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Abstract. Let G be a linear connected complex reductive Lie group. The purpose of
this paper is to construct a G-equivariant symplectomorphism in terms of local coordinates
from a holomorphic twisted cotangent bundle of the generalized flag variety of G onto the
semisimple coadjoint orbit of G. As an application, one can obtain an explicit embedding of a
noncompact real coadjoint orbit into the twisted cotangent bundle.

1. Introduction. The main purpose of this paper is to construct an equivariant sym-
plectomorphism from a holomorphic twisted cotangent bundle of the complex generalized
flag variety onto the complex coadjoint orbit of a semisimple element concretely in terms of
local coordinates. As an application, one can obtain an explicit embedding of a noncompact
real coadjoint orbit into the twisted cotangent bundle.

More precisely, let G denote a linear connected complex reductive Lie group with Lie
algebra g. We fix a Cartan subalgebra h of g, and consider a nonzero element λ of h∗, the dual
space of h. Under the assumption that the isotropy subalgebra of λ in g is distinct from g, we
take a parabolic subgroup Q of G whose Levi factor is the isotropy subgroup of λ in G, and
let {Uσ }σ∈W/Wλ be the open covering of the flag variety G/Q indexed by W/Wλ (see (2.10)
below for details). Then, based on the key observation that cotangent vectors can be written
in terms of 1-form taking values in a subalgebra of g (Lemma 2.3 below), we construct a
holomorphic isomorphism μλ;σ from the cotangent bundle T ∗Uσ into the complex coadjoint
orbit Ωλ := G · λ for each σ . Note that Uσ is homeomorphic to Cn and that T ∗Uσ is trivial,
i.e., T ∗Uσ � Uσ × Cn with n = dim(G/Q) for each σ . We shall see that the isomorphisms
{μλ;σ }σ∈W/Wλ are closely related to the triangular decomposition of G (or rather, of g).

A prototype of the isomorphismμλ;σ was obtained in the process of proving the formula
for the generating function of the principal symbols of the invariant differential operators that
play an essential role in the Capelli identities in the case of Hermitian symmetric spaces (see
[5] and [3]). Namely, let (GR,KR) be a classical Hermitian symmetric pair of noncompact
type such that GR is a real form of G, and assume that λ is proportional to the fundamen-
tal weight corresponding to the unique noncompact simple root. Then the symbols of the
differential operators πλ(X), X ∈ g, naturally constitute a holomorphic isomorphism from
T ∗(GR/KR) into g � g∗, where πλ denotes the representation of the complex Lie algebra
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g induced from that of GR , the so-called holomorphic discrete series representation. Note
that the Hermitian symmetric case corresponds to the case where the flag variety G/Q is
Grassmannian.

Furthermore, the isomorphisms {μλ;σ } acquire equivariance under G if we let G act
on T ∗Uσ by affine transformation instead of the canonical linear one. Since each coset of
W/Wλ is represented by an element σ̇ ∈ G, we can glue together the trivial bundles {T ∗Uσ }σ
by transition functions induced from the affine action of G to form a holomorphic twisted
cotangent bundle which we denote by T ∗(G/Q)λ in this paper. Since the twisted cotangent
bundle is locally isomorphic to the (standard) holomorphic cotangent bundle T ∗(G/Q) by
its construction, we can define local isomorphisms from T ∗(G/Q)λ|Uσ into Ωλ by the same
formulae as {μλ;σ }, which satisfy the compatibility condition

μλ;σ |�−1(Uσ∩Uτ ) = μλ;τ |�−1(Uσ∩Uτ )

for σ and τ ∈ W/Wλ, where� : T ∗(G/Q)λ → G/Q is the projection. By patching together
the maps {μλ;σ }σ , we obtain an holomorphic isomorphism μλ from the holomorphic twisted
cotangent bundle onto the complex coadjoint orbit.

We remark that when λ → 0 the transition functions of the twisted cotangent bundle
T ∗(G/Q)λ, which are affine transformations of the fibers as mentioned above, reduces to the
canonical transition functions of the cotangent bundle T ∗(G/Q), which are linear transfor-
mations of the fibers, and that the map μλ reduces to the moment map from T ∗(G/Q) into
g∗. In this sense, the isomorphism μλ can be regarded as a twisted moment map (see [8] and
[9]).

It is well known that the coadjoint orbit possesses a canonical symplectic form called the
Kostant-Kirillov-Souriau form, and it is shown that our twisted cotangent bundle possesses a
(holomorphic) symplectic form expressed locally by the same formula as that of the canonical
holomorphic symplectic form on the holomorphic cotangent bundle, which will be denoted
by ω below. The isomorphism μλ preserves the symplectic forms. Thus, the holomorphic
map μλ gives a G-equivariant symplectomorphism from the holomorphic twisted cotangent
bundle of the complex generalized flag variety onto the complex coadjoint orbit. Furthermore,
it provides a moment map on the symplecticG-manifold (T ∗(G/Q)λ, ω).

The rest of this paper is organized as follows. In Section 2, we first review the Hermitian
symmetric case by a basic example, then construct holomorphic local isomorphisms μλ;σ
from cotangent bundle T ∗Uσ into the coadjoint orbit for σ ∈ W/Wλ. In Section 3, we define
an action of G on the cotangent bundle by affine transformation, and show that μλ;σ is G-
equivariant. Replacing the canonical transition functions by the ones induced from the affine
action of G, we construct the holomorphic twisted cotangent bundle mentioned above, and
show that the maps {μλ;σ }σ provides the isomorphism μλ from the twisted cotangent bundle
onto the complex coadjoint orbit. Finally, we prove that the isomorphism μλ is symplectic.
As an application, we give an explicit embeddings of coadjoint GR-orbits into the twisted
cotangent bundles when (GR,KR) is a classical Hermitian symmetric space of noncompact
type.
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2. Twisted moment map. Throughout, letG be a linear connected complex reductive
Lie group with Lie algebra g. We fix a Cartan subalgebra h of g and denote the dual space of
h by h∗. Let g = h ⊕⊕α∈Δ gα be the root space decomposition with Δ a root system of g
with respect to h. Choosing a positive root system Δ+ ⊂ Δ, we set b := h ⊕⊕α∈Δ+ g−α .
We take a nonzero root vector Eα from gα for each α ∈ Δ.

