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In this article, we propose and test a new model for measurement error in analytical chemistry. Often,

the standard deviation of analytical errors is assumed to increase proportionally to the concentration

of the analyte, a model that cannot be used for very low concentrations. For near-zero amounts, the

standard deviation is often assumed constant, which does not apply to larger quantities. Neither model

applies across the full range of concentrations of an analyte. By positing two error components, one

additive and one multiPlicative, we obtain a model that exhibits sensible behavior at both low and high

concentration levels. We use maximum likelihood estimation and apply the technique to toluene by

gas-chromatography/mass-spectrometry and cadmium by atomic absorption spectroscopy.

KEY WORDS: Atomic absorption spectroscopy (AAS); Coefficient of variation; Detection limit;

Gas-chromatography/mass-spectrometry (GaMS); Maximum likelihood; Quantita-

tion level.

INTRODUCTION: MEASUREMENT NEAR

THE DETECTION LIMIT

Traditionally, the description of the precision of an an-

alytical method is accomplished by applying two separate

models, one for describing zero and near-zero concen-

trations of the analyte (the compound that the analytical

method is designed to measure) and another for quantifi-

able amounts. This traditional approach leaves a "gray

area," of analytical responses in which the precision of

the measurements cannot be determined. The model gov-

erning quantifiable amounts assumes that the likely size

of the analytical error is proportional to the concentration.

If this model is applied to analytical responses in the gray

area, then there is an implicit assumption that the analyti-

cal error becomes vanishingly small as the measurements

approach O. From long experience, this assumption ap-

pears to be invalid. Similarly, if the zero-quantity model

is applied, there is an implicit assumption that the abso-

lute size of the analytical error is unrelated to the amount

of material being measured. Based on similar empirical

information, this assumption also cannot be supported.

The new model presented in this article resolves these

difficulties by providing an estimate of analytical preci-

sion that varies between the two extremes described by

the traditional models. The model provides a distinct ad-

vantage over existing methods by describing the precision

of measurements across the entire usable range. Examples

are given of two different analytical methods, an atomic

absorption spectroscopy analysis for cadmium and a gas-

chromatography/mass-spectrometry analysis for toluene,

both of which support the validity of the new model. The

new model is applicable to a wide variety of situations

including nonlinear calibration and added-standards cali-

bration. Discussion is provided on the application of the

new model to some common issues such as determina-

tion of detection limits, characterization of single samples,

and determination of sample size required for inference to

given tolerances.

Many measurement technologies have errors whose

size is roughly proportional to the concentration-this is

often true over wide ranges of concentration (Caulcutt and

Boddy 1983). One common way to describe this constant

coefficient of variation (CV) model is that the measured

concentration x is given by

log(x) = log(Ji,) + 1J

or
x = /.LeI/,

where JL is the true concentration and 17 is a normally

distributed analytical error with mean 0 and standard de-

viation (11/. This model is widely used. but it fails to make

sense for very low concentrations because it implies ab-

solute errors of vanishingly small size.

On the other hand. one often considers the case of an-

alyzing blanks (samples of zero concentration) and data

near the detection limit by the model

x=/L+e

with normally distributed analytical error ~. This is used

for calibration with ,tL = 0 and for the determination of

176



A MODEL FOR MEASUREMENT ERROR IN ANALYTICAL CHEMISTRY 177

detection limits (Massart, Vandingste, Deming, Michotte,

and Kaufman 1988). It is, however, a bad approximation

over wider ranges of concentration because it implies that

the absolute size of the error does not increase with the

concentration, and this is rarely true of analytical methods.

The solution proposed here is a combined model

that reflects two types of errors. For example, in a

gas-chromatography/mass-spectrometry (GC/MS) analy-
sis one type of error is in the generation and measurement

of peak area, which will generally have errors of size pro-

portional to the concentration. The other type of error

comes from the fact that, even when fed with a blank sam-

ple, the output is not a flat line but still retains some small

variation. There are many sources of error in such an

analysis; the idea here is merely to classify them into two

types, additive and multiplicative. The model proposed is

x' = JLe" + E, (1.4)

where there are two analytical errors, TJ ""' N(O, a;) and

E ""' N(O, a~2), each normally distributed with mean 0.

