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1. Introduction and summary. There has been considerable interest in the develop-
ment of numerical methods for solving nonlinear systems of equations F(X) = 0, which
do not require the evaluation of partial derivatives of F. The development of such
methods has been slow, since proofs of convergence for well-known one-dimensional
methods such as the method of bisections or the method of false position are not easily
extended to higher dimensions. Nevertheless, there is an effective analogue to the method
of false position due to Kincaid [1] and several higher-dimensional "Newton-like"
methods (see Rheinboldt [3] and Dennis [4]), as well as some minimization methods
(see Powell [7]). A direct extension of the method of false position is the method of
Gauss [2, p. 234] for which no proof of convergence appears to exist.

In the present paper we develop a two-dimensional method for obtaining an approxi-
mate solution of the system of equations

F(X) = F(x, y) = (f(x, y), g(x, y)) = 0 = (0, 0) (1.1)

which resembles the one-dimensional method of bisections. Let us motivate the two-
dimensional method by a brief description of the one-dimensional method.

At the outset, we want to ensure that we can in fact apply the method of bisections
to determine an approximate solution £ of the one-dimensional problem

Q(x) = 0. (1.2)
There are simple sufficient conditions for this to be the case, namely, if Q is continuous
and real on a finite interval [a, b] and if we can find two points xx and x2(Xi < x2) on
[a, 6] such that Q(xi)Q(x2) < 0. At the outset, then, we can search for two such points
x! and x2 by evaluating Q at

a, b, a + —- (b — a), k = 1, 2, • • • , n.
£71

If we can find two points Xi and x2 or [a, b] such that Q(zi)Q(x2) < 0, then there exists
a point £ on the interval [xt, x2] such that g(£) = 0. We can then compute an approximate
value of £ by the method of bisections, i.e., by means of the following algorithm:

(i) Set c = (x, + x2)/2\

* Received September 16, 1972; revised version received August 5, 1974.
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(ii) If j(xx)j(c) < 0, set x2 = c and return to (i); If /(a?i)/(c) > 0, set xx = c and return
to (i).

Using this algorithm we halve the interval [xi, x2] at each step. If after n steps we approx-
imate £ by either xt or x2 , the error is at most x2 — Xi < (b — a)/2".

In Sec. 2 we describe a simple test to determine whether the system (1.1) has a
solution in a polygonal domain 2D with boundary points at X1, ■ ■ ■ , XN, which one meets
consecutively as one traverses 2D in a counter-clockwise manner. Our test is based on
the use of the formula

5n(F , 33, 9) = _ X sgn f(X') sgn g(X')
sgn f(X' + 1) sgn g(Xi+1) (1.3)

where XN+1 = X1. This formula yields 5N(F, 3D, 8) = d(F, 3D, 0), which is the topological
degree of F at 9 relative to 2D, provided that / and g are real and continuous in 3D, the
closure of 33, F 9^ 9 on the boundary of 3), and fg has at most one sign change on each
line segment X'Xt + l joining the points X' and X,+1. By Kronecker's theorem [9, p. 161],
if d(F, 2), 8) 9^ 0 then the system (1.1) has at least one solution in 3).

In Sec. 3 we devise a simple test for determining whether or not the point 8 is con-
tained in a triangle,

AA'A2A3 = \X: X = £ M', X, > 0, £ = 1I i = l t = 1

where the points A' are three non-collinear points in the plane. If A = (cti , a2) and
B = (bi , b2) are two distinct points in the plane, then we can define a linear form

L(A, B, X) = (62 — a2)(x - a,) — (6i — a,)(y — a2). (1.4)

We show that 6 G AA1A2A3 if and only if

L{A\ Ai+1, 6)L(A\ Ai+1, Ai+2) > 0 for i = 1, 2, 3. (1.5)
where A,+3 = A'. We then describe an algorithm (Algorithm 3.1) for finding an approxi-
mate solution of (1.1) which combines the results of Sec. 2 and uses the relations (1.5)
as well as the idea of bisecting triangles. We bisect A A1 A2 A3 by first locating the longest
edge A'A< + 1, setting D = (A' + A' + 1)/2, and then forming two triangles, AA'DA'+2
and ADAi+lAi+2.

In Sec. 4 we state conditions which enable us to prove the convergence of Algorithm
3.1.