2.1. Hermitian symmetric space. In this subsection, let (GR,KR) denote a Hermit-
ian symmetric pair of noncompact type. LetG andK be the complexifications ofGR andKR

respectively, and Q be a maximal parabolic subgroup of G whose Levi factor is K . Let k and
q denote the Lie algebras of K and Q respectively. We assume that h ⊂ k. Denoting by u−
the nilradical of q and by u its opposite, we put U := expu and U− := expu−.

Consider a holomorphic character λ : Q→ C× whose differential is pure-imaginary on
h∩kR and is proportional to the fundamental weight corresponding to the unique noncompact
simple root on h, where kR denotes the Lie algebra of KR . Let us denote by Cλ the one-
dimensional representation (λ,C) of Q. Then one can construct an irreducible unitary repre-
sentation (πλ,Hλ) ofGR , the so-called holomorphic discrete series representation, by Borel-
Weil theory as follows. Let Lλ be the pull-back by the open embedding GR/KR ↪→ G/Q

of the holomorphic line bundleG×Q Cλ associated to the principal bundleG→ G/Q. The
Hilbert space Hλ consists of square-integrable holomorphic sections for Lλ, which we iden-
tify with the space of holomorphic functions f on the open subset GRQ ⊂ G that satisfy the
following conditions

f (xq) = λ(q)−1f (x) (x ∈ GRQ,q ∈ Q) and
∫
GR

|f (g)|2 dg <∞ ,

where dg denotes the Haar measure onGR . If λ satisfies certain conditions, Hλ is non trivial.
Now the irreducible unitary representation πλ of GR is defined by

πλ(g)f (x) := f (g−1x) for f ∈ Hλ .

This induces a complex linear representation of g, which we also denote by πλ (see [6] for
details).

Take a basis {Xi} for g, and its dual basis {X∨i }, i.e., the basis for g satisfying that

B(Xi,X
∨
j ) = δij ,

whereB is a nondegenerate invariant symmetric bilinear form on g. ForX ∈ g given, denoting
by σλ(X)(x, v∗) the symbol of the differential operator πλ(X) at x ∈ GR/KR with cotangent
vector v∗ ∈ T ∗x (GR/KR), we define

μλ;0(x, v∗) :=
∑
i

σλ(Xi)(x, v
∗)⊗X∨i .

Note that μλ;0 is independent of the basis {Xi} chosen.
Recall from [7], for example, that for a Lie groupA and an A-manifoldM , the cotangent

bundle T ∗M is a symplectic A-manifold in the canonical way. Namely, the Lie group A acts
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on T ∗M by

(2.1) g.(x, v∗) = (g.x, (g−1)∗v∗)

for x ∈ M and v∗ ∈ T ∗x M , where (g−1)∗ denotes the transpose map of the differential
(g−1)∗ : Tg .xM → TxM induced from the translation by g−1 on the base manifoldM .

Then, for X ∈ a := Lie (A), the moment map on the cotangent bundle μ : T ∗M → a∗
is given by

(2.2) 〈μ(x, v∗),X〉 = v∗(XM(x)) (x ∈ M,v∗ ∈ T ∗x M) ,
where a∗ denotes the dual of a, 〈·, ·〉 the canonical pairing between a∗ and a, and XM the
vector field on M generated by X:

(2.3) XM(x) ϕ = d

dt

∣∣∣∣
t=0

ϕ(exp(−tX).x)

for functions ϕ defined around x ∈ M .
It follows from (2.2) and (2.3) that the principal part of μλ;0 is identical to the moment

map μ : T ∗(GR/KR)→ g∗ composed by the isomorphism g∗ � g via the bilinear form B,
which we also denote by μ. Here T ∗(GR/KR) denotes the holomorphic cotangent bundle of
the Hermitian symmetric space GR/KR .

We showed in [3] that if (GR,KR) is classical, then the total symbolμλ;0 can be regarded
as a variant of the twisted moment map μ̃λ : T ∗(GR/KR)→ g∗ � g due to Rossmann (see
[8], or §7 of [9]). In fact, the difference μ̃λ − μ, which is denoted by λx with x ∈ G/Q
therein, can be expressed as μ̃λ − μ = Ad(g)λ∨, or

μ̃λ(x, v
∗) = Ad(g)λ∨ + μ(x, v∗) ,

where λ∨ ∈ g corresponds to λ ∈ g∗ under the isomorphism g∗ � g via the bilinear form B,
and g is an element of a compact real form Gu of G such that x = g.eQ with eQ the origin
of G/Q. Now, if x is in the open subset GR/KR ⊂ G/Q, one can choose a unique element
ux from a certain open subset of U so that x = ux.eQ, instead of g from Gu. Then, one can
immediately verify that

μλ;0(x, v∗) = Ad(ux)λ∨ + μ(x, v∗) .
Moreover, the following relation holds:

(2.4)
Ad(u−1

x )μλ;0(x, v∗) = μλ;0(eQ, u∗x v∗)
= μλ;0(u−1

x .(x, v
∗)) .

EXAMPLE 2.1. Let (GR,KR) = (SU(p, q),S(U(p) × U(q))) (p � q), where we
realize SU(p, q) as

SU(p, q) = {g ∈ SLp+q (C); tḡIp,qg = Ip,q}
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with Ip,q =
[ 1p
−1q

]
. Then we take K,Q to be given by

K = {[ a 0
0 d

] ∈ SLp+q(C); a ∈ GLp(C), d ∈ GLq(C)
}
,

Q = {[ a 0
c d

] ∈ SLp+q(C); a ∈ GLp(C), d ∈ GLq(C), c ∈ Matq,p(C)
}
,

respectively. We can assume that the holomorphic character λ : Q→ C× in this case is given
by

(2.5) λ
( [
a 0
c d

] )
= (det d)−s

for some integer s.
Note that GR/KR is isomorphic to the bounded symmetric domain given by{

z = (zij ) ∈ Matp,q(C); 1q − tz̄z is positive definite
}
.

Therefore, we can take holomorphic coordinates (zij , ξij )i=1,...,p;j=1,...,q around an arbitrary
point (x, v∗) on the whole T ∗(GR/KR) such that

v∗ =
∑
i,j

ξij dzij .

