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A two-chain path integral model of positronium
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We have used a path integral Monte Carlo technique to simulate positronium~Ps! in a cavity. The
primitive propagator is used, with a pair of interacting chains representing the positron and electron.
We calculate the energy and radial distribution function for Ps enclosed in a hard, spherical cavity,
and the polarizability of the model Ps in the presence of an electrostatic field. We find that the
positron distribution near the hard wall differs significantly from that for a single particle in a hard
cavity. This leads to systematic deviations from predictions of free-volume models which treat Ps
as an effective, single particle. A virial-type estimator is used to calculate the kinetic energy of the
particle in the presence of hard walls. This estimator is found to be superior to a kinetic-type
estimator given the interaction potentials, cavity sizes, and chain lengths considered in the current
study. © 2000 American Institute of Physics.@S0021-9606~00!50447-4#
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I. INTRODUCTION

Positron annihilation spectroscopy is a widely-used
perimental probe of solids, liquids, and gases.1 Coulomb re-
pulsion with the nuclei makes the positron most sensitive
open-volume regions such as vacancies, voids, and mol
lar free-volumes. In insulators, positrons often form posit
nium ~Ps!, bound hydrogeniclike electron–positron pai
which diffuse into the open-volume regions. The long intr
sic lifetime of ortho-positronium~o-Ps! is shortened by an
nihilation with surrounding electrons, resulting in a measu
ment of the size of the open volume region based on
observed positron lifetime.2 Positron annihilation in such a
system has been described in terms of free-volume mode3,4

A correlation curve relating the positron lifetime to the si
of the free volume has been parameterized by Nakan
et al.5 based on measurements of systems with well-defi
open volume regions, including molecular crystals and z
lites. This approach is now used extensively in measu
ments of free volumes for a wide range of insulati
systems.2

Free-volume models3,4 are built on very simple assump
tions, including interaction only within some limited distan
of the cavity wall, and simple geometric shapes for
‘‘open-volume’’ region. We can assess the applicability
these simple approximations provided we have a suita
model for the behavior of the quantum mechanical posi
nium in the system. Path Integral Monte Carlo provides
convenient approach for this. In this paper, we present res
of PIMC simulations of positronium treated as a two-parti
electron–positron system. We consider the interaction
positronium within a hard-sphere as a simple approxima

a!Author to whom correspondence should be addressed.
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to a solid environment, and compute the effect of size c
straint on the behavior of positronium in an open-volum
region in a solid.

In the path integral Monte Carlo~PIMC! technique,6,7 a
single quantum particle is represented by a polymeric ch
of fictitious particles, or ‘‘beads.’’ PIMC has lent itself natu
rally to several studies of Ps trapped within an insulat
environment. Reese and Miller8 have utilized a single chain
of beads, where each bead represents the composite Ps
ticle in fluid Xe, to determine the annihilation rate and te
dency of Ps to localize near the liquid–vapor critical poi
Schmitz and Mu¨ller-Plathe9 have used a similar model t
study Ps annihilation within a polystyrene fluid whose mon
mers are simulated as classical particles interacting with
via a semiempirical~Buckingham! potential. While these
studies provide much insight, further information may
gained by using a two-particle model of Ps, in which t
interaction of the Ps with the host atoms is based on
interactions of its individual constituents, rather than on
fective interactions. In addition, it is possible to study t
binding energy and ionization of Ps within a two-partic
approach.

Recently,10 Müser and Berne have proposed an eleg
solution to a longstanding problem of simulating Coulom
attracting systems with a ‘‘primitive’’ approximation to th
propagator used in the path integral. They tested their
malism with a successful simulation of the electron of h
drogen, a single-chain calculation. In the current work,
will use the Müser–Berne scheme to study a stable, tw
chain path integral representation of Ps. The approach is
scribed in more detail in Sec. II. In Sec. III, we prese
results using this approach for the positronium distributio
energy, and polarizability in a spherical cavity. We conclu
2 © 2000 American Institute of Physics
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that this method provides a simple, flexible approach
simulations of Ps in solids.

II. COMPUTATIONAL MODEL

We wish to calculate the thermal averages of quanti
related to Ps. For a quantity represented by the operatoÂ,
this amounts to finding

^Â&5
1

Q
Tr r̂Â; Q[Tr r̂. ~1!

In the canonical ensemble, the quantum density matrixr̂ is11

r̂~b!5exp~2bĤ !, ~2!

with b the inverse temperature andĤ the Hamiltonian op-
erator for the entire system held at fixed temperature
volume. In a well-known series of steps,12 one expresses th
trace in Eq.~1! in the position representation, breaks t
right-hand side of Eq.~2! into a product ofP[b/e terms,
and insertsP21 complete sets of position states to obtai

^Rur̂~b!uR8&5E ^Rur̂~e!uR1&

3^R1ur̂~e!uR2& •••^RP21ur̂~e!uR8&

3dR1•••dRP21 . ~3!

