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ABSTRACT 
A novel two-channel algorithm is proposed in this paper for 
discriminative training of Hidden Markov Models (HMMs). It 
adjusts the symbol emission coefficients of an existing HMM to 
maximize the separable distance between a pair of confusable 
training samples. The method is applied to identify the visemes 
of visual speech. The results indicate that the two-channel 
training method provides better accuracy on separating similar 
visemes than the conventional Baum-Welch estimation. 

1. INTRODUCTION 

HMM is a powerful statistical tool of analyzing time-delayed 
process. Because of its great adaptability and flexibility in 
dealing with sequential signals, HMM is heavily applied to the 
areas such as speech recognition, handwriting recognition, 
speaker identification and so on. Among the various training 
strategies adopted in these applications, the Baum-Welch 
estimation becomes popular due to its fast convergence and ease 
of implementation. However, this method has its deficiencies in 
fine discrimination. The HMM obtained from the Baum-Welch 
estimation is solely determined by the correct observations but 
does not consider the relationship between the correct 
observations and incorrect ones. As a result, it may be ineffective 
to distinguish similar observations because the scored 
probabilities of incorrect ones are likely to be big too. A solution 
to this problem is maximum mutual information (MMI)-based 
estimation [1]. This method increases the a posteriori probability 
of the model corresponding to the training data and thus the 
discriminative power is guaranteed. However, because it is 
difficult to realize the analytical solutions to MMI criterion 
function, its implementation is always tedious. 

In this paper, a new strategy is proposed to improve the 
discriminative power of the HMMs. The symbol emission 
coefficients of a Maximum Likelihood (ML) HMM are 
partitioned into two parts (channels) for different processing. 
One channel is a normal HMM channel, the other is adjusted to 
maximize the separable distance between the correct samples and 
certain group of incorrect samples. In such management, the 
parameters of the HMM are much easier to adjust than in MMI 
estimation. As the expectation-maximization (EM) estimation is 
applied, the new HMM is trained with a few added iterations.  

The two-channel training algorithm is applied to identify the 
basic visual speech elements in English, the visemes. 
Experimental results indicate that the two-channel training 

algorithm is more effective in distinguishing similar visemes 
than the Baum-Welch method. 

2. TECHNICAL BACKGROUND  
Assume },,{ 21 NSSS L  is the set of states and },,{ 21 MOOO L is 
the set of observations, an N-state-M-symbol discrete HMM 

),,( BAπθ  is determined by 1.) Initial state probabilities 

1][ ×= Niππ . 2.) State transition matrix NNijaA ×= ][  and 3.) 

Symbol emission probability matrix MNijbB ×= ][ . If a T-length 

sequence ),,,( 21
T
T

TTT xxxx L=  is the sample of class di, an ML 
HMM ),,( BAi πθ  can be obtained by using the Baum-Welch 
estimation. However, since the Baum-Welch estimation is not for 
discrimination purpose, if there is another sample 

),,,( 21
T
T

TTT yyyy L=  that is similar to xT but belongs to a 

different class dj )( ij ≠ , the scored probability )|( i
TyP θ  is 

likely to be big too, thus iθ  cannot distinguish xT and yT with 
good credibility. To improve the discriminative power of the 
HMM on separating them, parameters in iθ  should be adjusted 
to maximize the following separable distance.  

)|(log)|(log),,( θθθ TTTT yPxPyxI −=  (1) 

In the proposed strategy, only the coefficients in matrix B of θi 
are modified while A and π are left unchanged because: 1.) the 
parameters of the HMM are usually carefully initialized so that 
the states of the trained ML HMM are physically aligned with 
certain phase of a process. For example, states in speech 
modeling may represent different phonemes. If A and π are 
modified, such correspondence is violated. 2.) the proposed 
training strategy is a sub-HMM method. That is to say, the 
discriminative power of an HMM is improved by enhancing the 
discriminative ability of the individual state. Changing the state 
duration will greatly complicate the problem.  