Using the fact that u is abelian, it is easy to show that the right-hand side of (2.4) equals

(2.6)

[
q
p+q s1p 0

−ξ − p
p+q s1q

]

(Theorem 4.9, [3]), where we denote the complex q × p-matrix t(ξij ) by ξ . Thus, if s �= 0
and if we put

(2.7) w := −s−1ξ and u−w :=
[

1p 0
w 1q

]
,

then it is immediate to show that (2.6) is equal to Ad(u−w)λ∨. Hence

μλ;0(x, v∗) = Ad(ux)Ad(u−w)λ∨ .

This yields an injective holomorphic map μλ;0 : T ∗(GR/KR)→ g, which is a prototype of
our main object.

Observe that there is no need to restrict the domain of μλ;0 to T ∗(GR/KR). Indeed, it
naturally extends to the holomorphic cotangent bundle of the open subset UQ/Q ⊂ G/Q if
we do not take the real formGR into account. Furthermore, we can take an arbitrary λ ∈ h∗;
we shall carry out this extended case in the next subsection.

2.2. Generalized flag variety. Let G be a linear connected complex reductive Lie
group with Lie algebra g, as above. Consider a nonzero λ ∈ h∗, which is not necessarily the
same as in the previous subsection. Put

l := g(λ) = {X ∈ g; ad∗(X)λ = 0} ;
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we assume that l is distinct from g throughout. Let q be a parabolic subalgebra of g containing
b whose Levi part is l. We assume that q is not necessarily maximal. Let u− be the nilradical
of q, and u the opposite of u−. Our assumption on q implies that the subalgebras u− and u

need not be abelian. At any rate, we have the following decompositions:

(2.8) q = l⊕ u− , and g = u⊕ l⊕ u− .

Denote by Δ(u) the subset of Δ+ such that u =⊕α∈Δ(u) gα and u− =⊕α∈Δ(u) g−α .
Let L := G(λ) = {g ∈ G;Ad∗(g)λ = λ}, the isotropy subgroup of λ inG. Denoting the

analytic subgroup of u− (resp. u) by U− (resp. U ), let us introduce holomorphic coordinates
z = (zα)α∈Δ(u) on U and w = (wα)α∈Δ(u) on U− by parametrizing elements u ∈ U and
u− ∈ U− as

(2.9) u = exp
∑

α∈Δ(u)
zαEα and u− = exp

∑
α∈Δ(u)

wαE−α ,

which we denote by uz and u−w respectively.
Put Q = LU− = U−L, the parabolic subgroup of G whose Lie algebra is q. Note that

L is connected sinceG is connected. Let T ∗(G/Q) denote the holomorphic cotangent bundle
of the flag varietyG/Q and

p : G→ G/Q ,

π : T ∗(G/Q)→ G/Q ,

the canonical projections. Fixing a representative σ̇ ∈ G of each σ ∈ W/Wλ once and for all,
let us identify σ with σ̇ , where Wλ denotes the isotropy subgroup of λ in the Weyl group W .
Take the open covering {Uσ } of G/Q:

(2.10) G/Q =
⋃

σ∈W/Wλ
Uσ with Uσ := σUQ/Q .

Since any element x of Uσ is expressed as

(2.11) x = σu.eQ
for a unique u ∈ U , one can introduce holomorphic local coordinates zσ = (zσ α)α∈Δ(u) on
Uσ by

(2.12) u = exp
∑

α∈Δ(u)
zσ
αEα ,

which we denote by uzσ following the notation (2.9). Since every cotangent vector v∗ ∈
T ∗x (G/Q) is written as

v∗ =
∑

α∈Δ(u)
ξσα dzσ α ,

it provides holomorphic coordinates (zσ , ξσ ) on π−1(Uσ ) with ξσ = (ξσα)α∈Δ(u). In other
words, one obtains a local triviality

(2.13) φσ : π−1(Uσ )
∼−→ Uσ × Cn , (x, v∗) �→ (zσ , ξσ ) ,
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with n = #Δ(u) = dim(G/Q) for each σ ∈ W/Wλ . In the sequel, however, if (ze, ξe) is in
π−1(Ue) i.e., if σ happens to equal the identity element e, we suppress the subscripts and just
write (z, ξ) for brevity.

REMARK 2.2. For σ ∈ W/Wλ given, we have a unique decomposition p−1(Uσ ) =
σUQ = σUU−L. Namely, any g ∈ p−1(Uσ ) uniquely factorizes into a product

(2.14) g = σuu−t (u ∈ U, u− ∈ U−, t ∈ L) ,
which plays a role throughout the paper, as we shall see.

Now, let us fix an element σ ∈ W/Wλ, and discuss inside the product bundle T ∗Uσ =
π−1(Uσ ) until the end of this section.

LEMMA 2.3. For (zσ , ξσ ) ∈ T ∗Uσ given, there correspond unique uzσ ∈ U and
u−wσ ∈ U− such that

(2.15) zσ = σuzσ .eQ and ξσ = −〈Ad∗(u−wσ )λ, uzσ
−1 duzσ 〉 ,

where we identify1 ξσ = (ξσα)α∈Δ(u) with
∑
α∈Δ(u) ξσα dzσ α , which we abbreviate ξσ dzσ .

PROOF. It is trivial that such uzσ ∈ U uniquely exists. If we identify g∗ with g via the
nondegenerate invariant symmetric bilinear form B on g, the second formula of (2.15) can be
rewritten as

B(Ad(u−wσ )λ
∨, uzσ−1 duzσ ) = −ξσ ,

where λ∨ ∈ h corresponds to λ ∈ h∗ under the identification.
Now, since u−1

zσ
duzσ is a 1-form taking values in u, the nondegeneracy ofB|u−×u implies

that there exists a unique Y ∈ u− satisfying

B(Y, uzσ
−1 duzσ ) = −ξσ .

Thus it suffices to show that there exists a unique u−wσ ∈ U− such that

(2.16) Ad(u−wσ )λ
∨ = λ∨ + Y

since Ad(u−wσ )λ
∨ is in l⊕ u− with its l-component equal to λ∨. Parametrizing u−wσ as

(2.17) u−wσ = exp
∑

α∈Δ(u)
wσα E−α ,

one can determine the coefficients wσα inductively from (2.16) with respect to the height of
α. This completes the proof. �

EXAMPLE 2.4. Let us consider the case whereG = GL3(C) and λ =∑3
i=1 λiεi ∈ h∗

is regular semisimple, i.e., it satisfies λi �= λj if i �= j . Then l = g(λ) is equal to h, the Cartan
subalgebra consisting of all diagonal matrices in g = gl3(C), q the Borel subalgebra b of all
lower triangular matrices in g, and u− (resp. u) the nilpotent subalgebra of all strictly lower
(resp. upper) matrices in g.