Algorithm 3.1 has been tested in applications. In [11] a Fortran program has been
written which begins with a rectangular region 2D, and which computes d(F, 33, 6) using
(1.3). If d{F, 2D, 9) = 0, the program requests a new rectangle; if d{F, 2D, 8) ^ 0, the
program branches to the "triangulation stage," which starts by bisecting 2D into two
triangles. Indeed, for the problem

i(x y) = 15 _ 3M2 - 6M,M0 _+ 2M3K 'y) C2M, - M„2)3/2 ° (16)

, N n „ 4M3- 12M2M0 + 12MiM02 - 3M04 n9(x, y) = 3.2 (2Mi - M0*)"> = °

in which Mi = r((; + l)/x)T(y — (j + l)/x)/(xT(y)), and which arose in statistical
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applications, Newton's method, Powell's method [7] the method of steepest descents,
Box's complex algorithm [12] and the flexiplex algorithm [13] all failed to produce a
solution, whereas the program of [11] enabled us to solve (1.6) to 3 dec. accuracy.

2. Location of a region containing a root. Let P be a polygon in the A' = x?/-plane,
with N vertices X1, X2, • ■ ■ , XN, which one meets consecutively as one traverses P in
a counter-clockwise manner. Let the polygon P form the boundary of a simply connected
and bounded domain 2D. With reference to (1.1), let /, g, /»,/,, gx and g„ be real, con-
tinuous and bounded on £>, where 3) denotes the closure of X>(£> = 2D — P), and let
f + g2 ̂  0 on P.

It can be shown [6, p. 321], that

i I CD
where N+(N-) denotes the number of solutions of (3.1) in 2D at which jxgv — jygx > 0(<0),
provided that (fIgv — jvgx)(Y) ^ 0 for all Y £ 2D such that F(Y) = d. In general, if
F ~ (/> d) ^ 0 = (0) 0) on P> then the right-hand side of (2.1) is called the topological
degree of F at 6 relative to 2D and is denoted by d(F, 2D, 6). If d(F, 2D, 6) 5* 0, then by
Kronecker's theorem (see [9, p. 161]) there exists at least one point X £ D such that
F(X) = 9. Since the integrand in (2.1) is just d(arctan (g/j)), if the maximum distance
between X' and X, + 1 is sufficiently small, then (2.1) can be evaluated by means of the
formula

d(F, 2D, 6) = 7^ X) arctan (2.2)

where XN+1 = X1.
The above sum can be very simply evaluated. To this end, we introduce a simple

notion of a sign change of (/, g). Let AB denote the closed line segment in the plane,
joining the points A and B. A point X £ AB is called a sign change oj (/, g) on AB if jg
changes sign at X.

We shall assume that the vertices X' of P are chosen such that (/, g) has at most one
sign change on each segment XiXi+1, i = 1, 2, • • • , JV. We then replace the coordinates
(j(X'), g(X')) by (w,- , v{), where u{ = sgn f(Xl)(sgn a = 1 if a > 0, 0 if a = 0, and
— 1 if a < 0) and v{ = sgn g{Xl). We thus get a "graph" as in Fig. 2.1, where the w,-
and Vi are either ±1 or 0.

Let us assign the numerical value to the line segment joining (u<, v,) and (wi+, , t>i+i),
where

fc, = I Ui Vi
w»+1 Vi4

UiVi + 1 — Ui + iVi
(2.3)

and where (uN + 1 , vN+1) = (Ui , Vi).
The following result is then established in [8].
Theorem 2.1. Let the polygon P be defined as above, ivhere f + (f ^ 0 onP, and such

that jg has at most one sign change on each oj the line segments X'X'+1, i = 1, 2, ■ ■ • , N.
Then the number d(F, D, 6) on the right-hand side of (2.1) is also given by

JV

d(J, 0) = E (2-4)
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(U6,V6)

(U7,V7

(u4.v4)
 X 

(U3,V3)

(U2,v2)

Fig. 2.1. Graph of the sign changes of F on P.

where the bi are defined in (2.3).
Ex. 2.1. Let us apply the above procedure to show that the system of equations

f(x, y) = x2 - Ay = 0, g(x, y) = y2 - 2x + 4y = 0 (2.5)

has at least one solution in the domain

3D = {(:x, y): M < 2, \y\ < 1/4). (2.6)
Notice that the system (/, g) = (0, 0) has the solution (x, y) = (0, 0) in 2D.