Here TJ represents the proportional error that is exhibited

at (relatively) high concentrations and E represents the

additive error that is shown primarily at small concentra-

tions. Another way of writing this model is via a linear

calibration curve as

bears some relationship to what Hall and Selinger (1989)

called the "Horwitz trumpet" (Horwitz 1982; Horwitz,

Kamps, and Boyer 1980). There are substantial differ-

ences however, that are discussed in Appendix A.

As an example, suppose that a~ = 1 part per billion

(ppb) and all = .1. Then the standard deviation of blanks

is 1 ppb, so the detection limit (in one definition) might

be set at 3a~ = 3 ppb. At this concentration, measure-

ments have a standard deviation of 1.04 ppb (using the new

model), barely above the value at zero concentration-this

is, a coefficient of variation of .35. One definition of the

quantitation level is concentration in which the coefficient

of variation falls to .2, the practical quantitation level (En-

vironmental Protection Agency 1989). Because all = .1,

the coefficient of variation is .1 for large concentrations.

Using the new model, the critical level at which the CV is

.2 can be found by solving (.2xY = (.lx)2 + (1)2 for x,

which yields x = 5.77. Thus, at 6 ppb, the Environmen-

tal Protection Agency's practical quantitation level (PQL)

has been reached. This calculation is only possible be-

cause of the new model-neither of the standard models

can be used to compute the PQL.

It has been stated that values below the PQL do not yield

useful quantitative information about the concentration of

the analyte (e.g., Massart et al. 1988). The incorrect-

ness of this idea has been pointed out (e.g., AS1M-D4210

1990 [AS1M 1987]). The new model more clearly demon-

strates the usefulness of measurements below quantitation

levels. The proposed model allows determination of the

error structure of an analytical method near the detection

limit and so provides an easy way to give precisions for

such measurements, as well as the average of several such.

y = a + .b'lLe'l + ~, (1.5)

2. ESTIMATION

The approach we used is based on maximum likelihood

estimation. An observed value x differs from the theoret-

ical value J.L because of the two errors '7 and E, which are

not directly observed. Any combination of '7 and E that

satisfies E = X -J.Lell is possible. Consequently, the like-

lihood associated with a set (all' aE) ofpararneters given a

set of n measurements Xi with known concentrations J.Li is

(2.1)

Maximizing this likelihood leads to estimates of the nec-

essary parameters all' andaE. More complex models, such

as the estimation of a calibration curve, can be estimated

in the same fashion, using maximum likelihood. For ex-

ample, the calibration model (1.5) has likelihood

e-I12 /(2(1;) e-(y-a-.8JLe"f /(2(1;) d 17. (2.2)

where y is the observed measurement (such as peak area

a GC). Note that the new model approximates a constant

standard deviation model for very low concentrations and

approximates a constant CV model for high concentra-

tions.

The approach proposed here should be contrasted with

an alternative method, which is to model the standard de-

viation as a linear function of the mean concentration. The

latter approach should work well over restricted ranges but

suffers from some disadvantages when used over a wide

range. First, the predicted standard deviation at zero con-

centration need bear little resemblance to the measured

value when one regresses the standard deviation of repli-

cates on the mean of the replicates. The proposed new

model allows the data near 0 to determine the predicted

standard deviation near 0 and the data for large concen-

trations to determine the standard error for large concen-

trations. Second, the new model allows the errors at large

concentrations to be lognormal, rather than normal, which

is in accord with much experience. Third, there is a more

plausible physical mechanism for the existence of multi-

plicative and additive errors than there is for a standard

deviation that is linear in the mean. A comparison of the

predicted standard deviations from the two models is given

in a later example.

If viewed in terms of the coefficient of variation, the

picture is that large concentrations have a constant CV,

whereas small concentrations have an increasing CV that

tends to infinity as the concentration approaches O. This
Once estimates an and a. have been derived, the preci-

sion of any measured value in the form (1.4) is (using the

TECHNOMETRICS, MAY 1995, VOL. 37, NO.2
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formula for the variance of a lognormal random variable) A third potential elaboration is needed to address the

case in which a labeled standard is used to calibrate mea-

sured values, which adjusts for recovery efficiency. Con-

sider an analytical method to determine the concentration

of a volatile organic such as toluene. One method of in-

creasing accuracy is to spike the sample with a known

concentration v of deuterated toluene and determine the

estimated concentration JJ; of toluene and JJ;d of deuterated

toluene. One estimate of the true concentration of toluene

is JJ;adj = JJ;V/JJ;d, which adjusts for recovery. If

JaE2 + Jl,2~;(~ -1), (2.3)

which can be estimated by substituting estimated values

for the parameters. This formula illustrates the key feature

of the new model-when Jl, is small, the error is nearly

constant in size; when Jl, is large, the size of the error is

roughly proportional to Jl,. In the calibration form (1.5),

the estimated concentration is

Ii: = ii-I (y -a) = ii-I (a -a + .BJl,e" + E). (2.4)