1We shall sometimes use this convention throughout the paper.
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We restrict ourselves to the case where σ = e since the other cases are similar. For
(z, ξ) ∈ T ∗Ue with z = (zi,j )1�i<j�3 and ξ dz =∑1�i<j�3 ξi,j dzi,j , if one writes

uz =
⎡
⎢⎣

1 z1,2 z1,3 + 1
2z

1,2z2,3

1 z2,3

1

⎤
⎥⎦ , u−w =

⎡
⎣ 1

w1,2 1
w1,3 + 1

2w1,2w2,3 w2,3 1

⎤
⎦

as in (2.12) and (2.17), the second formula of (2.15) is equivalent to

λ1,2w1,2 + 1

2
z2,3
(
λ1,3w1,3 + 1

2
(λ1,2 − λ2,3)w1,2w2,3

)
= −ξ1,2 ,

λ2,3w2,3 − 1

2
z1,2
(
λ1,3w1,3 + 1

2
(λ1,2 − λ2,3)w1,2w2,3

)
= −ξ2,3 ,

λ1,3w1,3 + 1

2
(λ1,2 − λ2,3)w1,2w2,3 = −ξ1,3 ,

from which it immediately follows that

w1,2 = 1

λ1,2

(
−ξ1,2 + 1

2
ξ1,3z

2,3
)
,

w2,3 = 1

λ2,3

(
−ξ2,3 − 1

2
ξ1,3z

1,2
)
,

w1,3 = 1

λ1,3

(
−ξ1,3 − 1

2

λ1,2 − λ2,3

λ1,2λ2,3

(
−ξ1,2 + 1

2
ξ1,3z

2,3
)(
−ξ2,3 − 1

2
ξ1,3z

1,2
))

,

where we put λi,j := λi − λj for i �= j .
We remark that one can verify that the relation (2.4) holds if one constructs an irreducible

representation of GL3(C) that is induced from the character λ : Q → C× by Borel-Weil
theory as in the previous subsection.

Put Ωλ := G · λ = {Ad∗(g)λ ∈ g∗; g ∈ G}, the coadjoint orbit of λ under the com-
plex Lie group G. It is canonically isomorphic to G/L, and we denote by pλ the canonical
surjection

pλ : G→ Ωλ , g �→ Ad∗(g)λ .

DEFINITION 2.5. By Lemma 2.3 above, one can define a holomorphic map

(2.18) μλ;σ : T ∗Uσ → Ωλ by μλ;σ (zσ , ξσ ) := Ad∗(σuzσ u−wσ )λ ,

where uzσ ∈ U and u−wσ ∈ U− are the unique elements corresponding to (zσ , ξσ ) ∈ T ∗Uσ
determined by the relation (2.15). Note in particular that μλ;σ is injective.

REMARK 2.6. If g ∈ G satisfies that

μλ;σ (zσ , ξσ ) = Ad∗(g)λ
for (zσ , ξσ ) ∈ T ∗Uσ , then there exists an element t ∈ L such that g = σuzσ u

−
wσ
t . The

correspondence (zσ , ξσ ) �→ g = σuzσ u
−
wσ
t can be regarded as a section for the fibration

p−1(Uσ )→ T ∗Uσ :
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p−1(Uσ )

pλ

��
T ∗Uσ μλ;σ

∼ ��

g

��

μλ;σ (T ∗Uσ ) .

Now, let us define a g-valued 1-form θ on G by

(2.19) θg := g−1 dg (g ∈ G) .
By abuse of notation, we use the same symbol θg to denote the pull-back of the 1-form given
in (2.19) by the local section g : T ∗Uσ → p−1(Uσ ). Then the second formula of (2.15) can
be written as

(2.20)
ξσ = −〈λ, θσa〉
= −〈λ, θa〉 ,

where we set a := uzσ u−wσ for brevity. In fact, since

(σa)−1 d(σa) = a−1 da = Ad(u−wσ )
−1(uzσ

−1 duzσ )+ u−wσ
−1

du−wσ ,
the relation (2.20) follows from the fact that the second term is a 1-form taking values in u−.

3. G-equivariance.
3.1. Local G-action. First let us consider such elements g ∈ G that map Ue onto

itself.

DEFINITION 3.1. For (z, ξ) ∈ T ∗Ue, let uz ∈ U and u−w ∈ U− be the unique elements
determined by (2.15). If g ∈ G satisfies that g.z ∈ Ue, or equivalently, that guz ∈ p−1(Ue),
then by Remark 2.2, one can write

guz = ug .zu−g;ztg;z with ug .z ∈ U, u−g;z ∈ U−, tg;z ∈ L ,
from which it follows that

(3.1)
guzu

−
w = ug .zu−g;ztg;z · u−w
= ug .z · u−g;z(tg;zu−wt−1

g;z) · tg;z .
In particular, we see that guzu−w lies inUU−L, and that itsU - andL-components are identical
to those of guz respectively since tg;zu−wt−1

g;z is in the subgroupU−.
In view of (2.15) and (3.1), it is natural to define a cotangent vector ψλ;e(g)ξ by

(3.2) ψλ;e(g)ξ = −〈Ad∗(u−g;z;w)λ, u
−1
g .z dug .z〉 ,

where we set u−g;z;w := u−g;z(tg;zu−wt−1
g;z) for brevity. If we put a := uzu−w , then, as we noted

in Remark 2.6, the right-hand side of (3.2) can be written as

(3.3)
ψλ;e(g)ξ = −〈λ, θgat−1

g;z
〉

= −〈λ, θga〉 + 〈λ, dtg;zt−1
g;z〉
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(3.4) = (g−1)∗ξ + 〈λ, dtg;zt−1
g;z〉

since θga = (g−1)∗θa , where (g−1)∗ denotes the transpose map of the differential (g−1)∗ :
Tg .zUe → TzUe induced from the translation by g−1 ∈ G on Ue. In particular, if g is an
element of U , then ψλ;e(g) is identical to the canonical action (2.1) on T ∗Ue, because the
second term of (3.4) vanishes since tg;z = e for all z.