We enclose the domain 2D by a polygon P, being careful to choose the vertices of P
in consecutive and counter-clockwise order so that (/, g) has at most one sign change
on each of the segments X'X' + 1. Seven points were thus chosen, to yield the results
in Table 2.1. Evaluating the sum of the 6, , we get

d(F ,5), 6) = bi = —j+0 — ;+0 + 0 — j — j = —1.
t = l

Hence the system of equations (/, g) = (0, 0) has at least one solution in 2D. Notice that
it does not suffice to take only the points X2, X3, X5 and X6, i.e. the corner points of
the rectangular region 3D, although the points X3, X4 and X5 could, for example, have
been dropped.

Table 2.1. Zeros in £> of (/, g) = (0, 0).

i Xi yi f(xi , yi) g(xi , y() m Vi bi
-1/41 — .5 .25 — .75 2.0625

2 -2.0 .25 3.0 5.0625
3 -2.0 -.25 5.0 3.0625
4 .75 -.25 1.5625 -2.4375
5 2.0 -.25 5.0 -4.9375
6 2.0 .25 3.0 -2.9375
7 .75 .25 - .4375 - .4375

0
-1/4

0
0

-1/4
-1/4
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In practice, it will often be worth while to start with a rectangular domain and to
continually add points at each mid-point between every pair of consecutive points on
the boundary, until the sum (2.4) remains a fixed integer.

3. Method of bisection of triangles. In this section we describe an algorithm for
solving the system

F(X) = F(x, y) = (f(x, i/), g{x, y)) = 0 = (0, 0). (3.1)
At the outset, we introduce some fundamental definitions which simplify the description
of the algorithm. We then give a brief algorithmic statement of the algorithm, and we
follow up each step by a detailed discussion. A proof of convergence is given in Sec. 4.

Let A = (ot, a2) and B = (bi , b2) denote two distinct points in the plane. We denote
by L(A; B) X) = L(A; B; {x, y)) the linear form

L(A] B; X) = (b2 - a2)(x - ax) - (6, - a^){y - a2). (3.2)

Let

lAB = {X: L(A; B; X) = 0} (3.3)

denote the straight line through the points A and B. The line lAB divides the plane into
two regions Rab1 and Rab2 whereRab1 = {X: L(A ; B; X) >0\,RAD2 = {X: L(A; B; X)
< 0}. Let B' = b2) (i = 1, 2, 3) denote three non-collinear points in the plane,
and let us further set B'+3 = B', i = 1, 2, 3. We denote a triangle with vertices at B1, B2
and B3 by

AB'B'B3 = 0 {X: L(B{; B< + I; X)L(B'; Bi+1; Bi+2) > 0}. (3.4)
i = 1

That is, AB1B2B3 is the region common to the three half planes, RB>where is
either 1 or 2, and RBiB<+i" is that half plane defined above by the points B' and B' + 1
which contains the point B'*\ Thus the point 6 = (0, 0) is in ABIB2B:> if and only ij

L{Bi) Bi+1; fl)L(B'; Bi+1; Bi+2) >0, i = 1, 2, 3. (3.5)

Notice that L(B'; B''B%+2) is independent of i and has the same value, plus or minus
twice the area of ABlB2B3, for i = 1, 2, 3, and that

L(BK, B2; 6) + L(B2- B3; 6) + L(B3; B1; d) = L(BK, B2- B3). (3.6)

It will be convenient to let
TFBlB2B3 = A F(Bl)F(B2)F(B3). (3.7)

The process of bisecting a triangle A A1 A2 A3 into two triangles is defined as follows.
We first locate the longest side A'A''11 of A A1 A2 A3, where A'*3 = A'. Next, we set D =
{A1 + A,+1)/2, to get two new triangles, AA'DA'+2 and ADA,+1A '+2.

Algorithm 3.1.
1. Form the polygon P and evaluate d(F, 2D, 6).
2. Does £) contain a solution of (1.1)?

(Yes) Go to 3.
(No) Go to 1.
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A detailed description of Steps 1 and 2 is given in Sec. 2. The number
d(F, 2D, 0) is computed using (2.4).