If the covariance matrix (fi, ii) is V, then a straightforward

delta-method calculation shows that the variance of Ii: is

g'V g + a; /.B + Jl,2err; (err; -1), (2.5)

where g = (.B-1, -Jl,.B-I). Note that, when sample sizes

are sufficiently large that a and .B can be regarded as

known, the g' V g term disappears, and this basically coin-

cides with (2.3).

The computational approach used is outlined in Ap-

pendix B. From the usual maximum likelihood estimation

theory, the estimates of the parameters are normal with

asymptotic variances given by the negative inverse of the

information matrix, which we use for the matrix V men-

tioned previously when needed.

y = a + .BILe"1 + E (2.7)
and

Yd = a + ,Bve"2 + ~2. (2.8)

then the precision of Ji;adj depends on the precision of Ji;,

the precision ofJi;d, and their covariance. Using the delta

method we derive an approximate variance for Ji;adj as

~ 2 2 ~2 2 2~2 ~ 2 2~ /~3 var(JLadj) ~ a Jl v / JLd + a Jl v JL / JLd -aJlJld v JL JLd'

(2.9)

where a~, a~ , and a,1/Ld are derived from a multivariateIL ILd .-

version of (2.5). In this case, it is necessary to have suffi-

cient data to estimate the covariances of the errors in (2.7)

and (2.8).

3.

APPLICATIONS

In this section we describe some ways that the new

model can be used. We concentrate especially on appli-

cations in environmental monitoring, where detection and

measurement of low levels of toxic substances may be

quite important. Generally, these applications assume that

the parameters of the model have been determined, so we

will generally describe the ideas in terms of the simple

model (1.4). Extensions to the case in which calibration

error is also to be accounted for are straightforward.

2.1 Elaborations of the Basic Model

The model we are developing will be of no practical use

unless it accurately describes the behavior of a wide range

of analytical data. If a test data set consists of replicated

measurements at a variety of levels from 0 to (say) 500

ppb, then the precision at 0 will be af and the CV at 500

ppb will be approximately a", so these two parameters

can be chosen to fit almost any behavior at the extremes.

The model, if correct, says much more. From these two

parameters, the exact way in which the standard deviation

gradually rises in the transition region can be completely

predicted. Thus it would make sense to compare the preci-

sion at each level implied by the model and the parameter

fits to the estimated precision from the replicates. If the

model in its simplest form does not fit the data, then an

elaborated form may be required. One example of the

possible need for an elaboration is a nonlinear calibration

function. With a nonlinear calibration function W(I./.; (J),

the model becomes

3.1 Detection Limits

y = a + W(JL; fJ)e" + E (2.6)

According to the preceding model, the observations at

true concentration .lL = 0 are normally distributed with

standard deviation a~. If r replicates are used, then any

average of measured values greater than D = 3a~ /';;: is

extremely unlikely to have come from a zero concentra-

tion sample. Use of the exact method of setting confidence

intervals described in Section 3.2 allows the precise deter-

mination of the uncertainty. Of course, this assumes that

the replicates are true reruns of the entire process; other-

wise the error may not be reduced by a factor of .;;: but

by a much smaller amount.

An implication of this rule for environmental moni-

toring is that the accumulation of measurements at low

levels, even individually below the individual observation

detection limit can still provide quantitative evidence of

the concentration of a toxic substance. If the safe level is

near or below the detection limit, then it might make sense

to require replicate measurements (to reduce the effective

The parameters can be determined by maximum likeli-

hood as before.