Note that (3.2) implies ψλ;e(g)ξ belongs to T ∗g .z(G/Q) since the decomposition (3.1) is
holomorphic, and that (3.4) reduces to the canonical G-action on the cotangent bundle given
by (2.1) when λ→ 0. Furthermore, it follows that the second term in (3.4) is an exact 1-form
since tg;z is an element of G(λ).

PROPOSITION 3.2. Let (z, ξ) ∈ T ∗Ue. For g, h ∈ G such that both h.z and gh.z are
in Ue, we have

(3.5) ψλ;e(g)(ψλ;e(h)ξ) = ψλ;e(gh)ξ .
PROOF. We use (3.3) to prove the proposition. Let uz ∈ U and u−w ∈ U− be the unique

elements determined by (2.15) and let a = uzu−w . Since both huz and guh.z are in p−1(Ue)

by assumption, they decompose as

(3.6) huz = uh.zu−h;zth;z ∈ UU−L ,

(3.7) guh.z = ugh.zu−g;hztg;hz ∈ UU−L .
Then, we see that

(3.8)

g(huz) = g(uh.zu
−
h;zth;z)

= ugh.zu−g;h.ztg;h.z · u−h;zth;z
= ugh.z · u−g;h.z(tg;h.zu−h;zt−1

g;h.z) · tg;h.zth;z .
Namely, the L-component of g(huz) equals tg;h.zth;z.

Now, it follows from (3.6) and (3.7) that

ψλ;e(g)(ψλ;e(h)ξ) = ψλ;e(g)(ψλ;e(h)〈−λ, θa〉)
= ψλ;e(g)〈−λ, θhat−1

h;z
〉

= 〈−λ, θghat−1
h;zt
−1
g;h.z
〉 .

On the other hand, it follows from (3.8) that

ψλ;e(gh)ξ = 〈−λ, θ(gh)a(tg;h.zth,z)−1〉
= 〈−λ, θghat−1

h;zt
−1
g;h.z
〉 .

This completes the proof. �

For (z, ξ) ∈ T ∗Ue and g ∈ G such that g.z ∈ Ue, we define

(3.9) Ψλ;e(g) : T ∗Ue → T ∗Ue by Ψλ;e(g)(z, ξ) := (g.z, ψλ;e(g)ξ) .
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Note thatΨλ;e(g)|T ∗z (G/Q)=ψλ;e(g) is a bi-holomorphic map from T ∗z (G/Q) onto T ∗g .z(G/Q)
for all z ∈ Ue.

PROPOSITION 3.3. For (z, ξ) ∈ T ∗Ue and g ∈ G such that g.z ∈ Ue, we have

(3.10) μλ;e(Ψλ;e(g)(z, ξ)) = Ad∗(g)μλ;e(z, ξ) .

PROOF. This is equivalent to the definition of ψλ;e(g), with g ∈ G, as we shall see
soon. In fact, the elements of U and U− corresponding to ψλ;e(g)ξ by μλ;e are ug .z and
u−g;z;w respectively in the notation of Definition 3.1. Therefore, the left-hand side of (3.10)
equals

Ad∗(ug .zu−g;z;w)λ = Ad∗(guzu−w)λ = Ad∗(g)Ad∗(uzu−w)λ
= Ad∗(g)μλ;e(z, ξ)

by (3.1) and (2.18). �

EXAMPLE 3.4 (Example 2.1 continued). Let G = SLp+q(C),Q and λ be as in Ex-
ample 2.1. Then, for (z, ξ) ∈ T ∗Ue, let g = [ a bc d

]
be an element of G such that g.z ∈ Ue. If

one writes
[

1 ẑ
0 1

] := ug .z, [ 1 0
ŵ 1

] := u−g;z;w and
[
â 0
0 d̂

]
:= tg;z in the decomposition (3.1), an

elementary matrix calculation shows that

ẑ = (az+ b)(cz+ d)−1 = g.z ,

ŵ = (c + (cz+ d)w)(a − (az+ b)(cz+ d)−1c
)−1

,

â = a − (az+ b)(cz+ d)−1c ,

d̂ = cz+ d .
In particular, one sees

dẑ = d
(
(az+ b)(cz+ d)−1)

= (a − (az+ b)(cz+ d)−1c
)

dz(cz+ d)−1 .

Using the relation (2.15), i.e., ξ̂ = −s ŵ, one has

ξ̂ dẑ = (cz+ d)ξ dz(cz+ d)−1 − sc dz(cz+ d)−1 .

Taking the trace of the both sides, one obtains (3.4) in this case; in particular, the second term
of (3.4) is given by

〈λ, dtg;zt−1
g;z〉 = −s tr

(
c dz(cz+ d)−1)

= −s d log det(cz+ d) ,
and hence (3.5) corresponds to the cocycle condition of the automorphy factor.

3.2. Global construction. Recall that the flag variety G/Q has the open covering
{Uσ }σ∈W/Wλ , and that each π−1(Uσ ) is bi-holomorphic to Uσ × Cn with n = dim(G/Q). If
a point x ∈ G/Q is in Uσ ∩ Uτ , then it can be written

x = σuzσ .eQ = τuzτ .eQ .
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Therefore, if we take into account (2.15), (2.20) and Proposition 3.3, it is natural from the
group-theoretic point of view to glue together the product bundles {π−1(Uσ )}, using the tran-
sition functions given by {ψλ;e(τ−1σ)}, as follows.

For two points in the disjoint union
⊔
σ∈W/Wλ(Uσ × Cn), say, (zσ , ξσ ) ∈ Uσ × Cn and

(zτ , ξτ ) ∈ Uτ × Cn for some σ and τ ∈ W/Wλ, then (zτ , ξτ ) is defined to be equivalent to
(zσ , ξσ ) if and only if

(3.11) τuzτ .eQ = σuzσ .eQ and ξτ = ψλ;e(τ−1σ)ξσ ;
we write (zτ , ξτ ) ∼ (zσ , ξσ ) in this case. Then we define our twisted cotangent bundle to be
the quotient space by this equivalence relation:

(3.12) T ∗(G/Q)λ :=
⊔

σ∈W/Wλ
(Uσ × Cn) / ∼ .