3. Triangulate 2D with M suitable triangles A, , I = 1, 2, • • • , M, such that all interior
angles of the triangles are ><*, where 0 < a < w/3, such that

M

Ua, = s,
7 = 1

and such that the intersection of any two of the triangles has zero area.
Upon arriving at Step 3, we have found a polygon P for which
d(F, 2D, 6) ^ 0. We triangulate B = J)UP by adding points in the in-
terior of £), if necessary, such that the size of each interior angle of the
triangle is at least a, where 0 < a < t/3. Here a is arbitrary, although
the convergence of the algorithm may be more rapid for a larger value
of a. We also index each of the triangles and then proceed to Step 4.

4. I = 1.
5. Is I < Ml

(No) Go to 10.
(Yes) 8 E T„- A, ?
(No) I = I + 1. Go to 5.
(Yes) Go to 7.

In steps 4 and 5 we systematically test each of the triangles A, in 2D
in order to find a triangle TF A/ (see Eq. (3.7)) which contains the
point 9 = (0, 0), by means of (3.5). If we find such a triangle A, ,
we proceed to Step 7. If we do not find such a triangle after all of the
M triangles have been tested, we proceed to Step 10.

6. Bisect A, = AA'A2As into A(I) = AA'DA,+2 and A<2' = ADAi + lAi+2
A <— Aj
A/ <- AU)
Aj + 1 «- Ay , J = M, M — 1, • • • , / + 1
A/ + 1 «- A(2)

Fig. 3.1. The region 3D and its triangulation.
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M «- M + 1
d E Tf A, ?

(Yes) Go to 7.
(No) I<- / + 1

6 E Tf Aj ?
(Yes) Go to 7.
(No) Go to 8.

Upon arriving at Step 6, 6 E TF A, . We bisect A, = AA'A2;!3 into
A(1) = AA'Di'" and A<2> = ALL4' + IA,+2, where A'A, + 1 is the
longest edge of A/ , and Z) = (A' + A, + 1)/2. The triangles AU) and
A(2) then become A, and Ai + i ; the remaining triangles A, in the array
(J = I + 1, • • • , M) are moved up one position to make room for the
newly defined triangles. If 9 is in one of TF Aj or TF Ai + 1 , we proceed
to Step 7; if 6 is in neither of these, we go to Step 8. Note that we
require F(D) in order to carry out the test 0 E Tf A, .

7. hi = length of longest side of AA1A2A3.
Is hi < c?

(Yes) Print hi , A1, A2, A3 and stop.
(No) Go to 6.

8. Let A = AA1A2A3, where A'A'+1 is the longest side of A. Set E = A' + A'+1
- Ai+2.

Is A A' EA,+1 wholly in SD?
(No) Go to 10.
(Yes) AU) <— A A'ED

A(2> <- ADEAi+1
Aj+2 < Aj , J = M, M — 1, ■ • • , I + 1
Ar+1 Au>

A,+2^A(2)
M <— M + 2. Go to 9.

In Step 8 we locate a point E by forming a parallelogram XI whose
vertices are A', E, At+1 and Ai+2, and such that A'+2 and E are
opposite corners of JI (see Fig. 3.2). Thus E = A' + A'+1 — A'+2.
We then check whether or not the newly formed triangle AA'EA1+1

Ai + 1

E
Fig. 3.2. Location of the point E.
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is in £>. If the original polygonal region T) has many vertices, this may
be a difficult test to perform. If for example, 33 is a rectangle with
vertices at (xj , yt), (x2 , yi), (x2 ,2/2), and {xi , y2), where x, < x2 and
Hi < y-i , then we need only check to ensure that x^ < xE < x2 ,
2/i < Va < y-2 , where E = (xE , yE). If AA'EA'+1 is not wholly in 33,
we go to Step 10. Otherwise we bisect AA'EA, + l into A(1) = AA'ED
and A<2> = ADEA'+1, where D = (A* + A* + 1)/2, and we move the
triangles A j , J = M, M — 1, ••• , I + lup two positions to make
room for two newly defined triangles A/+1 = A!I) and A/+2 = A<2).
Notice that these newly formed triangles may overlap some of the
triangles that are already in the array.

9. I <— 1 -\- 1
e e tf A/ ?

(Yes) Go to 7.
(No) I <— / + 1

0 £ TV A, ?
(Yes) Go to 7.
(No) Go to 10.