While this is exact, the substitution of a suitable hig
temperature approximation tor̂(e) in Eq. ~3! provides a dis-
cretized approximation toQ, and thus to

^Â&5
1

QE dRdR8^Rur̂~b!uR8&^R8uÂuR&. ~4!

Numerous computational schemes based on Monte Car
Molecular Dynamics6,7,13–16 have been used to sample th
space of paths delineated in Eq.~3!. Equation~4! is rarely
calculated directly; rather, one constructs an estimator

^Â& which takes advantage of the computational scheme6,17

For our current study ofe1 ande2, the position basis is
the six-dimensional position space of the two particles,uR&
[ur1r2&. Interactions exist both betweene1 and e2 and
with sources imagined to be external to them. Thus,
Hamiltonian may be written as
n
ee

i

ia
r

s

d

-

or

r

e

Ĥ5T̂11T̂21V̂1Û11Û2 , ~5!

with T̂1 ,T̂2 the kinetic energies ofe1,e2. In the position
representation,V̂[V(r ), wherer is the relative coordinate
and U1 , U2 are functions ofr1 and r2, respectively. A
simple high-temperature approximation puts the density m
trix in the pair-product18 form

r̂~e!'e2e(T̂11T̂2)e2eV̂r̂0~e!. ~6!

It is formally correct to write in this, the primitive
approximation,6

r̂0~e!5e2e(Û11Û2). ~7!

However, the current study will involve an external intera
tion with hard walls, and will benefit from an alternativ
treatment ofr̂0 . Theoretically, convergence of the partitio
function has been shown to exist for hard walls in the prim
tive approximation asP→`.10 But for any practical calcu-
lation, the approach of a path integral Monte Carlo result
the correct answer in the presence of hard planar18 or
curved19 walls is slow if one makes the naive substitutio
which in our case would be

^r1r2ur̂0~e!ur 81r 82&5H 1 r 1 and r 2<r c

0 otherwise . ~8!

As an alternative, some studies on systems of h
spheres have used exact numerical values forr̂0 appropriate
for an isolated pair of spheres.20,21 Also, various types of
image approximation have been used. For example, the e
density matrix for a particle between two hard planar wa
was derived by Barker,18 and several studies18,19,22,23have
used approximations to this form.24 An alternative image ap-
proximation due to Kalos and Whitlock25 is based on the
exact density matrix near a single hard wall. This form w
used by Reese and Miller,8 and we will use this form as well
in order to compare with the best results of Ref. 23, wh
also treats Ps within a spherical cavity.26 Thus, we will de-
fine
^r1r2ur̂0~e!ur 81r 82&5H )
* 51,2

@12exp~2~r c
22r * 2!~r c

22r 8* 2!/2er c
2!# r 1 and r 2<r c

0 otherwise
. ~9!
-
it

the
However we should note that an approximation based o
partial wave expansion of the exact wave function has b
derived by Cao and Berne.27 It is a theoretically robust form
for a system of particles in a hard spherical cavity, and
likely to provide the most rapidly convergent results.

As mentioned in Sec. I, the attractive Coulomb potent
a
n

s

l,

Vc(r )52e2/r , resists a straightforward primitive path inte
gral calculation. The strong singularity at the origin makes
uncertain whether the discretized approximation toQ should
converge to the exactQ in the limit P→`. In fact, the ap-
proximateQ seems to behave pathologically for any finiteP,
and one sees a collapse of the path integral chain into
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center of force as computation proceeds.28 In the well known
path integral study one2 in molten KCl,29 the authors chose
to use a pseudopotential, finite at the origin, to simulate
interaction ofe2 andK1. Similarly, studies of Ps in liquids
by Miller and co-workers8,30 utilized a pseudopotential be
tween Ps and liquid atoms.

In the current work, we have adopted the Mu¨ser–Berne
scheme, which amounts to applying an effective poten
betweene1 and e2 which converges exponentially fast t
the Coulomb potential as a parameter,a, is sent to zero. We
adopt their specific choice of a Yukawa potential,

V~r !52
e2

r
~12exp~2r /a!!. ~10!

They have shown10 that in the limit a→0 and P→`, the
effective potential produces the correct Coulomb partit
function; and additionally, that the fastest convergence w
occur whena}P22/3. Coulombic results are extrapolate
from a series of simulations for differentP anda.