With the above assumption and if only the probability constraint 

),2,1(1
1

Nib
M

j
ij L==∑

=

 is considered, maximizing (1) is 

equivalent to maximizing the auxiliary function (2), 

∑∑
==

−+=
M

j
ij

N

i
i

TTTT byxIyxF
11

)1(),,(),,,( λθλθ   (2) 

where λi is the Lagrange multiplier for the i-th state. 
Differentiating ),,,( λθTT yxF  with respect to bij and set the result 
to 0, we have, 
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xP λθθ
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∂

∂
−

∂
∂ )|(log)|(log         (3) 

),,( θTT yxI  attains the maximum value if the solutions of ijb  are 
positive. Performing the indicated differentiations by breaking 
the likelihoods in (3), we have, after some manipulation,  

∑
=

===
∂

∂ T
T

j
T

i
T

ijij

T

xOxSsP
bb

xP
1

),|,(1)|(log
τ

ττ θθ       (4) 

where Tsss L,, 21  denote the state chain.  

Let ∑
=

===
T

T
j

T
i

TT
ji xOxSsPxOSE

1

),|,(),|,(
τ

ττ θθ , ),|,( T
ji yOSE θ  

∑
=

===
T

T
j

T
i

T yOySsP
1

),|,(
τ

ττ θ , and define =),,( θTT
ij yxD  

),|,(),|,( T
ji

T
ji yOSExOSE θθ − , (4) becomes   

i

ij

TT
ij

b
yxD

λ
θ

=
),,(

  with     1
1

=∑
=

M

j
ijb     (5) 

The extreme point of ),,( θTT yxI  is determined by (5). 
However, this equation cannot be applied directly to modify bij 
because 1.) the numerator may be less than or equal to 0, and 2.) 
the unknown entry bij also exists in calculating ),|,( T

ji xOSE θ  

and ),|,( T
ji yOSE θ . (5) just suggests a recursion strategy of 

optimizing bij through the expectation of ),,( θTT
ij yxD . 

 
To modify the parameters according to (5) and simultaneously 
maintain the validity of the model, a two channel structure is 
devised as shown in Fig. 1. The symbol emission coefficient, e.g. 
bij is decomposed as s

ij
m
ijij bbb += . For the ith row, the coefficients 

are decomposed into the sum of two parameter sets, which are 
called the master channel and the slave channel. 

4434421
L

4434421
LL

channelslave

s
iM

s
i

s
i

channelmaster

m
iM

m
i

m
iiMii bbbbbbbbb }{}{}{ 212121 +=   (6) 

The coefficient set }{ 21
m
iM

m
i

m
i bbb L  constitutes the master channel, 

which serves to maintain the validity of the HMM. For this 
purpose, the ML model iθ  undergoes parameter smoothing (if 
the estimation of certain symbol emission coefficient 0=ijb , a 
small positive value, e.g. 10-3 is assigned to bij. As a result, the 
scored probability of any non-zero sequence given iθ  is greater 

than 0.), and m
ijb ’s are derived from (7), where ijb

~
is the symbol 

emission coefficient of the smoothed θi. 