In Step 9 we check whether or not 9 £ TF A7 or 6 £ TF A/+1 , where
A, and A/+1 are defined in Step 8. If so we return to Step 7; if not, we
go to Step 10.

10. I+-M
Bisect A/ into A(1) and A<2'. •*-
A2, A(I>
A2i_, A(2>
/ <— 7 — 1

Is I > 1?
(Yes). 
(No) M <- 2M. Go to 4.

In Step 10 we bisect every triangle A/ , / = M, M — 1, • • • , 1, to
create 2M new triangles. We then return to Step 4. It could happen
that M is a very large number. Then the problems of storage and an
overhead (or combinatory) cost of one iterative step appear. A method
of circumventing this difficulty has been implemented in [11],

Ex. 3.1. Let us apply the above algorithm to obtain an approximate solution of
the problem of Ex. 2.1, namely

f(x, y) = x2 - 4y = 0, g(x, y) = y2 - 2x + 4«/ = 0. (3.8)

We shall describe what happens in each step of Algorithm 3.1. The vertices of the
polygon P and the corresponding values of (/, cj) are given in Table 2.1. The vertices
of the successive triangles A, such that 6 £ TF A; are tabulated in Table 3.1.

Steps 1 and 2. These have already been carried out in Ex. 2.1, where it was shown
that the system (3.8) has a solution in 3).

Step 3. We triangulate 33 into 5 triangles as in Fig. 3.3:
A, = AX1X2X3, A2 = AX1X3Xi, A3 = AXlXiXr, A< = AX7X4X5, A5 = AY5Y6X7.

The points X' to X7 in Fig. 3.3 are the same as those in Table 2.1. We arbitrarily take
a = .08, « = .2.
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x7 x6

X3

"T^~
I
I

I
I

X4 X5

Fig. 3.3. Triangulation of the region J).

Step 5. The following tests are carried out in Step 5 J£ TF A: ? (No); 8 £ TF A2 ?
(No); 6 E. Tf A3 ? (Yes). For example, to test whether or not 8 £ TF A3 , we evaluate

L(F{X1)-FiX*)] F(X7)) = (-2.4375 - 2.0625)(-.4375 - (-.75))
- (1.5625 - (-.75))(-.4375 - 2.0625) ~ 4.37

L(F(X2); FiX'); 8) = (-2.4375 - 2.0625)(0 - (-.75))
- (1.5625 - ( —.75))(0 - 2.0625) ~ 1.39

I(F(X4); FiX1)] 8) = (-4.375 - 1 - 2.4375))(0 - 1.5625)
- (.4375 - 1.5625)(0 - (-2.4375)) ~ 1.75

LiFiX7] FiX1)] 8) = 4.37 - 1.39 - 1.75 = 1.23.

Since 4.37 X 1.39 > 0, 4.37 X 1.75 > 0, and 4.37 X 1.23 > 0,8 = (0, 0) £ TF A3 =
TF X1XiX7. Notice that the system (3.8) has the solution ix, y) = (0, 0) £ A2, whereas
(o, o) £ rF a2 .

Step 7. h3 , the longest side of A3 , is HXj — X4|| ~ 1.34 > .2, and so we go to
Step 6.

Step 6. Here we bisect A3 = hXlXiX7. Since the longest side of A3 is X'X4 D =
iX1 + X4)/2 = (.125, 0). Thus we set A„ <— A5 , A5 <— A4 , A4 <— A<2>, A3 A(1), where
A(1) = AXlDX7, A<2) = ADX*X7. We then make the tests 6 £ TF A3 ? (No); 8 £ TF A4 ?
(No). We thus proceed to Step 8.

Step 8. Here we locate the point

E = X1 + X4 - X7 = (-.5, .25) + (.75, -.25) - (.75, .25) = (-.5, -.25).

Since — 2 < — .5 < 2, and —.25 < — .25 < .25, the newly formed triangle, AXlEX*
clearly lies wholly in SD. We thus bisect AX1EXi into AX1ED and ADEX*, where D =
(X1 + X*)/2 = (.125, 0). The triangles AXlED and ADEX4 become A5 and A6 respec-
tively; the triangles #6 and #7 now become A7 and A8 respectively. Notice that the
triangles A5 and A6 overlap with triangle #2. We now proceed to Step 9.