An alternative strategy would be to employ the exa
Coulomb propagator between electron and positron. Thi
tractable analytically, as Pollock has discussed.31 The exact
Coulomb propagator has been utilized, for example, to so
problems involving biexcitons in semconductors.32 It has
also been a powerful technique with which to study pu
hydrogen at a wide variety of temperatures and pressur33

The advantage to using a propagator exact for each pa
particles is that the density matrix is very accurate, and
generally needs fewer beads for equivalent accuracy.34 Ar-
guments for the primitive approximation are that it is high
tractable and quicker to compute than the analytical form
primitive approximation may be desirable for including i
teractions other than electron–positron; the computatio
advantages to using the exact form for only one part of
problem are not clear.

Equations~3!, ~6!, and ~9! imply that we must sample
the distribution

r~R,R8;e![^Rur̂~b!uR8&

5E dR1•••dRP21 )
i 51,P

K0~Ri 21 ,Ri ,e!

3exp~2eV~r i !!r0~Ri 21 ,Ri ;e!, ~11!

whereR5R0 , R85RP , andK0 is the free-particle~kinetic!
density matrix,

K0~R,R8;e!5S m

2p\2e
D 3

expS 2
m

2\2e
@~r12r 81!2

1~r22r 82!2# D . ~12!

The form of K0 is that of two classical polymers with ha
monic bonds. The ‘‘classical polymer isomorphism’’ h
produced both analytical35 and computational progress.

In the notation of Sprik and co-workers,22 our method
would be considered a ‘‘one-stage, image approximatio
Sampling was performed on a pair of chains ofP beads with
R0[RP . A direct sampling procedure6,19,36was used to gen
e

l

n
ll

t
is

e

e
.
of
e

A

al
e

’’

erate independent configurations of the chains. This ‘‘thre
ing’’ procedure21 relies on an interpolation formula due t
Levy, and amounts to removing randomly situated subs
tions of lengthL of the e2 and e1 chains,$Rj ,...,Rj 1L%,
and replacing them with new subsections of lengthL,
$Rj8 ,...,Rj 1L8 %. The Levy construction ensures that the ne
configuration is drawn from the distributio
K0(Rj8 ,Rj 1L8 ;Le). Then, a standard Metropolis Monte Car
procedure37 was used to either accept or reject the new c
figuration, with an acceptance probability of

maxF1, )
i 5 j , j 1L

exp~2eV~r i8!r0~Ri 218 ,Ri8;e!

exp~2eV~r i !r0~Ri 21 ,Ri ;e! G .

A standard way to chooseL ~not the only way; see Sec. III B!
is to varyL in order to have a fixed fraction, typically 50%
of accepted moves. This was done every 10 passes.~One
pass is an attempted move of both chains.!

III. RESULTS

A. Ps in a spherical cavity

Two issues motivate us to study Ps in a hard, spher
cavity. First, this is a frequently-used free-volume model
the environment of Ps in a porous solid.4,5,38,39That is, Ps
lifetime measurements in solid pores are sometimes in
preted by assuming that Ps behaves like a single particl
its ground state in such a cavity; with a uniform annihilati
rate with electronic density in a layer at the cavity wal4

Admittedly a great simplification, this provides a useful o
ganizational principle for data from disparate systems. N
ertheless, it neglects the realistic orbital structure of Ps,
the effects that even a hard cavity~much less one with a
realistic, molecular structure! would have on it.

Secondly, there is a technical issue: that at any fin
temperature there is a finite likelihood of Ps ‘‘ionizing’’ to
continuum state. For the temperatures chosen, we expe
behavior to be ground-state dominated. Nevertheless, one
lution to the formal problem is, upon each pass of the sim
lation, to return the center of mass of thee1, e2 system to
the center of a generously large (r c@a0) cavity.

Figure 1 shows the radial probability density for the re
tive coordinate,

P~r ![
1

QE dR8r~R8,R;b!d~r 82r !, ~13!

which, in simulational terms, is just the likelihood that
bead pair is at a relative distance ofr. A total of 300 K
passes were used to accumulate statistics for Fig. 1. ‘‘Fr
Ps is centered in a cavity withr c510 a.u., withP5600, a
50.132 a.u., andb550 a.u. The solid line is the exact an
swer for the 1S state of Ps. These data come from a set
simulations with P in the range P5320– 800 anda
5kP22/3, wherek59.36. ~A large number of beads is re
quired in order to keep discretization parametere reasonably
small for values ofb21 much less than 3/16, the Ps groun
to-first-excited state energy gap.! As suggested by the discus
sion in Sec. II, increasingP leads toP(r ) curves that fall
more closely on the 1S curve. The parameters of Fig. 1 do a
excellent job of reproducing the ground state wave functi
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Closed circles in Fig. 1 correspond to Ps which is allowed
equilibrate freely in a spherical cavity with radiusr c55 a.u.
The effect of the cavity to compress the orbital slightly w
noted in Ref. 23. In Table I, we give the location of th
maximum ofP(r ), r max, as a function of cavity radius. Th
exact, zero-temperature free Ps value isr max52 a.u., and at
b550, r max will fall between 2.00 and 2.01 a.u.~much
closer to the former!; 0.01 a.u. is the resolution of our den
sity data.

