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Abstract: With the development of technology and the rise of the meta-universe concept, the brain-
computer interface (BCI) has become a hotspot in the research field, and the BCI based on motor
imagery (MI) EEG has been widely concerned. However, in the process of MI-EEG decoding, the
performance of the decoding model needs to be improved. At present, most MI-EEG decoding
methods based on deep learning cannot make full use of the temporal and frequency features of
EEG data, which leads to a low accuracy of MI-EEG decoding. To address this issue, this paper
proposes a two-branch convolutional neural network (TBTF-CNN) that can simultaneously learn
the temporal and frequency features of EEG data. The structure of EEG data is reconstructed to
simplify the spatio-temporal convolution process of CNN, and continuous wavelet transform is used
to express the time-frequency features of EEG data. TBTF-CNN fuses the features learned from the
two branches and then inputs them into the classifier to decode the MI-EEG. The experimental results
on the BCI competition IV 2b dataset show that the proposed model achieves an average classification
accuracy of 81.3% and a kappa value of 0.63. Compared with other methods, TBTF-CNN achieves a
better performance in MI-EEG decoding. The proposed method can make full use of the temporal
and frequency features of EEG data and can improve the decoding accuracy of MI-EEG.

Keywords: electroencephalography (EEG); motor imagery (MI); temporal and frequency features;
convolutional neural network (CNN)

1. Introduction

The brain-computer interface (BCI) constructs an information interaction channel
between the human brain and the external environment, which is independent of normal
neural pathways and muscles. It can directly read and analyze the bioelectrical signals
generated by the brain and then convert the information into instructions to control external
devices [1,2]. In the biomedical field, the neuroimaging techniques for recording brain
neural activities mainly include depth electrodes, electrocorticography (EcoG), functional
magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and electroen-
cephalography (EEG) [3]. Compared with other neuroimaging techniques, EEG is easy
to obtain, and it has a low acquisition cost and high temporal resolution. As a result of
its advantages, EEG is favored in the application of BCI technology. According to the
acquisition methods of EEG signals, BCI can be divided into three types, namely invasive,
partially invasive, and non-invasive BCI [4]. Although invasive BCI can obtain high-quality
EEG signals, it requires the surgical placement of invasive devices in the brain. Therefore,
it has certain risks and safety issues and is often unacceptable to experimental subjects.
Non-invasive BCI can collect brain neural activities with the assistance of an EEG cap. It is
simple to operate and has a low risk. Compared with invasive BCI, non-invasive BCI has
obvious advantages [5,6].

The motor imagery (MI) paradigm is a psychological process that simulates motor
intention without producing real motor behaviors, and it activates neural potential in the
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primary sensory motor area of the brain. Compared with evoked EEG, MI can sponta-
neously induce the potential activity in different brain regions without external stimulation,
and it has high application value in the field of neural rehabilitation. A plethora of studies
have found that µ rhythm (8–13 Hz) and β rhythm (17–30 Hz) are closely related to human
motion perception in normal EEG signal bands. When subjects perform motor imagery ac-
tivities, such as imagining limb movement on one side, the µ rhythm and β rhythm energy
of the contralateral EEG rhythm decreases. When the subjects finish their motor imagery or
are in a resting state, the µ and β rhythm energy increases. This phenomenon of energy
change in a specific frequency band is referred to as event-related desynchronization (ERD)
and event-related synchronization (ERS) [7–9]. Based on this phenomenon, BCI can be used
as a medical rehabilitation approach for disabled users [10], and it has a positive impact on
the quality of life and external environment interaction of normal users. Besides, BCI also
provides new human–computer interaction modes, such as computer game control, music
generation and virtual reality. More and more BCIs can control complex devices [11,12],
including artificial limbs, mobile robots and mechanical arms.