Step 9. Here we make the test 8 £ TF A5 ? (Yes). Hence we go to Step 7. From this
point onward the algorithm does not return to Steps 8 and 9, but remains in Steps 7 and 6.

4. Convergence. In this section we obtain sufficient conditions for the convergence
of Algorithm 3.1.
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Table 3.1. Tabulation of the successive vertices of Ai = AA1A2A3 such that 8 £ 7'fAi .

A1 A2 A3

-.5 .25 .75 -.25 .75 .25
-.5 .25 -.5 -.25 .125 0
-.1875 .125 -.5 -.25 .125 0
-.1875 .125 -.1875 -.125 .125 0
-.03125 .0625 -.1875 -.125 .125 0
-.03125 .0625 -.03125 -.0625 .125 0

Assumptions 4.1.

(i) /> 9, 1* > 1» , 9* , 9« , Ux , /„ , Uv > 9** > 9*v and gvy are real, continuous and
bounded in 33;

(ii) j = min |fxgu - jvgx\ > 0;
Id

(iii) V - max (// + // + gx2 + g2)l/2 < - J
©

(iv) qt = max (fj + 2jJ + jJ)U2 < °°

q2 = max (gj + 2gj + gj)1'2 < «;

(v) d - min(f + g2y/2 > 0;
P

M>

(vii) h < h* = min jd/(2p), [(16p2 + 4; sin (a/2))I/2 — 4p]/r, (7d/r)1/2} where is
the longest side of any triangle in 2D and r = (q2 + q2)l/2.

Theorem 4.2. Let 0 < e < h*, where t appears in Step 7 of Algorithm 3.1 and
where h* is defined in Assumptions 4.1 (vii). // Assumptions 4.1 (i)-(vi) are satisfied,
then Algorithm 3.1 prints h, , A1, A2 and A3 where /ij is the longest edge oj AA1A2A3 and
where each A' is within 21 oj a solution (£, rj) in D oj Eq. (1.1).

Notice that we do not assume a sufficiently small distance between X' and X' + 1 in
the definition of P such that the conditions of Theorem 2.1 are satisfied.

It is convenient to split the proof of this theorem into statements and proofs of a
series of lemmas.

Let An = AABC be a triangle having all of its interior angles > a > 0. Let us
bisect Au to form two triangles A2, , i = 1, 2, then bisect each of the triangles A2i to
obtain four triangles, A3( , i = 1, 2, 3, 4, and so on, to form a family T of triangles. The
following result is established in [5],

Lemma 4.3. // A £ T and 6 is an interior angle oj A, then 6 > a /2.
We next establish several interpolation results.
If A = (ai , a2) and B = (6j , b2) we denote the distance [(a! — a2)2 + (£>i — b2)2]w"

by ||B - A\\ .
For given positive /3, h and r, consider the lens-shaped region

Ss = {X = (x, y)\ 0 < x < j8, \y\ < /3~2x(i3 — x)h2r/2). (4.1)



A TWO-DIMENSIONAL ANALOGUE 361

Suppose r is as defined in Assumption 4.1 (vii), h — \\B — A\\ , and/3 = U/^CB) — F(4)|| .
Define c and s by

(c, s) ^ [F{B) - F{A)]/\\F{B) - F(A)|| . (4.2)
We may then define a region SAB by

SAB = |U = (u,v):U = F(A) + (*, j , (x, y) G S,}- (4.3)

The lens-shaped region SAB is illustrated in Fig. 4.1.
Lemma 4.4. // the line segment

{X = (x, y): X = X(t) = tB + (1 - t)A, 0 < t < 1} (4.4)

lies in 2D, then the image curve

{Z = {x, y): Z = Zit) = F(tB + (1 - t)A), 0 < t < 1} (4.5)
lies in SAB .