While, on average, there is no preferred direction forr ,
there are fluctuations in the shape of the Ps orbital indu
by the cavity; since the closest region of hard wall co
presses it in a preferred direction. In order to calculate
annihilation rate, one ultimately requires the overlap of
density of e1 and electrons in the wall. For example, th
simple model4 presumes a uniform electronic density~more
precisely, assumes a uniform annihilation rate when the c
ter of Ps lies! within a layer at the wall. Based on fits to dat
the width of the electronic layer can be taken asDr'3
a.u.2,5 In Table I, we have listedG(Dr ), the fraction ofe1

density residing in this layer, for bothDr 53 and 1 a.u. The
e1 annihilation rate for o-Ps in this simple model would
l5l0G, wherel0 is the annihilation rate in the uniform
layer, typically taken asl052 ns21.4,40

FIG. 1. Radial distribution function,P(r ), for Ps in a hard cavity.r is the
relative coordinate between electron and positron. Solid line: 1S exact re-
sult. Open circles: ‘‘Free’’ Ps, fixed at the center of cavity with radiusr c

510 a.u. Filled circles: Ps in cavity withr c55 a.u. Calculations use
Yukawa potential, Eq.~10!, with a50.132 a.u.,P5600; b550.

TABLE I. Calculated values ofr max, the location of peak in radial distri-
bution function for Ps in cavity of radiusr c . Units are a.u. Also listed is
calculated likelihood,G(Dr ), for e1 to reside withinDr of cavity wall.G is
calculated from path integral simulation,Gth from simple particle-in-a-box
model fore1.

r c r max G(3) G(1) Gth(3)/G(3) Gth(1)/G(1)

free 2.01 ••• ••• ••• •••
10 1.96 0.13 0.0042 1.16 1.63
8 1.94 0.20 0.0067 1.30 1.87
6 1.88 0.41 0.016 1.22 1.79
5 1.79 0.62 0.028 1.11 1.75
o

d
-
e
e

n-

Some insight into these annihilation rates comes fr
viewing the density in the cavity,P(r ), as in Fig. 2. The
positronic density is close to, but systematically differe
from, the distribution of a single particle in a hard cavity~a
particle-in-a-box!. ~For reference, a singlee1 particle was
simulated with our path integral technique, and as the cros
in Fig. 2 show, these data have the correct distribution.! For
the smaller cavities ofr c55, 6 the positronic position is
shifted closer to the cavity center, in agreement with Fig
of Ref. 23. Interestingly, forr c510 a.u., the positronic den
sity is reduced both at the center and at the cavity wall. T
leads us to conclude that the common factor driving
shapes of all of these curves is that positronic density is
at the wall than the particle-in-a-box theory predicts. A
e2 –e1 bound state orbital must be accommodated nex

FIG. 2. Distribution function,P(r ), of e1 in Ps, wherer is the distance
from the center of the cavity. Points are simulated data with parameters
Fig. 1. Solid lines are particle-in-a-box densities for corresponding value
r c . Small black circles:r c55 a.u. Large gray circles:r c56 a.u. Large black
circles: r c510 a.u. Crosses: single-particle simulation withr c56 a.u.

FIG. 3. Distribution functionP(r ), wherer is the distance from the cente
of the cavity. Runs withP5600 averaged over 2M passes, forb550 and
r c510 a.u. Large black circles: density ofe1 in Ps. Heavy dashed line: fit o
these to particle-in-a-box form. Dotted circles: density of the center of
Light dashed line: fit of these to particle-in-a-box form.
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the wall, and this means that the bound positron is m
distant from the wall, on average, than an unbounde1 par-
ticle would be. In Table I we list values ofGth/G , where
Gth(Dr ) would result ife1 behaved as a single particle-in
a-box. These corrections listed Table I are systemati
stemming from the depletion ofe1 density at the wall. They
do not vary dramatically with cavity size. We would spec
late that they approach a limit asr c increases further, a limi
not too different from the values listed in Table I. Neverth
less, a disagreement of as much as thirty percent, as se
Table I forDr 53, would be noticeable on the fits of lifetim
vs cavity size in, for example, Fig. 4 of Ref. 2.