Although the BCIs based on the motor imagery paradigm develop rapidly, there
are many limitations in their classification and recognition. Due to the defect of the non-
invasive acquisition method and the uncertainty of EEG traceability, EEG signals have a low
signal noise ratio (SNR) and low spatial resolution [13–15]. Meanwhile, EEG signals show
non-stationarity over time and physiological differences between different individuals,
which requires a time-consuming calibration process before BCIs can be used [16]. In view
of these limitations, different feature extraction methods and classification methods have
been studied for motor imagery task recognition. Using the spatial correlation of EEG
signals, spatial filtering can eliminate the noise of EEG signals and locate local cortical
neural activities. Common spatial pattern (CSP) is a widely used spatial feature extraction
method in motor imagery tasks [17,18], and it achieves good performance in much of the
research on motor imagery task recognition [19–21]. Researchers have proposed many
improved methods based on CSP to improve the accuracy of EEG decoding. Kim et al.
used CSP and linear discriminant analysis (LDA) to classify MI tasks [22]. Kai et al.
proposed the filter bank common spatial pattern (FBSCSP), which segments EEG signals
with multiple band-pass filters and spatial filters to calculate mutual information of CSP
features in different sub-frequency bands [23]. Thang et al. used four different machine
learning methods, including LDA, QDA, LSVM and RBFSVM, to verify the decoding
performance of MI-EEG [24]. Zhang et al. proposed a temporally constrained sparse group
spatial pattern (TSGSP), which optimizes the filtering frequency band and time window in
CSP [25].

In recent years, the EEG classification methods based on deep learning (DL) have
been widely used [26,27]. The convolution neural network (CNN) is one of the deep
learning models. In the field of computer vision, the lower-level convolution layers learn
the general feature representations of data, whereas the higher-level ones learn the specific
feature representations. Then, the parameters and weights of each layer are updated by the
backpropagation algorithm. Attributed to its end-to-end model structure and automatic
feature extraction capability, CNN can avoid the interference of redundant information
and improve the classification performance. In this way, the corresponding features can
be effectively learned from the data, and the complicated feature extraction process is
avoided. CNN has been applied to analyze EEG data. Yang et al. designed an end-to-
end CNN framework that uses one-dimensional convolution kernels with sizes of 1 ×m
and n × 1 to learn the temporal and spatial features from the original MI-EEG data [28].
Tabar et al. combined CNN with a stacked automatic encoder (SAE) to construct a new
depth network for EEG decoding. In this method, the convolution layer is used to extract
the time-frequency features obtained from short-time Fourier transform (STFT), and the
convolution kernel and network parameters are trained [29]. Zhang R et al. proposed a
hybrid deep learning framework that combines CNN and LSTM to simultaneously learn
the spatial and temporal characteristics of MI-EEG samples [30]. Hou et al. combined
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the EEG source imaging (ESI) method with the continuous wavelet transform to obtain
two-dimensional features with a high time-frequency resolution from the traceability signal
from the scout. Then, the obtained features are decoded by CNN [3]. Chen et al. proposed a
filter bank spatial filtering and spatio-temporal convolution neural network (FBSF-TSCNN)
for MI-EEG decoding, in which TSCNN blocks can learn spatio-temporal features from
the original MI-EEG [31]. Dai et al. proposed a hybrid convolution scale CNN model for
MI-EEG decoding that uses convolution kernels with different sizes to extract the temporal
and spatial features of EEG signals [32].

At present, most CNN-based MI-EEG decoding methods use a single input, such
as the original EEG signal, CSP feature and time-frequency graph. However, the CNN
with a single-branch input cannot make full use of the effective EEG information, which
reduces the performance of the decoding model. To address this issue, this paper proposes
a two-branch CNN model called TBTF-CNN, which takes EEG signals and time-frequency
graphs as input to utilize the temporal and frequency features of EEG. First, the original
EEG signal has high-resolution temporal information, and the identification features can
be extracted by spatio-temporal convolution. Then, the features extracted from EEG
signals through continuous wavelet transform (CWT) include time, frequency and spatial
information. Finally, CNN fuses the features of the two branches and inputs them into the
classifier. When updating the trainable parameters of the CNN network, only the features
related to MI tasks are concerned, and the classification accuracy is improved by combining
the features of EEG data with time-frequency data. The experimental results on the BCI
competition IV 2b dataset show that the proposed TBTF-CNN model achieves a good
performance, which proves the effectiveness of the architecture.

