback,” Phys. Lett. A, vol.375, pp.3410–
3414, 2011.

[25] D. Hennig, “Current control in a tilted washboard
potential via time-delayed feedback,” Phys. Rev. E,
vol.79, p.041114, 2009.

[26] M. G. Rosenblum and A. S. Pikovsky, “Controlling
Synchronization in an Ensemble of Globally Coupled
Oscillators,” Phys. Rev. Lett., vol.92, p.114102, 2004.

[27] M. Rosenblum and A. Pikovsky, “Delayed feedback
control of collective synchrony: An approach to sup-
pression of pathological brain rhythms,” Phys. Rev. E,
vol.70, p.041904, 2004.

[28] M. Rosenblum and A. Pikovsky, “Delayed feedback
control of collective synchrony: An approach to sup-
pression of pathological brain rhythms,” Phys. Rev. E,
vol.70, p.041904, 2004.

[29] O. V. Popovych, C. Hauptmann, and P. A. Tass, “Ef-
fective Desynchronization by Nonlinear Delayed Feed-
back,” Phys. Rev. Lett., vol.94, p.164102, 2005.

[30] O. V. Popovych and P. A. Tass, “Synchronization
control of interacting oscillatory ensembles by mixed
nonlinear delayed feedback,” Phys. Rev. E, vol.82,
p.026204, 2010.

[31] N. Baba, A. Amann, E. Schöll, and W. Just, “Gi-
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