Because thee1 ande2 are the fundamental moieties i
our model of Ps, it is natural to study hard-wall bounda
conditions that apply to these bodies. However, as mentio
above, simple pore annihilation models treat the entire
atom as the confined particle. Figure 3 showsP(r ) for e1 in
Ps, and also for the center of Ps in anr c510 cavity. ~This
center is not calculated from the pair of centroid positio
but rather, from individual bead pairs.! When the densities in
Fig. 3 are fit to the particle-in-a-box form,P(r )
}sin2(pr/r0), a least-squares-fit to thee1 density yieldsr 0

510.0, although the fit is visibly poor.41 The fit of the Ps
center position is of roughly the same quality; in this ca
r 059.5. It is reasonable that the effective hard sphere ra
for the Ps center–wall interaction would be less thanr c by an
amount on the order of 1 a.u. Clearly, the effective inter
tion of the wall with the Ps center would be better fit as
soft, rather than hard, repulsion. Rather than refining
notion further, it is probably more useful to replace the ha
cavity with a realistic pore wall geometry, including intera
tions with the electrons and ions in the solid. This will be t
subject of an upcoming study.

B. Energy

The internal energŷE& of a simulated system is fre
quently of interest~at the very least, as a way to monitor th
status of the simulation as it proceeds!. The energy of Ps can
be estimated in a variety of ways.6 We have constructed th
‘‘thermodynamic’’ estimator, based on

^E&[2
1

Q

]Q

]b
5(

i 51

P K 2
]

]b
ln r~Ri 21 ,Ri ;e!L . ~14!

For the primitive1image approximation to the Ps de
sity matrix in Eq. ~11!, this becomeŝ E&'^Tkin&1^Ve&,
where the ‘‘kinetic’’ or Barker estimator for the kinetic en
ergy, ^T&52(m/bQ)(]Q/]m), is18

^Tkin&[K 3P

b
2

mP

2 (
* 51,2

(
i 51

P

~r i 21* 2r i* !2/\2b2L ,

~15!

and the potential energy estimator is

^V&'^Ve&[
1

P K (
i 51

P

V~r i !

2
1

P (
i 51

P
] ln r0~Ri 21 ,Ri ;e!

]e L . ~16!
e

-

-
in

ed
s

,

e
s

-

is
d

The second term in Eq.~16! can be thought of as an effectiv
potential energy for interaction with the cavity. It will de
pend on temperature, growing with increasingb, but as one
would hope, it remains roughly constant for fixede. For the
values ofP reported on in this study, it comprises less th
7% of the energy of a singlee1 particle in anr c56 a.u.
cavity atb550; and less than 2% of the energy of Ps und
the same conditions.

The error in estimators depends on the method use
estimate and to sample the density matrix, and these de
dences have been studied by a number of authors.42–46If the
estimated quantity has a measured value ofA( j ) on the j th
measurement pass, then the error in^A&5(1/N)( j 51

N A( j )
after N passes will be

DA5AsA
22t/N[d/AN ~17!

with sA
2 the variance across the entire run,

sA
25(

j 51

N

~A~ j !2^A&!2. ~18!

In Eq. ~17!, t is the integrated autocorrelation time, the lim
asn becomes large of

t~n!5
1

2
1(

j 51

n

C~ j !~12 j /N!, ~19!

whereC( j ) is the normalized autocorrelation function of th
A( j ): C( j )5@^A(k)A(k1 j )&2^A&2#/@^A2&2^A&2#. The
time t is imagined to be a small fraction of the total sam
pling time, N. The kinetic estimator of Eq.~15! has a vari-
ance which grows linearly with chain size,

sTkin

2 }P. ~20!

In the face of this drawback, Herman and co-workers43 de-
veloped a virial estimator for the kinetic energy of a cha
moving in a localizing potentialV, based on this equality o
thermodynamic averages,

K 3P

2b
2

Pm

2\2b2 (
i 51

P

~xi2xi 21!2L 5K 1

2P (
i 51

P

xi•¹ iV~xi !L .

~21!