}
~~~

){1(}{ 2121 iMiii
m
iM

m
i

m
i bbbbbb LL α−=  10 << iα   (7) 

where iα  is the credibility factor of the ith state that controls the 
weights of the two channels.  

The set }{ 21
s
iM

s
i

s
i bbb L  constitutes the slave channel of the HMM. 

In contrary to the master channel, it is the key source of the 
discriminative power. Its parameters s

M
ss bbb 22221 L are modified 

according to (5) to maximize the separable distance between the 
training pair. However, if the estimation of some coefficient is 
less than 0, it should be replaced with a non-negative value to 
guarantee the validity of the HMM.  

3. TRAINING STRATEGY 
3.1 Parameter Initialization 

The master channel coefficients m
ijb ’s are initialized as 

mentioned above. For the discrete HMM discussed in this paper, 
the slave channel coefficients s

ijb ’s can be initialized with 
random or uniform values. The selection of αi is very flexible 
and largely problem-dependent. If the training pair is similar to 
each other, greater αi should be set to highlight the slave channel 
to improve the discriminative power; otherwise, smaller αi 
should be set to make )|( θTxP reasonably great. In addition, 
different states should have different αi because they contribute 
differently to the scored probability. Taking into consideration 
these points, the following procedure is taken to determine αi. 
Given the ML HMM θ and training pair xT and yT, the optimal 
state chain is obtained via Viterbi searching [2]. If θi is a left-
right model and the expected duration of the ith state of xT is from 
ti to ti+τi, )|( θTxP  is then written as in (8).   

)|,()|,()|,()|(
222111

θθθθ τττ NNN tttttt
T xxPxxPxxPxP +++= LLLL (8) 

Let )|,(),,( θθ τ iii tti
T

D xxPSxP += L , which can be computed by 

(9) using the forward variables )|,,,()( 1 θα itt
x
t SsxxPi == L  and 

the backward variables ),|,,()( 1 θβ itTt
x

t SsxxPi == + L . 

∏ ∑
+

= =

==
ii

i

t

tt

N

j
tjjti

T
D xbSsPSxP

τ

θ
1

)]()([),,(  (9) 

),,( θi
T

D SyP  is computed in the same way. αi is derived by 

comparing the corresponding ),,( θi
T

D SxP  and ),,( θi
T

D SyP . If 

),,(),,( θθ i
T

Di
T

D SyPSxP >> , which indicates the original 
coefficients are good enough to discriminate xT and yT, a small αi 
is set to better keep the original ML configurations. 
If ),,(),,( θθ i

T
Di

T
D SyPSxP <  or ),,(),,( θθ i

T
Di

T
D SyPSxP ≈ , which 

indicates the state Si is not able to distinguish xT and yT well, αi 
must be set big enough to ensure ),,(),,( θθ i

T
Di

T
D SyPSxP >  

under the new model θ . In practical applications, αi can be 
selected in a manner based on the above conditions (which is 
desirable), or computed via (10). 

State i-1 

m
ijb  

s
ijb  

Master channel 

Slave channel 

1-αi  

αi 

Figure 1. Structure of a two-channel HMM 

State i State i+1 
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)1/(1 Kvi +=α     (10) 

where ),,(/),,( θθ i
T

Di
T

D SyPSxPv =  and K is a positive constant 
that controls the smoothness of αi with respect to v, whose choice  
is also problem-dependent. After the value of αi is settled, it 
cannot be modified in the training process. If θi is not a left-right 
model, e.g. an ergodic model, the expected duration of a state is 
several separated slices, ),,( θi

T
D SxP  and ),,( θi

T
D SyP are then 

computed in a similar manner by multiplying the probabilities of 
all the slices together. 

3.2 Step 1: Partition of the Symbol Set 

By using the forward variables )(ix
tα  and backward variables 

)(ix
tβ , the following probability is computed,  

∑
∑∑=

= =
++

++===
N

j
N

i

N

k

x
kik

x

x
jij

x
T

i
x

kobai

jxbai
xSsPi

1

1 1
11

11

)()()(

)()()(
),|()(

τττ

τττ
ττ

βα

βα
θγ  (11) 

By counting the state, we have, 

∑
=

=

=
T

Oxts

xT
ji

j

ixOSE
τ

τ
τγθ