Another problem that may arise is that the variance may

not depend on the mean for large concentrations in the way

implied by the model. An elaboration to help resolve this
problem is to specify that 1] "" N(O, a; V (Ji,)) (Carroll and

Ruppert 1988). This allows for a different behavior than

implied by lognormal errors.

lECHNOMETRICS, MAY 1995, VOL. 37, NO.2
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Table 1. Cadmium Concentrations by AASdetection limit) and to require the quantitative recording

of measurements even when they are below the individual

observation detection limit.
Cadmium

concentration (ppb) Absorption (x 100)

0

2.7784

9.675

22.9716

31.7741

43.2067

.0

5.5

21.8

53.4

74.1

94.6

-.7

5.9
22.5

53.6
74.0
99.6

-.1

6.1
23.2
50.9

71.2
99.4

of the logarithms of n measurements will have approxi-

mate standard deviation a,,/ In. Some further work will

be needed to determine when inference should be based

on the measurements and when on the logarithms. An-

other possible technique to improve inference is to use a

normalizing transformation that depends on the parameter

values.

3.2 Uncertainty of a Single Measurement

There are two primary approaches to this problem, an

exact solution and a normal or lognormal approximation.

In the exact solution, we construct a confidence interval for

the true concentration by locating the points on either side

of the measured value where a hypothesis test just rejects.

If a measurement x is obtained, and a 95% confidence

interval is desired, then we need to find values ,uL and,uu

such that100 -1 'e-1/2/(26;)(l-~(x-,uLel/)/uf)d77 = .025

-00 ./i]iUI/

(3.1)
and

1

00 _-.!.-e-,,2/(2u;)(~(x-.uue")/aE)dl7 = .025,

-00 ../iiia" (3.2) 3.4 Determination of Sample Size

The approximate sample size required to determine a

concentration to a particular precision depends on the con-

centration as well as the precision desired. Suppose that

we wish to choose the number of replicates r so that

the chance of detecting a specified concentration that is

above the safe level is sufficiently high. For example,

suppose that the safe level is .1 ppb and the standard de-

viation parameters are a. = .2 ppb and all = .1. Suppose

that it was held to be important to detect a concentration

of .3 ppb. At that concentration, the standard deviation of

an average of r replicates is

J[a; + .u2eO"; (eO"; -1)]/r

where cI»() is the standard normal distribution function.

This can be done by numerical solution of these equations,

which yields a 95% confidence interval (ILL, lLu).

An approximate method is based on the estimated vari-

ance of x given by

V(x) = a; + x2err;(err; -1), (3.3)

For low levels of x (those in which the first term domi-
nates), the distribution of x is approximately normal. An

approximate 95% confidence interval is formed as

x::l: 1.96/V""(X). (3.4)

For high levels of x [those in which the second term in

V(x) dominates] In(x) is approximately normally dis-

tributed with variance a; so that a 95% confidence interval

for .u is

(3.6)

(3.7)

(3.8)

Using a nonnal approximation, the distance between the

safe level .1 ppb and the concentration .3 ppb in standard

deviation units is

(exp(ln(x) -1.96a'1)' exp(ln(x) + 1.96a'1»' (3.5)

Note that this interval, although symmetric on the loga-

rithmic scale, is asymmetric on the original measurement

scale.
(.2/ .202),Jr 989,Jr.

Table 2. Standard Deviation of Absorption and

Log-Absorption

3.3 Uncertainty of an Average of Several

Measu rements

Here, the exact method of confidence-interval determi-

nation would be burdensome because it would require the

computation of a difficult convolution, so confidence in-

tervals must be based on the approximate normality of x

(for low levels) or of iii(X) (for high levels). For low

levels, the average, x, of n measurements will be ap-

proximately normally distributed with standard deviation

.JV(x)/n. For larger values of x, it will be better to per-

form inference using the logarithms of the data, which

will be more nearly normally distributed. The average

Cadmium
concentration

Log-absorptiof

std. dev.
Absorption

std. dev.

.351

.283

.645

1.360
1.564

2.821

0

2.7784

9.675

22.9716

31.7741

43.2067

.0488

.0287

.0260

.0215

.0289

1ECHNOMETRICS, 
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Table 3. Initial Estimates From Pooled Data and Final

Parameters by MLE for Cadmium Data

'I'!
(\j

0

N

ID;...

c
0

"i5."
f/)

~
;.:
Q)

()

+-'
cn q

~

It)

ci

For the chance of detection to be .95, we require .989..(i >

1.645 or r > 2.77. In this case, the number of replicates

should be at least 3.