Equation~17! suggests that a combination of low var
ance and quick relaxation will minimized, and thus mini-
mizeDE for a given number of passes,N. Different schemes
have been attempted for updating bead positions;44–46 and,
for example, performance benefitted from updating schem
that reduced serial correlations inA( j ) without increasing
the variance. Indeed, Janke and Sauer46 have shown how a
linear combination ofboth kinetic and virial estimators will
minimize error further; and that staging lengths, hence
ceptance rates, might be chosen in order to achieve p
performance. Though quantitative results certainly dep
on the potential used, one might summarize the publis
findings by saying that in the case of a staging algorithm l
our own, neithertEkin

, tEvir
nor sEvir

2 were found to vary

strongly withP.
In the studies mentioned above, single particles mo

in potential wells which were analytical functions of pos
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tion. Many-body path integral calculations have of cou
also employed virial estimators, but to our knowledge
interaction potentials were again analytical one, two, a
higher-body forms. There is no reason that the virial ar
ment cannot be extended to systems with hard walls, to
tain an energy estimator consistent with an effective tw
body density matrix as in Eq.~11!. A straightforward
calculation similar to that of Herman and coworkers leads
this expression for the virial estimate of the kinetic energy
Ps in a cavity,

^Tvir&5K 1

2P (
i 51

P

r i

]V~r i !

]r i
L 2F/2;

~22!

F5
1

b K (
* 51,2

(
i 51

P

r i* •¹ i~ ln r0~r i 21* ,r i* ;e!

1 ln r0~r i* ,r i 11* ;e!!L .

The strictest test of the new virial form Eq.~22! is one
where there is no interaction potential, but only hard wa
which give rise to a kinetic energy. We tested the virial e
timator for a singlee1 particle in a cavity. A series of run
with P5300, 450, 600, 900 andP/b56 yield ^Tkin&
50.124(4), ^Tvir&50.134(3), as compared with the exac
answer of^T&50.1371. The kinetic estimator is systema
cally low; and it is possible that this is true, but to a mu
lesser degree, for the virial estimator as well. Equations~15!,
~16!, and ~22! were then used to calculate the energy of
confined in cavities of various radii. These energies w
extrapolated from a set of simulations with increasingP as
described in Sec. III A; the kinetic and potential energ
were assumed to approach their asymptotic~Coulombic! val-
ues asP24/3.10 Table II contains these results. For the mo
part, the potential and kinetic energies are in approxim
agreement with earlier results of Liu and Broughton23

Again, there is a trend of lower values from the kinetic es
mator, compared with both the virial estimator and data
Ref. 23.

In order to determine the expected error in Monte Ca
energy estimates, it seems appropriate to determine the
vergence properties of potential and kinetic energies se
rately, in case these have different characteristic relaxa
behaviors. Consider first the kinetic energy for a singlee1

particle in a cavity. Figure 4 shows that the variance of
kinetic estimator scales roughly withP as one expects, Eq
~20!. The variance of the virial estimator,sTvir

2 , is not only

TABLE II. Calculated energies, in a.u. for Ps in a hard, spherical cav
Results extrapolated from runs withP5320, 400, 510, 600 atb550, 1 M
passes per run.

r c ^V& ^E& ~Kinetic estimator! ^E& ~Virial estimator!

free 20.500(3) 20.25(1) 20.252(5)
10 20.521(3) 20.24(2) 20.19(1)
8 20.528(3) 20.23(2) 20.18(1)
6 20.564(3) 20.17(1) 20.132(5)
5 20.597(2) 20.11(1) 20.06(1)
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smaller in magnitude for each value ofP, but also has a
weakerP dependence. Equations~9! and ~22! suggest that
only beads which are in close proximity to the cavity wa
will make a large contribution tôTvir&. Table III lists the
percentage of beads whose combined energies account
fixed percentage of the kinetic energy. One can see
while the kinetic estimator ‘‘democratically’’ draws, for ex
ample, 99% of the energy from about 91% of beads, and
the percentage of beads contributing a fixed percentage
not vary withP, the situation is different for the virial esti
mator. Instead, a small percentage of beads contributes
overwhelming majority of the energy, and this percenta
decreases asP increases. In terms of scaling behavior,sT

2

}Pa, a fit to the data of Fig. 4 yieldsa50.93(6), 0.6(1) for
the kinetic and virial estimator, respectively. The idea th
the virial kinetic energy arises not from the bulk, but from
portion of the surface of the chain makes the exponent va
a'2/3 a reasonable one.

The relaxation behavior of the various estimators
shown in Fig. 5. For the singlee1, in Fig. 5~a!, both the
kinetic and virial estimators for̂T& decorrelate in severa
time steps, independent ofP. For the two chains interacting
under the Yukawa potential, Fig. 5~b!, t is longer, but again
it is both independent ofP and roughly the same forTkin( j )
and Tvir( j ). ~In order to test theP dependence oft in this

.

FIG. 4. Natural log of the variance,sT
2 , of the kinetic energy estimator vs

the log of P, for P5320, 400, 510, 600, 750. Open triangles:sTkin

2 . Filled

triangles:sTvir

2 . Dashed lines are linear least squares fits to data: slopes

a50.93(6), 0.6(1).