..
1

)(),|,(   (12) 

and ),|,( T
ji yOSE θ is obtained similarly. It is concluded from 

(5) that to increase ),,( θTT yxI , bij should be set in proportion to 
),,( θTT

ij yxD . However, for certain symbol, e.g. Op, the 

expectation ),,( θTT
ip yxD  may be less than 0. These symbols 

need to be isolated because the probability coefficients cannot 
take negative values. Using (13), the symbol set },,{ 21 MOOO L  
is partitioned into the subset },,{ 21 KVVVV L= and its 
complement set },,{ 21 KMUUUU −= L . 

]),|,(/),|,([arg},,{ 21 TyOSExOSEVVV T
ji

T
ji

O
K

j

>= θθL  (13) 

where )1(≥T  is the threshold with typical value 1. T can also be 
set with larger value if we want to decrease the size of V. It is 
clear that 0),|,(),|,( >− T

ji
T

ji yVSEyVSE θθ .  

3.3 Step 2: Modification to the Slave Channel 

For the i-th state, the coefficient )( ji Ub should be set as small as 

possible. Thus we let 0)( =j
s
i Ub , and so )()( j

m
iji UbUb = . For 

the set V, the corresponding slave-channel coefficient )( k
s
i Vb  is 

computed using (14), which is derived from (5).  

)())()(,,,()(
1

k
m
i

K

j
k

m
ii

TT
kiDk

s
i VbVbyxVSPVb −+= ∑

=

α  Kk L,2,1= (14) 

where 
∑

=

−

−
= K

j

T
ki

T
ki

T
ki

T
kiTT

kiD

yVSExVSE

xVSExVSEyxVSP

1

)],|,(),|,([

),|,(),|,(),,,(
θθ

θθ . 

However, some coefficient so obtained, e.g. )( l
s
i Vb , may be less 

than 0. To prevent negative values appearing in the slave 

channel, the symbol lV  is transferred from V to U and )( l
s
i Vb  is 

set to 0. The coefficients of the left symbols in V are re-evaluated 
with (14) until all the )( k

s
i Vb ’s are greater than 0. The condition 

0)( <l
s
i Vb  usually happens at the first several epochs of training 

and it is unfavorable for convergence because it leaves steep 
jump in the surface of ),,( θTT yxI . To relieve this problem, a 
greater threshold T in (13) should be set while obtaining V. The 
process will then concentrate on the fewer dominant symbols of 
xT. 

The two steps described above constitute a training epoch. 
Optimization is done through iteratively calling them. The stop 
condition is associated with the variance of ),,( θTT yxI . After 

each epoch, the new separable distance ),,( θTT yxI  is calculated 

and compared with that of the last epoch. If ),,( θTT yxI  does not 
change much, e.g. less than a predefined threshold, the training 
stops and the target model is obtained. 

3.4 Discussion on the training strategy 

The two-channel HMM obtained acts like boundary function as 
shown in Fig. 2. For example, θ(1,2) is trained to distinguish the 
samples of Class 1 and Class 2. Such modeling method is 
specially tailored for the target class and its “surroundings” and 
thus is more accurate than the ML models. 

 
The proposed method is applicable to similar training sequences 
that their corresponding state durations are comparable. As it is 
meaningless to compare the expected symbol appearances 

),|,( T
ji xOSE θ and ),|,( T

ji yOSE θ  if the durations of Si are 
very different in xT and yT.  To make the training strategy 
complete, the following validation procedure is added. After 
each training epoch, the state durations ),|( T

i xSE θ  and 

),|( T
i ySE θ  are computed by (15). 

∑
∑=

=

=
T

N

i

xx

xx
T

i

ii

ii
xSE

1

1

)()(

)()(
),|(

τ
ττ

ττ

βα

βα
θ ),2,1( Ni L=  (15) 

If ),|(),|( T
i

T
i ySExSE θθ ≈ , e.g. ),|(),|(2.1 T

i
T

i xSEySE θθ >  

),|(8.0 T
i ySE θ> , the training continues; otherwise, the training 

terminates. If the ),,( θTT yxI  obtained does not meet the 
requirement, a new ML model or smaller αi should be adopted. 

The convergence of the training strategy is guaranteed by the 
Lagrange multiplier algorithm and Expectation-Maximization 
(EM) algorithm [3]. It can be proved that the training equation 