We denote by [zσ , ξσ ] the equivalence class of (zσ , ξσ ) ∈ Uσ × Cn and by � the projection

T ∗(G/Q)λ → G/Q, [zσ , ξσ ] �→ σuzσ .eQ .

Our twisted cotangent bundle T ∗(G/Q)λ is the affine bundle associated to the holomorphic
cotangent bundle T ∗(G/Q). Namely, it is identical set-theoretically to the cotangent bundle

T ∗(G/Q)λ =
⋃

x∈G/Q
T ∗x (G/Q) ,

and its local triviality on �−1(Uσ ) is given by

�−1(Uσ ) � Uσ × Cn, [zσ , ξσ ] �→ (zσ , ξσ )

for each σ ; however, each fiber of T ∗(G/Q)λ is considered to be an affine space and its
transition functions are affine transformations {ψλ;e(τ−1σ)}σ,τ given in (3.11). Note that the
transition functions of our twisted cotangent bundle reduce to those of the cotangent bundle
when λ→ 0.

REMARK 3.5. Since the second term of (3.4) is exact, one obtains that d(ξσ dzσ ) =
d(ξτ dzτ ) on �−1(Uσ ∩ Uτ ). Therefore, our twisted cotangent bundle possesses a holomor-
phic symplectic form that is locally identical to the canonical one on the cotangent bundle
T ∗(G/Q), which we shall denote by ω.

DEFINITION 3.6. For given g ∈ G and [zσ , ξσ ] ∈ �−1(Uσ ) ⊂ T ∗(G/Q)λ, take any
τ ∈ W/Wλ such that g.zσ ∈ Uτ . Suppose that ξσ is written as ξσ = 〈−λ, θuzσ u−wσ 〉 with uzσ
and u−wσ being the unique elements of U and U− determined by (2.20). Then we define a
cotangent vector ψλ(g)ξσ ∈ T ∗g .zσ (G/Q) by

(3.13) ψλ(g)ξσ := ψλ;e(τ−1gσ)〈−λ, θuzσ u−wσ 〉
and a holomorphic map Ψλ(g) from T ∗(G/Q)λ to itself by

(3.14) Ψλ(g)[zσ , ξσ ] := [g.zσ , ψλ(g)ξσ ] .
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LEMMA 3.7. The map Ψλ is well defined, i.e., is independent of the choices of σ and
τ in (3.13) above. Furthermore, we have

(3.15) Ψλ(g)Ψλ(h) = Ψλ(gh)
for all g, h ∈ G. Namely, G acts on the twisted cotangent bundle T ∗(G/Q)λ through Ψλ.

PROOF. Suppose that [zσ , ξσ ] = [zσ̂ , ξσ̂ ] and take another τ̂ such that g.zσ̂ ∈ Uτ̂ .
Then, by definition, one has

ξσ̂ = ψλ;e(σ̂−1σ)ξσ .

It suffices to show that

ψλ;e(τ̂−1g σ̂ )ξσ̂ = ψλ;e(τ̂−1τ )ψλ;e(τ−1gσ)ξσ .

Now one sees
ψλ;e(τ̂−1g σ̂ )ξσ̂ = ψλ;e(τ̂−1g σ̂ )ψλ;e(σ̂−1σ)ξσ

= ψλ;e(τ̂−1gσ)ξσ

= ψλ;e(τ̂−1τ )ψλ;e(τ−1gσ)ξσ

by Proposition 3.2. The second assertion also follows from Proposition 3.2. �

Since �−1(Uσ ) = π−1(Uσ ), one can define μλ;σ : �−1(Uσ ) → Ωλ by the same
formula as (2.18) for each σ ∈ W/Wλ:

(3.16) μλ;σ : �−1(Uσ )→ Ωλ , [zσ , ξσ ] �→ Ad∗(σuzσ u−wσ )λ ,

where uzσ ∈ U and u−wσ ∈ U− are determined by (zσ , ξσ ) as in (2.15).

PROPOSITION 3.8. The local isomorphisms {μλ;σ }σ∈W/Wλ satisfy the compatibility
condition

(3.17) μλ;σ |�−1(Uσ∩Uτ ) = μλ;τ |�−1(Uσ∩Uτ ) (σ, τ ∈ W/Wλ) .

Thus we can define a globally defined bi-holomorphic map

(3.18) μλ : T ∗(G/Q)λ → Ωλ by μλ|�−1(Uσ )
:= μλ;σ .

Furthermore this map is G-equivariant, i.e., we have

(3.19) μλ ◦ Ψλ(g) = Ad∗(g) ◦ μλ
for all g ∈ G.

PROOF. Suppose that a point of �−1(Uσ ∩ Uτ ) is expressed in two ways:

[zσ , ξσ ] = [zτ , ξτ ] ∈ �−1(Uσ ∩ Uτ ) ,
where we regard [zσ , ξσ ] ∈ �−1(Uσ ) and [zτ , ξτ ] ∈ �−1(Uτ ). Let uzσ , uzτ ∈ U and
u−wσ , u

−
wτ
∈ U− satisfy

ξσ = 〈−λ, θuσ u−σ 〉 and ξτ = 〈−λ, θuτ u−τ 〉
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as in (2.20) (we shall abbreviate uσ := uzσ , u−σ := u−wσ etc. until the end of the proof). Then
by the definition of the equivalence relation (3.11), we have

σ−1τuτu
−
τ = uσu−σ t

for some t ∈ L = G(λ). Therefore, we see that

μλ;τ ([zτ , ξτ ]) = Ad∗(τuτu−τ )λ = Ad∗(σuσu−σ t)λ
= Ad∗(σuσu−σ )λ
= μλ;σ ([zσ , ξσ ]) .

Next, for g ∈ G and [zσ , ξσ ] ∈ �−1(Uσ ), take σ̂ ∈ W/Wλ satisfying g.zσ ∈ Uσ̂ . Since
σ̂−1gσuσ u

−
σ is in UU−L, it decomposes as

σ̂−1gσuσ u
−
σ = u1u

−
1 t1 with u1 ∈ U, u−1 ∈ U−, t1 ∈ L .