TABLE III. Percentage of beads which combine to produce a fixed perc
age of the kinetic energy. Singlee1 in a cavity with r c56 a.u.; data aver-
aged over 30 K passes atb550.

% of energy

Kinetic estimator Virial estimator

P5300 P5500 P5700 P5300 P5500 P5700

50 22.54 22.54 22.60 0.085 0.035 0.029
80 50.33 50.34 50.43 0.330 0.148 0.100
90 65.64 65.61 65.65 0.557 0.252 0.167
99 90.67 90.63 90.63 1.553 0.653 0.436
99.9 97.56 97.57 97.59 2.830 1.070 0.738
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case, the Yukawa radiusa was fixed ata50.172.) The po-
tential energy estimatorVe relaxes more slowly still. Again
within our ability to detect, this rate does not vary withP. In
all cases,sTvir

2 ,sTkin

2 . Table IV summarizes the integrate

autocorrelation times and the error prefactord, for kinetic
and potential energies ofe1 and of Ps within the cavity.
While for Ps the virial estimator is seen to relax mo
quickly than the kinetic estimator at early times@Fig. 5~b!#,

FIG. 5. ~a! Autocorrelation functionC( j ) of energy estimator fore1 in r c

56 cavity. Open diamonds: estimatorTkin . Filled diamonds: estimatorTvir .
Runs withP5400, b550. Inset: Integrated relaxation timet of Eq. ~19!.
~b! Autocorrelation functionC( j ) of energy estimator for Ps inr c56 cavity.
Open diamonds: estimatorTkin . Filled diamonds: estimatorTvir . Open
circles: estimatorVe( j ). Runs withP5400, b550.

TABLE IV. Relaxation timest, Eq. ~19!, and error prefactorsd, Eq. ~17!,
calculated from 350 K pass runs withP5400 andb550. Singlee1 and Ps
simulated in hard cavity withr c56 a.u.

Estimator

e1 Ps

t d t d

Tkin 7.0(1) 1.75(2) 25(2) 4.9(2)
Tvir 7.0(6) 1.20(10) 32(2) 2.6(1)
Ve ••• ••• 125(15) 1.3(1)
its autocorrelation function contains at least one slow
decaying mode, so that~Table IV! its integrated relaxation
time, t, is larger. In this context, we note that values oft in
Table IV were derived by using a three-parameter fit s
gested by Janke and Sauer,46,47 which assumes that at lon
times the decay is exponential with a time constanttexp. We
find rough agreement betweent andtexp for all cases listed
in Table IV except for the case of the virial estimator for t
Ps kinetic energy. In that case,texp is quite a bit longer; and
it is comparable totexp for the Ps potential energy.

We conclude that for the systems simulated in our stu
use of the virial estimator will result a smaller error,DE , for
chain lengths greater thanP5300. Figure 4 can be extrapo
lated to smallP, to predict that a crossover to a regime whe
the kinetic estimator is more efficient occurs at somewh
aroundP530 for the single particle in ther c56 cavity. This
might be compared with a crossover atP560 for the particle
in a convex potential using staging in Ref. 46. But the
remains the issue of the systematic error present in^Tkin& for
a single particle in a cavity. This error may derive from t
way chain configurations are sampled—that the image
proximation of Eq.~11! serves as an importance function.
is likely that a different importance function~e.g., that of
Ref. 27! would produce a differently-biased average. T
question is left open for future investigation.

C. Polarizability

Zeolites are polar, aluminosilicate solids. Within th
type of insulating solid, guest moieties experience stro
electrostatic fields. For example, IR spectroscopic exp
ments and theoretical calculations48 have determined tha
small guest molecules experience field strengths near 1
within zeolite A~where 1 V/Å'0.02 a.u.!. Zeolite A has also
been the subject of positron annihilation experiments,
which the decay rate of o-Ps~among other signature pro
cesses! was determined.38,49

To know whether it might be appropriate for such a sy
tem, we have tested the two-chain model in a uniform el
trostatic field, and measured its linear polarizability,a. Of
course, if a uniform electrostatic field is applied to Ps, it
longer exists in a true bound state.50 If the field,E0 , points in
the z direction, the Coulomb–Stark potential isV(r )
521/r 2E0z. The potential minimum is approached whe
z→2`, and there is a saddle point between this glo
minimum and the local minimum atr 50, which occurs
along thez axis, atz521/AE0 ~atomic units!. A semiclas-
sical argument for hydrogenic atoms51 would say that since
the potential at the saddle point isVs522AE0, we can ex-
pect Ps in its ground state to dissociate at a field strengt
roughly E051/64'0.0156; which is when the unperturbe
Coulomb ground state energy exceeds the saddle point
ergy. Further, one must not neglect the fact that the parti
can tunnel through this energy barrier. The rate of disso
tion is extremely small for laboratory-strength fields.50,52