2. Methods
2.1. System Framework

The system framework is shown in Figure 1. In MI-EEG data, µ rhythm (8–13 Hz)
and β rhythm (17–30 Hz) show different energy changes in related electrodes under
different motor imagery states, with emphasis on C3, Cz and C4 electrodes. In the data
preprocessing stage, the MI-EEG signals of C3, Cz and C4 channels are selected, and the
raw data are filtered by a fifth-order Butterworth FIR bandpass filter to obtain the motor
imagery EEG signals of 8–13 Hz and 17–30 Hz. The time-frequency feature of each channel
is obtained by CWT. Then, the EEG signals of µ rhythm and β rhythm are spliced as input
features of a CNN branch. The feature expression form is N × T, where N represents
the number of channels, and T represents the number of sampling points. In the same
way, the time-frequency features of the two frequency bands are spliced according to the
corresponding relationship, and the feature expression form is a two-dimensional time-
frequency diagram. Subsequently, the time-frequency diagram is input into another CNN
branch as Supplementary Materials to the original EEG. The two branches of CNN extract
features from the input EEG signal and time-frequency graph, respectively. After the
process of convolution and pooling, the features output by the two branches are flattened
and input into the fusion layer. Finally, the fusion layer combines the features of the
two branches into a one-dimensional vector and inputs it into the classifier to obtain the
prediction results.
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Figure 1. The system framework, including data preprocessing, feature extraction, feature represen-
tation and classification model.

2.2. MI-EEG Feature Representation

The EEG decoding based on MI-EEG consists of three steps: data preprocessing, feature
extraction and classification. Among them, suitable feature extraction and reasonable
identification feature expression can improve the accuracy and efficiency of EEG decoding,
which is the premise of EEG analysis. The original MI-EEG data are usually in the form of a
two-dimensional matrix consisting of signal channels and sampling points, and each row of
the matrix represents the sampling data of each channel. This form of MI-EEG data contains
spatial and temporal features. When the subjects perform motor imagery tasks, ERD/ERS
phenomena can be observed at C3, Cz and C4 electrodes. Thus, the EEG signals of the three
channels are selected for left-hand and right-hand MI-EEG decoding in this study. As a
result of the different decoding methods, most studies directly filter the original signal with
a frequency of 8–30 Hz and use the EEG in this frequency band for subsequent decoding.
Inspired by the filter bank common spatial pattern (FBCSP) feature extraction method, this
study divides the original signal into frequency bands of 8–13 Hz and 17–30 Hz to learn the
identification features from the decoding model. As shown in Figure 2, the EEG data of the
two sub-bands are combined into a 6 × T 2D matrix sequentially. The first three channels
are MI signals with µ rhythm in C3, Cz and C4, and the last three channels correspond to
the signals with β rhythm.

In this study, CWT was employed to transform the EEG data in each channel into a
two-dimensional time-frequency energy map. As shown in Figure 3, the time-frequency
diagrams of each channel were combined as the Supplementary Materials of the EEG data.
Compared with wavelet transform, Fourier transform can only obtain the frequency domain
features of signals, while STFT loses part of the timing features due to its fixed window
length. Wavelet transform is a time-frequency localization analysis that can focus on any
details of the signal by shifting and stretching operations to gradually refine the signal at
multiple scales. This study chose the “Morlet” wavelet for continuous wavelet transform,
and the EEG signal was processed through Equations (1)–(3) to obtain a two-dimensional
time-frequency energy map.

Φ(t) = eiωt ∗ e−
t2
2 , (1)
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Φα,β(t) = 1√
α

eiω (t−β)
α ∗ e−

(t−β)2

2α2 , (2)

CWT(α, β) = 1√
α

∫ +∞
−∞ f (t)Φα,β(t)dt. (3)

where ω represents the wavelet center frequency; t represents time; α is the scale transfor-
mation factor; and β is the time translation factor.

Figure 2. Temporal feature representation of two sub-bands EEG.

Figure 3. Time-frequency feature representation of two sub-bands EEG.