Class 1 (V1) 
Class 2 (V2) 
Class 3 (V3) 
Class 4 (V4) 
Class 5 (V5) 

V1 

V2 

V3 

V5

V4

θ(1,2)

θ(1,3) 

θ(1,4)
θ(1,5) 

...... 

Figure 2.  Class boundaries formed by two-channel HMMs 
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(5) gives zero points in λ∂∂ /F  and 22 / λ∂∂ F is negative [4]. 
Thus the algorithm guarantees the convergence of the training 
process. 

The improvement to the separable distance of the proposed 
method is given in (16), 

),,()1log(),,( max θαθ TTTT yxITyxI +−−≤     (16) 

where ),,max( 21max Nαααα L= . The improvement is associated 
with the resemblance between xT and yT and the setting of the 
credibility factors. 

The proposed method is also extended to the training sequences 
with different length. Given training pair xTx with length Tx and 

yTy with length Ty, the training equations (5) are transformed to 
(17), in which a linear entry Tx/Ty is adopted to normalize the 
state duration of yT.  

i
ij

T
T

j
T

i
T

y

x
T

T
j

T
i

T

b

yOySsP
T
TxOxSsP

y

yyy
x

xxx

λ
θθ

τ
ττ

τ
ττ

=

==−== ∑∑
== 11

),|,(),|,(
 (17) 

In multiple observations case, for example, the training pair are 
two labeled sample sets: },,{ )()2()1( kxxxX L=  and 

},,{ )()2()1( lyyyY L= , in which )(ix  and )(iy  are all drawn 
independently, the training equation then becomes,  

i
ij

l

n

n
ji

k

m

m
ji

b

yOSE
l

xOSE
k λ

θθ
=

− ∑∑
== 1

)(

1

)( ),|,(1),|,(1

       (18) 

4. APPLICATION ON LIP READING 

Viseme recognition is a good example of the application of the 
two-channel training algorithm. Most visemes are dynamically 
similar with one another because they experience the same three-
phase process during production: starting from closed mouth, 
peaking at half-opened mouth and ending with closed mouth. By 
using the two-channel training, the minor difference between the 
visemes can be amplified via the slave channel.  

 
In our experiments, the image sequences that indicate viseme 
production are encoded with 128 code words as shown in Fig. 3. 
The code sequence is input to a two-layer recognition system as 
shown in Fig. 4. In the first layer, θ1, θ2 …θN are ML HMMs for 
coarse identification. After a preliminary decision is made, the 
vector sequence is input to a number of two-channel HMMs for 
fine identification. The finial decision is made by assessing the 
majority of the sub-decisions. 

The classification errors of the two-channel HMMs are listed in 
Table 1 and are compared with those of the ML HMMs (It is 
assumed that each phoneme is associated with a viseme). For the 
100 test samples of each viseme used in the experiment, the two-

channel HMM usually gives a much smaller classification error 
than the ML HMMs. As a result, the proposed training method 
excels the traditional Baum-Welch estimation in identifying the 
confusable visemes. 

 

 
Viseme ε1 ε2 Viseme ε1 ε2 

/a:/ 64% 12% /ai/ 59% 39% 
/ei/ 46% 22% /i/ 52% 31% 
/au/ 31% 18% /eu/ 26% 15% 
/o/ 47% 28% /oi/ 37% 9% 
/th/ 18% 17% /sh/ 20% 12% 
/p/ 21% 20% /m/ 32% 31% 

 

5. CONCLUSION 

A two-channel training algorithm for HMM is proposed in this 
paper. It is a handy method of improving the discriminative 
power of an existing ML HMM. The method is applied to viseme 
recognition and good results are obtained. This method can also 
be applied to sequence recognition problems that need fine 
discrimination, for example, speech recognition and speaker 
identification.  
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Figure 3.  Encoding the images using the code words 

Table 1.  Classification error of the ML HMMs ε1 and 
two-channel HMMs  ε2 

θ1  

vector 
sequence 

θ(1,2) 

…
 

Layer 1 
(ML HMMs) 

Layer 2 
(two-channel HMMs) 

Figure 4.  Block diagram of the two-layer viseme 
recognition system 
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