4.

EXAMPLES
0 20 40 60 80 100

In this section, we present two examples of analytical

methods and examine the fit of the two-component model.

The first example consists of graphite-furnace atomic ab-

sorption spectroscopy (AAS) measurements of cadmium,

for known concentrations from 0 to 43 ppb, each quadru-

ply replicated. The second example is GC/MS measure-

ments of toluene from 4.6 picograms to 15 nanograms. For

descriptions of these methods see Willard, Merritt, Dean,

and Settle (1988). In both cases we use the calibration

form (1.5) with likelihood (2.2).

Mean Absorption

Figure 2. Actual and Predicted Standard Deviation for Cad-

mium by AAS. The dots represent the standard deviation

of the replicates and the solid line is the predicted standard

deviation using (3.4) and (3.5) as appropriate.

AAS measurements, and Table 2 gives the standard de-

viation of the replicate measurements of absorbance and

the standard deviation of the logarithms of the replicates.

Note that the measurements at the two lowest concentra-

tions appear to have a constant standard deviation of the

measured concentration and the measurements at the four

highest concentrations appear to have a constant standard

deviation of the measured log-concentration. Therefore,

the data span the "gray area" of quantification. Start-

ing values for the maximum likelihood estimator (MLE)

procedure, which in this case are themselves quite good

4.1 Cadmium by Atomic Absorption Spectroscopy

The instrument used for these measurements was a

Perkin-Elmer model 5500 graphite furnace atomic absorp-

tion spectrometer with a model HGA-500 furnace con-

troller. The tubes were pyrolytically coated; injections

were made onto L'vov platforms. A deuterium arc lamp

was used for background correction. Table I shows the

0
0
~

v

0
CD

0'
a

E
c:
0

"E.
0
In
.c
«

C\I

a
<0

0

a
"-t

~
0
N

~

0 10 20 30 40 50 0 10 20 30 40 50

Concentration of Cadmium (ppb) Concentration of Cadmium (ppb)

Figure 1. Concentration of Cadmium Versus Absorption by
AAS. The dots represent the measured values, the solid line is
the calibration curve estimated by maximum likelihood using
model (1.5), and the dashed lines form an estimated predic-
tion envelope using (3.4) and (3.5) as appropriate.

Figure 3. Residuals for Cadmium Calibration. The dots rep-

resent the differences between measured values and the pre-

dicted values from Model (1.5) and the dashed lines form

an estimated prediction envelope using (3.4) and (3.5) as

appropriate.

1ECHNOMETRICS, 
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Toluene Amounts by GC/MS Table 6. Initial Estimates From Pooled Data and Final

Parameters by MLE for Toluene Data

Table 4.

Toluene

amount (pg) Peak area Starting value Final valueParameter

11

4:
17:

77:

431!

2240!

19.52

34.78

207.51

936.93

3879.28

24863.91

1.6
1.546

.10

6.0

11.51

1.524

.1032

5.698

4.6
23

116

580

3,000

15,000

29.80
44.60

207.70

894.67

5350.65

20718.14

16.85

48.13

222.40
821.30

4942.63

24781.61

a

fJ

IT"
IT,

95% confidence interval (20.69, 22.88) and half-widths

1.07 and 1.12. A normal approximation using Equation

(2.3) yields confidence intervals of (2.49,3.01) for an ab-

sorbance of 6 and (21.23, 22.29) for an absorbance of

50. The approximation is quite acceptable for the low ab-

sorbance but not for the higher one. For the absorbance of

50, an acceptable approximation is gained by using the ap-

proximate lognormality of the measurements at high lev-

els,leading to a 95% confidence interval of (20.72,22.85).

Note, however, that there is no satisfactory alternative to

the exact confidence interval provided by the new model

that is accurate over the entire range of measurements.

4.2 Toluene by GC/MS

The instrument used here was a Trio-2 GC/MS (VG

Masslab) with electron ionization at 70 electron volts with

a 3D-meter DB-5 GC column. Table 4 shows an analy-

sis of amount of toluene by GC/MS for known amounts

of from 4,6 picograms to 15 nanograms in 100 ILL of

extract. (1 picogram in 100 ILL corresponds to a concen-

tration of ,01 ppb,) The quantitation is done by peak area

:#0
0
0
0
~

:;:..