2.3. Proposed TBTF-CNN Architecture

CNN is a feedforward neural network that involves convolution-pooling computation.
Its network structure consists of two parts, i.e., the feature extraction layer formed by the
combination of convolution layers and pooling layers, and the classification output layer
composed of several fully connected layers [33]. In the convolution part, the input 3D
tensor was convolved with the convolution kernel, and then an activation function f (a)
was used to output the feature map. The feature map of each convolution layer can be
expressed as:

hk
ij = f (a) = f

((
Wk ∗ x

)
ij
+ bk

)
. (4)

where x represents the input data; Wk represents the weight matrix of the k-th convolution
kernel; bk corresponds to the bias of convolution kernel k; i and j represent the number of
adjacent convolution layers. The fully connected layer is composed of several independent
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neurons, and the neurons between the layers are fully connected. The results of data
passing through the fully connected layer can be expressed as:

y = f
(
Wyx + by

)
. (5)

where Wy denotes the weight matrix of the layer, by denotes the bias and f (·) denotes the
activation function.

Figure 4 shows the structure of the proposed TBTF-CNN. At the input end, the EEG
data and time-frequency diagram data were reconstructed into a three-dimensional tensor
(height × width × channel).

Figure 4. The structure of the proposed TBTF-CNN.

The EEG branch extracts spatial and temporal features from the data of α band and β

band. The branch consists of a convolution layer, a max pooling layer and a flatten layer.
EEG is a king of time series data, and its structure is usually electrode × sampling point.
Some studies use CNN to decode EEG [34,35] data with the input form of electrode ×
sampling point × 1. These studies used horizontal and vertical 1D convolution kernels
to divide convolution operations into temporal convolution and spatial convolution to
improve the decoding performance. After temporal convolution and spatial convolution,
the feature map is in the form of 1 × Nw × Nf, where Nf represents the number of
convolution kernels and 1 × Nw represents the one-dimensional horizontal vector feature
map. In this study, the computation of temporal convolution and spatial convolution
was simplified. Meanwhile, the input data of EEG were reconstructed into 1 × T × 6,
where 1 corresponds to the height of the convolution layer; T represents the number of
sampling points, and it corresponds to the width of the convolution layer; 6 represents
the total number of C3, Cz and C4 electrodes in two sub-bands, and it corresponds to
the number of channels in the convolution layer. A one-dimensional convolution kernel
along the horizontal axis was used to extract the features of each channel. The size of the
convolution kernel was set to 1 × 8, and the step size was 1 × 8. The output EEG data
passing through this layer had a dimension of 1 × Nw × Nf, which is the same as the
dimension of the feature map extracted by temporal convolution and spatial convolution.
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The experimental results show that the results obtained by this simplified method are
basically the same as those obtained by the original method. Besides, the exponential linear
units (ELUs) function [36] was used as the activation function of the convolution layer,
which can accelerate the learning speed and improve the accuracy of the neural network. It
can be expressed as follows:

f (x) =
{

x,
a(ex − 1),

i f x ≥ 0
i f x < 0

a > 0 (6)

Then, a max-pooling layer was used to down-sample the data of the convolution layer.
The size of the pooling kernel is 1 × 3, and the step size is 1 × 3. Finally, the flatten layer
converted the features of the EEG branch into a one-dimensional vector.

The CWT branch extracts the time-frequency features from the data of α and β bands.
Its network structure is the same as that of the EEG branch, which consists of a convolution
layer, a max-pooling layer and a flatten layer. We reconstructed the time-frequency diagram
into the form of 64 × 93 × 1, which represents the gray-scale image tensor with the size of
64 × 93. Different from the two-dimensional convolution kernel commonly used in other
studies, we used a one-dimensional convolution kernel along the vertical axis to extract
time-frequency features, which is similar to Tarbar et al.’s [29] time-frequency diagram
using short-time Fourier transform to extract features, because the time-frequency diagram
contains time, frequency and electrode position information. The one-dimensional vertical
convolution kernel with the same height as the input data can better extract time-frequency
features by sliding horizontally along the time axis. The size of the convolution kernel
is 64 × 1 and the step size is 1 × 1. Besides, the ReLU function is used as the activation
function of the convolution layer, and it is expressed as follows:

f (x) =
{

x,
0,

i f x ≥ 0
i f x < 0

. (7)

The size of the pooling kernel is 1 × 3, and the step size is 1 × 3. The time-frequency
features output by the pooling layer are converted into one-dimensional vectors by the
flatten layer.