Then
ψλ(g)ξσ = ψλ;e(σ̂−1gσ)ξσ

= ψλ;e(σ̂−1gσ)〈−λ, θuσ u−σ 〉
= 〈−λ, θ

σ̂−1gσuσ u
−
σ t
−1
1
〉 .

Therefore, we see that

μλ(Ψλ(g)[zσ , ξσ ]) = μλ;σ̂ ([g.zσ , ψλ(g)ξσ ])
= Ad∗(σ̂ )Ad∗(σ̂−1gσuσ u

−
σ t
−1
1 )λ

= Ad∗(g)μλ([zσ , ξσ ]) .
This completes the proof. �

EXAMPLE 3.9. Let us consider the case where p = q = 1 in Example 2.1, i.e.,
G = SL2(C), Q =

{[
a 0
c a−1

] ∈ G}, the Borel subgroup of G, and

λ : Q→ C×,
[
a 0
c a−1

]
�→ as .

The flag varietyG/Q is identified with the complex projective line CP 1. Under this identifi-
cation, the open covering {Ue,Uσ } (with σ = [ 0 1−1 0

]
) is given by

Ue =
{
(z : 1) ∈ CP 1; z ∈ C

} � C, Uσ =
{
(1 : zσ ) ∈ CP 1; zσ ∈ C

} � C .

For [z, ξ ] ∈ �−1(Ue) and [zσ , ξσ ] ∈ �−1(Uσ ), let uz, uzσ ∈ U and u−w, u−wσ ∈ U− satisfy
ξ = −sw, ξσ = −swσ as in (2.15). If [zσ , ξσ ] = [z, ξ ], then one sees

(3.20) zσ = −1

z
, wσ = z2w + z

since ξσ = ψλ;e(σ−1)ξ = z2ξ − sz.
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Denoting the maps μλ;e and μλ;σ followed by the isomorphism g∗ � g via the trace
form by the same notations, one obtains

(3.21) μλ;e([z, ξ ]) = s

2

[
1+ 2zw −2z(1+ zw)

2w −(1+ 2zw)

]

and

μλ;σ ([zσ , ξσ ]) = s

2

[−(1+ 2zσwσ ) −2wσ
2zσ (1+ zσwσ ) 1+ 2zσwσ

]
,

which, under the relation (3.20), coincide with each other.

3.3. Symplectomorphism. We next prove that the map μλ : T ∗(G/Q)λ → Ωλ is
symplectic. Let ω and ωλ denote the canonicalG-invariant holomorphic symplectic forms on
T ∗(G/Q)λ andΩλ respectively. Recall that ω is defined by

(3.22) ω[zσ ,ξσ ] = − d(ξσ dzσ ) =
∑

α∈Δ(u)
dzσ α ∧ dξσα

if [zσ , ξσ ] ∈ �−1(Uσ ) ⊂ T ∗(G/Q)λ (cf. Remark 3.5), and that ωλ is defined by

(3.23) (ωλ)f (XΩλ, YΩλ) = −〈f, [X,Y ]〉 (f ∈ Ωλ;X,Y ∈ g) ,

where XΩλ, YΩλ are the vector fields on Ωλ generated by X,Y ∈ g respectively that are
defined by (2.3).

PROPOSITION 3.10. Let ω and ωλ be the canonical symplectic forms on T ∗(G/Q)λ
and Ωλ respectively. Then μλ preserves the symplectic forms:

(3.24) μ∗λωλ = ω .
PROOF. It suffices to show the equality (3.24) on the dense open subset �−1(Ue). For

[z, ξ ] ∈ �−1(Ue), we put g := uzu−w , where uz ∈ U and u−w ∈ U− are determined by (2.15).
Then it follows from (2.20) that

(3.25) ω = 〈λ, dθg 〉 = 〈−λ, θg ∧ θg 〉
since dθg = d(g−1 dg) = −g−1 dg ∧ g−1 dg = −θg ∧ θg . Thus, if we can show that

(ωλ)g .λ(XΩλ, YΩλ) = 〈−λ, (θg .λ ∧ θg .λ)(XΩλ, YΩλ)〉
for all X,Y ∈ g, then we are done. Here, we set g.λ = Ad∗(g)λ for brevity, and denote by
θg .λ the pull-back of the 1-form θ by the local section

g : Ωλ|μλ(�−1(Ue))
→ G, g.λ �→ g

with g = uzu−w .
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Now, for X ∈ g, we see that

XΩλ(g.λ) =
d

dt

∣∣∣∣
t=0

exp(−tX).(g.λ)

= d

dt

∣∣∣∣
t=0

g exp(−t Ad(g−1)X).λ

= g∗(Ad(g−1)X)Ωλ(λ) .

Hence we obtain that

θg .λ(XΩλ) = θg .λ(g∗(Ad(g−1)X)Ωλ) = (g∗θ)λ((Ad(g−1)X)Ωλ)

= θλ((Ad(g−1)X)Ωλ)

= −Ad(g−1)X

since g∗θ = θ and θλ(ZΩλ) = −Z for Z ∈ g. Therefore, we have

〈−λ, (θg .λ ∧ θg .λ)(XΩλ, YΩλ)〉 = 〈−λ, [θg .λ(XΩλ), θg .λ(YΩλ)]〉
= 〈−λ, [Ad(g−1)X,Ad(g−1)Y ]〉
= 〈−Ad∗(g)λ, [X,Y ]〉 ,

which equals (ωλ)g .λ(XΩλ, YΩλ) by definition. �

EXAMPLE 3.11. We let G = SL2(C),Q and λ ∈ g∗ be as in Example 3.9, and still
identify g∗ with g by the trace form. If we parametrize an element f ∈ Ωλ ⊂ g as f = [ a b

c −a
]

with a, b and c ∈ C, then it is easy to show that the canonical symplectic form ωλ on Ωλ is
given by

ωλ = 2

s2 (a db ∧ dc − b da ∧ dc + c da ∧ db) .

If f = Ad(g)λ∨ with g = uzu−wt ∈ p−1(Ue) = UU−L and if we write uz and u−w as

uz =
[

1 z

0 1

]
, u−w =

[
1 0
w 1

]
(z,w ∈ C) ,

then we find that

ωλ = −s dz ∧ dw = 〈−λ, θg ∧ θg 〉 .
Now, for [z, ξ ] ∈ �−1(Ue), if f = μλ([z, ξ ]) = Ad(uzu−w)λ∨, i.e., ξ and w are related

by ξ = −sw as in Lemma 2.3 or (2.7), then it is immediate to see that μλ preserves the
symplectic forms.