0
0
0
~

estimates of the parameters, are shown in Table 3. Starting

values for the regression parameters a and .B were derived

by ordinary linear regression of the absorbance measure-

ments on the concentration. The starting value for the

standard deviation a E of zero measurements was estimated

from the two lowest concentrations because there appears

not to be an upward trend until the third highest concentra-

tion. A starting value for the standard deviation of the log

absorbances for high concentrations all' which is approxi-

mately the coefficient of variation, was derived by pooling

the highest four levels, where the CV appears constant.

These initial estimates are of such high quality that they

are scarcely changed by the MLE iterations. Final values

are also shown in Table 3. Note that the calculation is not

extremely sensitive to the starting value because the same

optimum was arrived at from a = O,.B = 2, all = .03,

and aE = .4, for example. Somewhat plausible values

must be used, however, to avoid numerical instability.

The results are shown graphically in Figure 1, which

plots the data, the calibration curve, and an estimated en-

velope; Figure 2, which shows the actual and predicted

standard deviation; and Figure 3, which shows the resid-

uats from the model fit.

If we now treat these estimated parameters as known,

we can use the model for further analysis. For example,

if the limit of detection is defined as the absorbance (and

associated implied concentration) that falls three standard

deviations above 0, we find that it lies at about .4 ppb.

Confidence intervals for concentration can be derived

using the methods of Section 3.2. For example, with the

parameters estimated for the cadmium data, an absorbance

of 6 implies an estimated concentration of 2.75 ppb, with

95% confidence interval (2.47,3.04). This is almost sym-

metric, with half widths of .28 and .29. An absorbance of

50 implies an estimated concentration of 21.76 ppb, with

co
Q)

<
~

Q)

a.

.~.y'

0
0.-

,-7;'
.X"

0,-

Table 5. Standard Deviation of Peak Area and Log Peak Area

1000010 100 1000

Toluene amount Peak area std. dev. Log peak area std. dev.

4.6
23.0

116.0

580.0

3,000.0

15,000.0

6.20

5.65

21.02
73.19

652.98

2005.02

2719

1387

,1080

,0858

,1427

,0878

Amount of Toluene (pg)

Figure 4. Concentration of Toluene Versus Peak Area by

GC/MS. The dots represent the measured values, the solid

line is the calibration curve estimated by maximum likelihood

using Model (1.5), and the dashed lines form an estimated

prediction envelope using (3.4) and (3.5) as appropriate. Note

the log-log scale.

1ECHNOMETRICS, MAY 1995, YOLo 37, NO.

5.682.272.883.40

5.795.76

-':;:-",-z"



182 DAVID M. ROCKE AND STEFAN LORENZATO

Table 7. Predicted Standard Deviations From New Model and

From Linear Regression of the Standard Deviation on the Mean

Mean

peak area

Peak area
std. dev.

Predicted std. Predicted std. dev.

dev. from (2.5) from linear regression
0
0
Ln

(\1
aJ

<
~
(\1
aJ
a.
;,:
aJ
0

+-'
U)

20.7

42.4

202.6

856.6

4622.1

23192.4

6.20

5.65

21.02
73.19

652.98

2005.02

5

6

19

92

475

2378

46.60

48.48

62.29

118.68

443.37
2044.64

0
It)

0.-
II)

50 500 5000

standard deviation; and Figure 6, which shows the resid-

uals from the model fit. These plots are all on a log-log

scale.

A comparison is given in Table 7 between the predicted

standard deviation of the peak area from the model devel-

oped in this article and the predicted standard deviation

from a variance function in which the standard deviation

is a linear function of the mean. Both fit well for high con-

centrations, but the linear function is quite inaccurate for

lower concentrations. For these large ranges, it appears

that the new model fits the behavior of the data better.

Mean Peak Area

Figure 5. Actual and Predicted Standard Deviation for

Toluene by GC/MS. The dots represent the standard devia-

tion of the replicates and the solid line is the predicted stan-

dard deviation using (3.4) and (3.5) as appropriate. Note the

log-log scale.

CONCLUSION

5.