In this study, the features extracted from the two branches were spliced into a one-
dimensional feature vector, which was then used as the input of the fully connected layer.
The classification part consists of two fully connected layers. The first layer contains
128 neurons, and the activation mode is ReLU. There are two neurons in the output layer.
The softmax function maps the output y of the previous layer to the prediction probability
p, and the output is:

p(li|y) =
ey

∑N
i=1 ey

. (8)

During the input phase, the EEG data and time-frequency map data were normalized
to enhance the data concentration and eliminate the adverse effects of sample outliers.
Meanwhile, a “dropout” layer was added between the fully connected layer to effectively
suppress the overfitting problem. In the training process of the model, the Adam opti-
mizer [37] with β1 = 0.9 and β2 = 0.999 was used to update the trainable parameters of
each network layer, and the initial learning rate was set to 0.001. See Table 1 for detailed
network parameters.
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Table 1. Implementation details for proposed TBTF-CNN architecture.

Layer Type
(EEG/CWT) Number of Filters Size of Feature Map Kernel Size Stride Parameters

Input layer

1 × 875 × 6
64 × 93 × 1

Convolutional layer
32 1 × 110 × 32 1 × 8 1 × 8 1568
32 1 × 93 × 32 64 × 1 1 × 1 2080

Max pooling layer
32 1 × 36 × 32 1 × 3 1 × 3
32 1 × 31 × 32 1 × 3 1 × 3

Flatten layer
1152
992

Concatenate layer 2144

Fully connected layer
(Dropout = 0.8) 128 274,560

Output layer 2 258

3. Experimental Results
3.1. Experimental Dataset

In the experiment, the BCI competition IV 2b dataset is used to evaluate the decoding
performance of the proposed model. This dataset is provided by the Graz University
of Technology [38], and it is very famous in the field of motor imagery EEG datasets.
BCI competition IV 2b datasets contains the EEG data of nine healthy subjects, and the
recording process involves no moral and ethical issues. For each subject, five sessions of
motor imagery EEG signals were recorded. The first two sessions are routine cue motor
imagery, and the last three sessions include feedback. In each session, three electrodes, i.e.,
C3, Cz and C4, were used to collect the motor imagery EEG of the left hand and right hand,
and the sampling frequency was 250 Hz. As shown in Figure 5, each experiment begins
with a fixation cross “+” and an acoustic warning tone. When t = 3 s, the arrow pointing to
the left or right appeared on the screen for 1.25 s. Then, the subjects were asked to imagine
the movement of the corresponding hand within 4 s, and the experiment ended with a
rest of 1.5 s. After EEG collection, the influence of artifacts on each trial was evaluated by
experts, and the trials with artifacts were recorded as “1023” events. In the annotation of
the dataset, “0” corresponds to clean experiments and “1” corresponds to the experiments
with artifacts. The experimental paradigm of the last three sessions with smile feedback
cues is similar to that of routine cues, with 120 trials in each of the first two sessions and
160 trials in each of the last three sessions. In this study, the motor imagery EEG data of the
first three sessions are selected for model training and evaluation.

Figure 5. The experimental paradigm of the BCI competition IV 2b dataset.
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3.2. Performance of the Proposed TBTF-CNN

In this study, the data at 0.5 s–4 s after the start of the motor imagery experiment
are taken as the EEG data of each motor imagery task, so the data format of a single
trial is 3 × 875. To make full use of all the experimental data, 10-fold cross-validation is
performed to evaluate the classification performance of the model. The EEG data of a
subject are divided into 10 equal subsets. Then, one subset is randomly selected as the test
set, and the other nine subsets as the training set. The training is repeated 10 times, and
the average of the training results is taken as the classification accuracy of a single subject.
The experimental platform is based on the Tensorflow deep learning framework, and GPU
GeForce 2080 is used to speed up the network training process.

To evaluate the performance of the two-branch input model, the experimental results
of the proposed TBTF-CNN model are compared with those of the single-branch CNN
model. The single-branch CNN model is set as EEG-CNN of the EEG branch and CWT-
CNN of the CWT branch. In this case, the network has only one input form, which helps to
verify the effectiveness of inputting EEG data and CWT data simultaneously in MI-EEG
decoding. As shown in Figure 6a, the structure of the EEG branch is fine-tuned so that the
network can adapt to the input of EEG data, and too many parameters will make the model
unable to fit. Figure 6b shows the CWT branch, where the temporal feature learning branch
is removed from the original model to evaluate the influence of time-frequency features on
the decoding results.