However, this rate is extremely sensitive to the magnitude
the field,52 and the tunneling time may become relevant
fields in zeolitic solids. Our study does not attempt to mo
the dissociation behavior. We have, as before, ‘‘free’’
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pinned in the center of anr c510 a.u. cavity, which for the
weakest fields we have considered is not even large eno
to include the saddle point of the potential surface. Ps p
ticles still remain associated during runs of duration 500
steps for electric fields with a strength up toE050.01. ~They
were observed to dissociate at significantly higher fields.!

The linear polarizability has theoretical valuea536 a.u.
Deriving a from the quadratic Stark shift of the energ
DE' 1

2aE0
2 , is difficult, requiring an extremely large valu

of b in order to resolve this tiny shift. Instead, the polar
ablity was inferred from the induced dipole moment,z0 . For
weak fields,z05aE0 . Whenz0 is a sizable fraction of the
size of the atomic orbital,a052 a.u., the field is no longe
weak enough for the linear theory of polarizability to hold53

~Note that in the linear theory,z0'0.3a0 when E051/64.)
Fields in the rangeE050.002– 0.01 were employed in orde
to find a. The largest dipole moment induced in these c
culations wasz050.18a0 . There is yet another length sca
which is relevant to the 2-chain model, the Yukawa radiusa.
For fixedP the 2-chain model will polarize/dissociate in a
electric field more easily for largera. In runs used to find the
polarizability of the two-chain Ps model, it was always t
case that a,0.3z0 , where z0 was determined self
consistently from the run.

For each value of the electric field, runs were perform
for five values, P5500, 600, 700, 800, 900, 1000, witha
5kP22/3, wherek57.11. The polarizability was estimate
at each pass by the displacement between correspondine1

ande2 beads in the direction of the field,

^z&'
1

P (
i 51

P

zi . ~23!

In order to extrapolate these results toa→0, we note that
second-order perturbation theory predicts that the indu
dipole moment for the Coulomb potential,^z&C , will differ
from ^z& for the Yukawa potential by a correction ter
which scales asa2. So we extrapolate assuming^z&5^z&C

1constP24/3. This is how the energy is found to scale
Ref. 10, and it is the way the extrapolation was performed
Sec. III B. Typical raw data, forE050.0025, is shown in
Fig. 6. Runs of length 1.5 M passes were divided into blo
of 250 K passes, so that error bars could be determin
Figure 7 shows the extrapolated values,^z&C , as a function
of E0 . The slope is found to bea53363 which, though not
extremely precise, is in good agreement with theory.

Finally, we should note that the polarizability could a
ternatively have been obtained from an imaginary time c
relation function~iTCF! of the beads in the absense of
electric field. That is, if one uses second order perturba
theory to calculateDE' 1

2aE0
2 , one arrives at

a'2e2(
n

^0uzun&^nuzu0&
En2E0

52e2E
0

`

^0uetĤẑe2tĤẑu0&dt. ~24!

Equation~24! can be approximated numerically by autoco
relating the positions of beads separated by an imagin
gh
r-

l-

d

d

n

s
d.

r-

n

ry

time 2t, and then integrating this iTCF over all such tim
t. Such calculations have been performed in the course
quantum Monte Carlo simulations in order to calculate b
static and dynamic polarizabilities.54

IV. CONCLUSIONS

We have shown that a path integral Monte Carlo sim
lation involving a Yukawa approximation to the Coulom
primitive propagator is a simple, effective way to simulate
entrapped within a spherical pore. The positions of the be
allow one to visualize the spatial orbital of the Ps ato
There are systematic differences in the distribution
positronic density as compared with the corresponding f
volume model. Assuming a uniform electronic density at t
pore walls, these result in systematically smaller annihilat
rates. The calculated polarizability of Ps is in good agr
ment with theoretical expectations. Binding energies, cal
lated with both kinetic and virial estimators, diminish as t
radius of the cavity decreases. For large numbers of be
the greater computational efficiency of the virial estimator

FIG. 6. Raw data of the dipole moment^z& as a function of chain length,P,
for E050.0025. Each filled circle represents a runs of length 250 K pas
Result is extrapolated~dashed line! as ^z&5^z&C1constP24/3.

FIG. 7. Extrapolated datâz&C , as a function ofE0 fit ~dashed line! to the
form ^z&C5aE0 , yielding a53363.
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confirmed. In summary, this approach offers a simple, v
satile model on which to base simulations of Ps within in
lating solids.
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