In this article we have provided a new model for analyt-

ical error that behaves like a constant standard deviation

model at low concentrations and like a constant CV model

at high concentrations. The importance of this new model

is that it provides a reliable way to estimate the precision

of measurements that are near the detection limit so that

they can be used in inference and regulation. Although

the illustrations used in the article are for linear calibration

analyses, the model itself is flexible enough to be used in a

wide variety of situations, including nonlinear calibration,

censored data, and added-standards methods.

at m/z 91. The relationship between amount and peak

area is satisfactorily linear and the behavior of the errors
is generally consistent with the new model as shown in

Table 5. Starting values were derived from ordinary lin-

ear regression and from an examination of the standard
deviations of the raw and logged data. The MLE esti-

mation gives apparently acceptable results as shown in

Table 6.
The results are shown graphically in Figure 4, which

plots the data, the calibration curve, and an estimated en-
velope; Figure 5, which shows the actual and predicted
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APPENDIX A: THE HORWITZ TRUMPET

Horwitz (1982; Horwitz et al. 1980) examined over 150

independent Association of Official Analytical Chemists

interlaboratory collaborative studies covering numerous
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CV(JJ,) = .O06JJ, -.5

(A.I)and

~V(/i) = .O2/i-,IS
and (A.3)

u(j.(.) = .O2j.(.,85.
(A.4)Both the Horwitz trumpet and the present article sug-

gest an increase in the CV at low concentrations; however,

there are several important differences. First, Horwitz

was interested in the variation from laboratory to labo-

ratory, whereas the model in this article is intended for

intralaboratory precision (there is no reason why it should
not apply also across laboratories, however). Second,

and more important, Horwitz Was describing how the

precision changes when one moves from one analytical

method intended for a certain range of concentrations to

another method intended for a different range. The two-

component error model is for a single analytical method
across its useful range. There is no reason why one model

cannot be used within methods and a different one between

methods. In the language of this article, Horwitz had a

model for how 0'" changes with the analytical method,

but the two-component model describes how the preci-

sion changes within a given method as the concentration

approaches the detection limit of that method.
It is of Particular note that the Horwitz trumpet cannot

be used to serve the pulpose of this article in describing

the transition of the error structure in a given analytical

method as the concentration changes from high levels to

those near the detection limit. This is because the Horwitz

model in both its original form and in Hall and Selinger's

emendation imply that the standard deviation of a mea-

surement at low levels approaches O. In particular, if used

inappropriately to describe the interlaboratory error under
zero concentration, this model would imply zero error. In

fact, most laboratories might report the compound as "not

detected," but this is a far cry from zero error.
In SUmmary, both the Horwitz trumpet and the two-

component error model have a proper place in understand-
ing the errors of analytical method. The former is useful

f(x)W(x)dx
(A.6)by

m

LW;!(x;),
'A.7)

~

g(x) = e-(X-XII

(A.8)satisfies

dlog(g(x))~
dx

= (x xo)/k' (A.9)and

d2Iog(g(x) ) --dX2 .~ 1/ k".

Then Xo is a 0 of d log(g(x»/dx, and

I -, -1/2 I

(A. 10)

dllog(g(x»
-~

k=-

dx; A
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[Received June 1992. Revi.ved July 1994.]Now the log of the integrand of (A.5) is

h(1/)= -log(27raEa,,) -1/2/(2a;)-(x -JLe")2/(2a;).

(A.12)

h'(17) = -17/0'; + JLel/(x -JLel/)/O'; (A.13)

and

h"(TJ) = -1/a;+/Le"(x-/Le")/a;-/L2e2"/a;. (A.14)

We find a root of Equation (A.13) numerically and use the

associated transformation to approximate the integral.

This procedure results in fairly quick calculation of an

accurate approximation of the likelihood for use in max-

imum likelihood estimation. In the calculations in this

article, we use a 12-point approximation. The numerical

optimization was performed with a quasi-Newton method

using BFGS rank-two updates and a trust region approach

(Dennis and Schnabel 1983). The implementation used

was the IMSL routine DUMINF (1989). Starting values

for the iterations when the model is in the simple form (1.4)

can be derived from two simple calculations. First, af can

be estimated by the standard deviation of zero or near-zero

replicates. Then, a" can be estimated by the standard de-

viation of the logarithms of some high concentration. For

the calibration form (1.5), initial estimates of a and.B can

be derived from linear regression of the response on the

log concentration.
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