Figure 6. Network structure of the modified networks. (a) denotes an EEG-CNN branch to which
only EEG data are input, and (b) denotes a CWT-CNN branch to which only CWT data are input.

The average classification accuracy of nine subjects is tested under different branch
structures, and the experimental results are shown in Figure 7. It can be seen that the
average classification accuracy of EEG-CNN is 70.56%, which is lower than that of other
models. The results show that, in the shallow CNN structure, only learning the temporal
features of EEG data is not conducive to the decoding of MI tasks. The average classification
accuracy of CWT-CNN reaches 77.22%, which is not much different from the result of Tabar
et al. [29] using STFT to extract features from the EEG data. For non-stationary EEG signals,
CWT has a tunable time-frequency window, which can adjust according to the frequency.
Therefore, CWT is more advantageous in extracting the time-frequency features of EEG
signals. The experimental results also show that CWT-CNN has fewer parameters and
improves the training and decoding efficiency. Compared with the single-branch CNN
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model, the proposed TBTF-CNN model achieves an average classification accuracy of
81.3% on nine subjects, which is higher than that of EEG-CNN and CWT-CNN. This shows
that it is effective to input the EEG signal and its corresponding time-frequency map for
EEG decoding in MI tasks. The CWT branch achieves a higher accuracy than the EEG
branch, which proves that time-frequency feature expression plays an important role in
EEG decoding. This study selects subjects 4, 5, 6 and 8 with high classification accuracy
and visualizes their EEG time-frequency feature maps through the CWT branch to observe
the time-frequency relationship in specific areas. As shown in Figure 8, the feature map
obtained by the “Morlet” wavelet transform contains the joint distribution information in
the time domain and frequency domain, which clearly describes the frequency and time
relationship of the EEG signal. Meanwhile, it can be seen from the figure that only part of
the time-frequency feature map after the convolutional layer has a high color brightness,
indicating that different MI tasks are only sensitive to specific time and frequency.

Figure 7. Average classification accuracy of each subject.

Figure 8. Visualization of the feature maps of the randomly selected subjects.
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According to the experimental results of the three models, the confusion matrix is
shown in Figure 9 to evaluate the recall rates of different models. In the confusion matrix,
the bottom right represents the average classification accuracy of nine subjects, and the
other evaluation indexes correspond to the average recall rate and average accuracy of the
two classes of tasks. It can be seen from Figure 9 that the TBTF-CNN model obtains a recall
rate of 76.6% and 85.9% and a precision of 84.5% and 78.6% for the left-hand class and the
right-hand class. The results show that the TBTF-CNN architecture performs better than
the single-branch CNN model.

Figure 9. Confusion matrix for different network architectures.

Then, for different models, the kappa coefficient [39] of each subject is calculated, and
the result is shown in Figure 10. The kappa coefficient can eliminate the interference of
random classification, and it is a common index to measure classification accuracy. Its
calculation is as follows:

k =
p0 − pe

1− pe
, (9)

where p0 represents the number of correctly classified samples in each class divided by the
sum of all samples, i.e., the average classification accuracy of each subject and pe represents
the random classification probability [40]. The pe value is set to 0.5 because this experiment
is a two-class MI task. It can be seen from Figure 10 that the average kappa value of the
EEG-CNN architecture is 0.41, and that of CWT-CNN is 0.54. The proposed TBTF-CNN
achieves the largest kappa value of 0.63 among all the comparison experiments. The results
show that TBTF-CNN has a better decoding performance than the single-branch CNN.