Summarizing the results, we have shown that the following theorem holds (cf. [1, 2]):

THEOREM 3.12. The holomorphic map μλ : T ∗(G/Q)λ → Ωλ given by (3.16) and
(3.18) is a G-equivariant symplectic isomorphism.

Furthermore, the map μλ provides a moment map T ∗(G/Q)λ → g∗ with respect to the
symplectic form ω. Namely, we have the following.
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COROLLARY 3.13. The action Ψλ ofG on the symplectic manifold (T ∗(G/Q)λ, ω) is
Hamiltonian with moment map μλ.

PROOF. Setting M := T ∗(G/Q)λ for brevity, we must show that

d〈μλ,X〉 = ιXMω
for X ∈ g with ι denoting the contraction. Since {YM ; Y ∈ g} spans the holomorphic tangent
space TαM , it suffices to show that

(3.26) d〈μλ(α),X〉(YM) =
(
ιXMω

)
α
(YM)

for X,Y ∈ g, where we simply denote a point in M = T ∗(G/Q)λ by α.
Now, since μλ is G-equivariant, one has

d〈μλ(α),X〉(YM )= d

dt

∣∣∣∣
t=0
〈μλ(Ψλ(exp(−tY ))α),X〉 = d

dt

∣∣∣∣
t=0
〈Ad∗(exp(−tY ))μλ(α),X〉

= d

dt

∣∣∣∣
t=0
〈μλ(α),Ad(exp tY )X〉 = 〈μλ(α), [Y,X]〉

=−〈μλ(α), [X,Y ]〉 .
On the other hand, since μλ is symplectic, the right-hand side of (3.26) equals

ωα(XM, YM) =
(
μ∗λωλ

)
α
(XM, YM) = (ωλ)μλ(α)(μλ∗XM,μλ∗YM) .

Here, using the G-equivariance of μλ again, one has

(μλ∗XM)(μλ(α)) =
d

dt

∣∣∣∣
t=0

μλ(Ψλ(exp(−tX))α) = d

dt

∣∣∣∣
t=0

Ad∗(exp(−tX))μλ(α)
= XΩλ(μλ(α)) ,

and hence

(ωλ)μλ(α)(μλ∗XM,μλ∗YM) = (ωλ)μλ(α)(XΩλ, YΩλ) .
This implies the equation (3.26) by the definition (3.23) of ωλ. �

As an application, one can obtain an explicit embedding ofGR-orbit of λ into the twisted
cotangent bundle, where GR is a noncompact real form of G and λ is as given in Subsection
2.1. Namely, let (GR,KR) be a classical Hermitian symmetric pair of noncompact type whose
complexifications are equal to G and L respectively, and λ : Q → C× the holomorphic
character whose differential, which we also denote by λ, is pure-imaginary on h ∩ kR and
is proportional to the fundamental weight corresponding to the unique noncompact simple
root on h. If λ satisfies the condition that we referred to [6] in §2.1, then the holomorphic
discrete series representation (πλ,Hλ) possesses a unique element (highest weight vector) ϕλ
satisfying

(3.27)

πλ(t)ϕλ = λ(t)ϕλ (t ∈ TR);
πλ(X)ϕλ = 0 (X ∈ u);
ϕλ(e) = 1 ,
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where TR denotes the torus corresponding to h ∩ kR . Note that 1/ϕλ naturally extends to a
holomorphic function defined on the dense open set p−1(Ue), which we still denote by the
same notation.

Let us define a real-analytic function fλ : Ue → R by

fλ(z) := 1

ϕλ(u
†
zuz)

,

where we write g† = τ (g)−1 for g ∈ G with τ the involution that characterizes the real form
GR in G. Note that fλ is positive on GR/KR .

PROPOSITION 3.14. If one denotes by Ω R
λ the coadjoint orbit of λ under GR , then

one finds that

(3.28) μλ :
{− d′ log fλ(z); z ∈ GR/KR

} ∼−→ Ω R
λ ,

where d′ denotes the holomorphic part of the exterior derivative d .

For the sake of completeness we provide the proof (cf. [4, Proposition 3.3]).

PROOF. An element g of GR decomposes as g = uzu−wt with uz ∈ U, u−w ∈ U− and
t ∈ L, since GR ⊂ UQ. It follows from g†g = e that

(3.29) (u−w)†u†
zuzu

−
w = (tt†)−1 .

Applying ϕλ to the both sides of (3.29), one finds

(3.30) ϕλ(u
†
zuz) = λ(tt†)

by (3.27). On the other hand, it follows from (3.29) that

d′(tt†)(tt†)−1 = −u−w−1 d′u−w − Ad(u−w)−1(u−1
z d′uz)− Ad(tt†)(d′u− †

w u− †
w

−1
)

since d′u†
z = 0. Therefore, one obtains

〈λ,d′(tt†)(tt†)−1〉=−〈λ, u−w−1d′u−w〉−〈λ,Ad(u−w)−1(u−1
z d′uz)〉−〈λ,Ad(tt†)(d′u− †

w u− †
w

−1
)〉

=−〈λ,Ad(u−w)−1(u−1
z d′uz)〉

since Ad∗(tt†)λ = λ, and u−w
−1 d′u−w and d′u− †

w u− †
w
−1

are u−- and u-valued 1-form respec-
tively. Now the proposition follows from the formulae 〈λ, d′(tt†)(tt†)−1〉 = d′ logλ(tt†) and
(3.30). �

If we denote by aR the canonical isomorphism from the real-analytic cotangent bundle
T ∗(Ue)R onto the holomorphic cotangent bundle T ∗Ue given in terms of coordinates by

dxα ←→ 1

2
dzα and dyα ←→ −

√−1

2
dzα

with zα = xα +√−1yα for each α ∈ Δ(u), then the equation (3.28) reads

μR
λ : {− d log fλ(z); z ∈ GR/KR} ∼−→ Ω R

λ ,



A TWISTED MOMENT MAP AND ITS EQUIVARIANCE 581

where we put μR
λ := μλ ◦ aR . Thus, this is our version of [10, Lemma 7.17], which plays a

prominent role in establishing the character formula therein.
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