Figure 10. The kappa value of different network architectures.
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In addition, a machine learning comparison experiment is carried out to evaluate
the performance of TBTF-CNN. CSP is a widely used feature extraction method in MI
tasks. It can effectively construct the optimal spatial filter to distinguish EEG signals for
two classification tasks in MI-EEG [18]. In this experiment, the machine learning model
of CSP-LDA is taken for comparison, which achieves a good performance in previous
MI-EEG decoding. To make a fair comparison, the performance is evaluated based on
10-fold cross- validation. The dataset is divided in the same way, and the expression of the
EEG data is the same as that described in Section 2.2. The results of CSP-LDA are shown
in Figures 7 and 10. The average classification accuracy of CSP-LDA on nine subjects is
71.29%, and the kappa value is 0.426. The experimental results show that the decoding
performance of CSP-LDA is 0.73% better than that of EEG-CNN and 5.93% worse than
that of CWT-CNN. The proposed TBTF-CNN achieves the best performance, which is
9.71% higher than that of CSP-LDA. Figure 11 presents the MI-EEG feature distribution of
nine subjects obtained by the CSP algorithm. The red dots and blue dots in the diagram
represent the MI features of the left hand and right hand, respectively. Combined with the
scatter plot, the features of subjects 1, 4, 5, 6, 8 and 9 have obvious discrimination, so a high
average classification accuracy is achieved for these subjects. The features of subjects 2, 3
and 7 cannot be well separated, and this may be due to the distraction of these subjects
during the experiment.

Figure 11. The feature distribution of all subjects before and after.

3.3. Comparison with Other Methods

In this section, the proposed model is compared with the models proposed in the
literature to evaluate the overall performance of TBTF-CNN. Table 2 summarizes the
average classification accuracy obtained by different methods for nine subjects of the
dataset, where the highest accuracy of each subject is highlighted in bold font. It can be
seen from the table that the proposed TBTF-CNN model achieves the best performance
for most subjects and obtains the highest average classification accuracy. Specifically, the
classification accuracy of Subject 1 and Subject 6 is increased by 14.5% and 4%, respectively.
All of the comparison results show that our method achieves a better performance than
other methods.
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Table 2. Comparison table of the proposed method with other methods.

Ang et al. [21] Tabar et al. [29] Huang et al. [41] Zheng et al. [42] Raza et al. [43] Our Method

Dataset 2b 2b 2b 2b 2b 2b

S1 70.0 76.0 74.3 72.5 70.3 84.5
S2 60.0 65.8 61.8 56.4 50.6 63.3
S3 61.0 75.3 66.5 55.6 62.8 62.3
S4 97.5 95.3 91.5 97.2 93.8 98.1
S5 92.8 83.0 79.5 88.4 63.8 89.7
S6 81.0 79.5 74.8 78.7 74.1 85.0
S7 77.5 74.5 71.4 77.5 61.9 79.5
S8 92.5 75.3 73.3 91.9 83.1 84.7
S9 87.2 73.3 72.0 83.4 77.2 84.5

AVG 80.0 77.6 73.9 78.0 69.7 81.3

4. Discussion

According to the feature scatter diagram (shown in Figure 11), the subjects with an
average classification accuracy higher than 80% have highly differentiated EEG features.
Among them, Subject 4 and Subject 5 have the most obvious discrimination between the
two classes of MI-EEG features, and the classification accuracy of these two objects is 98.1%
and 89.7%, respectively. After CSP feature extraction, the features of Subject 2 and Subject 3
cannot be well separated, so the classification accuracy of these two subjects is only 63.3%
and 62.3%. The reason for this phenomenon may be that the subjects are interfered with by
external factors or their own factors, leading to the subjects’ inability to perform effective
motor tasks. The classification performance in Figure 7 indicates that shallow CNN decodes
the original EEG data poorly, and the average accuracy of MI tasks is 70.7%. CNN performs
well in the image field, and CWT is suitable for non-stationary EEG signals. Therefore,
the performance of the decoding model is improved by taking time-frequency graph data
as an input, and the average classification accuracy is 77.4%. The proposed TBTF-CNN
model uses both EEG data and time-frequency graph data as an input, so the network can
further learn the temporal features and frequency features of the data, and the classification
accuracy is improved. As for the machine learning model CSP-LDA, its classification
accuracy is 71.5%, which is lower than that of most CNN architectures, indicating that deep
learning has great advantages in decoding MI-EEG. The confusion matrix in Figure 9 shows
that the recall rate of the three CNN models for right-handed imagination tasks is higher
than that of left-handed imagination tasks. Among them, the recall rates of TBTF-CNN
and CWT-CNN reach 85.9% and 84.3%, respectively. The proposed TBTF-CNN model
performs more uniformly and better than other CNN architectures in all evaluation indexes,
which proves the robustness of the model. The kappa coefficient shown in Figure 10
indicates that TBTF-CNN and CWT-CNN have higher kappa values, i.e., 0.63 and 0.55,
respectively. This result further shows that the proposed TBTF-CNN model has a high
robustness. Compared with other methods (as shown in Table 2), Ang et al. [21] used the
FBCSP algorithm to divide EEG data into multiple frequency bands to extract features and
obtain high classification accuracy. Tabar et al. [29] also divided the data into 6–13 Hz and
17–30 Hz for decoding. This shows that dividing EEG data into multiple sub-bands can
improve the decoding performance of MI-EEG. Huang et al. [41] and Tabar et al. [29] both
used STFT to extract the time-frequency features of EEG, and the classification accuracy
was 73.9% and 77.6%, respectively. Since the time-window length of STFT is fixed, it
cannot adjust to non-stationary EEG signals. Therefore, CNN-SAE is exploited to improve
the learning ability of time-frequency features of the model, which increases the training
parameters of the model and reduces the decoding efficiency. Although EEG features
are expressed in time-frequency graphs, it can be seen from the results of this study that
using CWT to extract time-frequency features achieves a higher average classification
accuracy. Zheng et al. [42] and Raza et al. [43] both used the machine learning method
to decode MI-EEG, and the classification accuracy was 78% and 69.7%, respectively. The
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machine learning method needs to conduct complex feature extraction calculation, whereas
CNN has end-to-end structure characteristics, which simplifies the feature extraction and
classification process of EEG data, and the classification performance is better.

EEG is a time-varying non-stationary signal, and a suitable time-frequency analysis
method is very important to improve the performance of the decoding model. Due to the
trade-off between the time and frequency resolution, it is difficult for STFT to generate
time-frequency maps with high-quality information. This may degrade the classification
performance of the BCI system. For MI-EEG signals lasting 3–5 s, CWT has a superior
time-frequency resolution, and can express the signal more clearly without losing the
information of time and electrode-frequency [44]. Compared with the STFT method, the
CWT method achieves a better classification performance, thus showing the feasibility
of MI-BCIs.

5. Conclusions

In this study, the TBTF-CNN model is proposed for MI-EEG decoding. TBTF-CNN has
two input branches that can adequately learn the temporal and frequency features of EEG
data and improve the classification accuracy. Meanwhile, the EEG data are reconstructed
to simplify the process of spatio-temporal feature extraction, and continuous wavelet
transform is used to express time-frequency features. The experimental results on the BCI
competition IV 2b dataset show that TBTF-CNN achieves an average classification accuracy
of 81.3%. The proposed method provides a new way to improve the decoding performance
of BCI systems.

6. Future Work

With the development of hardware in the near future, we will apply the proposed
TBTF-CNN model to online BCI systems based on MI-EEG to verify its robustness and
performance. Moreover, we will use data augmentation techniques to improve the qual-
ity and quantity of EEG data to investigate the statistical differences in the accuracy of
different models.
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Abbreviations

BCI Brain-computer Interface
MI Motor Imagery
EEG Electroencephalography
TBTF Two-Branch Time-frequency
DL Deep Learning
CNN Convolution Neural Network
EcoG Electrocorticography
fMRI functional Magnetic Resonance Imaging
MEG Magnetoencephalography
ERD Event-Related Desynchronization
ERS Event-Related Synchronization
SNR Signal Noise Ratio
CSP Common Spatial Pattern
LDA Linear Discriminant Analysis
FBSCSP Filter Bank Common Spatial Pattern
QDA Quadratic Discriminant Analysis
LSVM Linear Support Vector Machines
RBF-SVM Support Vector Machines with Radial Basis Function kernel
SAE Stacked Automatic Encoder
STFT Short-Time Fourier Transform
LSTM Long Short-Term Memory
ESI EEG Source Imaging
CWT Continuous Wavelet Transform
ELUs Exponential Linear Units
ReLU Rectified Linear Unit
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