Prooj oj Lemma 4-4- Let X(t) be defined as in (4.4) and let us define Y(t) by

Y(t) = tF(B) + (1 - t)F(A), 0 < t < 1. (4.6)
Then by use of Lagrange interpolation with error,

F(X(t)) - Y(t) = f(X(t)) (_£, J (4.7)
for some numbers £ and y between 0 and 1. Now if A = (at , a2), B = (bi , b2), then
X{i) takes the form

and so

X(t) = t(bl , b2) + (1 - t) (oi , a2), 0 < t < 1,

s>'(xc))-DC;:";)-
F(B)

F(tB+(1-t)A)

tF(B) +(1 -t) F (A)

F (A)

Fig. 4.1. The lens-shaped region SAB
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By applying Schwarz's inequality we get

< qji , df 9(m) < q.h2 (4.8)

where h = \\B — A\\ , and qx and q2 are defined in Assumptions 4.1 (iv). Combining (4.7)
and (4.8), we get

||F(X(0) - 7(011 < —^~h2r (4.9)

for 0 < / < 1, where r = (q* + q22)1/2-
Let us first assume that F(A) = (0, 0), F(B) = (/3, 0). The inequality (4.9) then

states that the curve F(X(t)) lies in the region bounded by the two parabolas, y =
±/3 2x(/3 — x)h2r/2, where 0 < x < /3 and where 0 = |[f (-B) — ̂ (^4)|| • If we make the
transformation

Y = F{A) + XI c s
—s c.

where (c, s) = [F(B) — F(A)]/\\F(B) — F(/l)|| to transform the vector (t/3, 0) in the
X-plane onto the vector tF(B) + (1 — t)F(A) in the F-plane, the statement of Lemma 4.4
follows.

Lemma 4.5. Let AABC be a triangle lying in 5D with sides of length < h and interior
angles > a/2 > 0. If Assumption 4.1 (vii) is satisfied, then the regions SAB and SAC
defined in (4.3) have only the point F(A) in common.

Proof oj Lemma J+.5. Let us first obtain a lower bound on the modulus of the sine of
the angle <p between F(B) — F(A) and F(C) — F(A). For this purpose, set B — A =
h(c, s), C — A == /c(7, a), where c = cos w, s = sin w, y = cos (w + o>), <r = sin (w + of),
and where a/2 < |w| < it — a. Taylor's formula then yields

KB) - M) = h[cf, + sfy] + e/"
m - 1(A) = k[yfx + af,] + e/2) (4 1Q)

g(B) - g(A) = h[cgx + sgy] + e0ll)

g(C) - g{A) = k[ygz + crgy} + e/2),

where /x, /„, gx and gy are evaluated at A. The errors e/° and e„(,) (i = 1, 2) are given by

_ 1
f/ ~~ 2 dt2

(1) KX(i)) e/2'=|^/(F(0)
(4.11)

t=T 3

where X(t) = A + th(c, s), Y(t) = A + tk(y, a), 0 < t < 1, and where 0 < r, < 1,
i = 1, 2, 3, 4. By proceeding as for (4.7), we find that

L <»| c — „ I <2) | c „\£f | S 9 5i , |C/ 1=9 Si^ ^ (4.12)

1(1)1^-^ I (2) I k
|e„ | ^ 9 92 , I = 2 ?2 •
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Now setting /3 = ||F(B) — f (4)|| , S = ||F(C) — ̂ (4)11 , and using (4.10), it follows
that

[F(B) - F(A)] X [F(C) - F(A)]= J-5

= 1KB) - /(A)][g(C) - g(A)] - [/(C) - f(A)MB) - g(A)]
f38

= hk(jxgv — fygx) sin co + ^ + 7?2
135 (4.13)

where

Vi = ff(1)k(y9x + ffiO ~~ + <rfv) + t„i2)h(cfx + s/„) — e/2)h(cgx + sg„),
(1) (2) (2) (1) (4-14)

V2 — tf t/ e0

Using Schwarz's inequality and (4.12), we find that

It?!| <~ (qL2 + q2y/2p + ~ (q2 + g22)I/2p = y (^ +

h,| < [fr/")2 + (e0<1,)2]1/2[(e/(2))2 + (e/2,)2]1/2

<|(g12 + 322)1/2|(g12 + 322)1/2 = ^r2

where p and r are defined in Assumptions 4.1.
We now combine (4.13), (4.14), (4.15) and Assumption 4.1 (ii) to get the lower bound

i • i ^ hkj |sin co I — hk(h + k)pr/2 — h2k2r2/4 . .
|sm v\ > —^ 1    (4-16)po

on the modulus of the sine of the angle between the vectors F(B) — F(A) and F(C) —
F(A).

Let us assume without loss of generality that the angle <p is a positive acute angle,
so that

tan (<p/2) = , > (1/2) sin <p. (4.17)1 + cos <p

Using (4.1), we find that the region SAB(SAC) lies entirely in a cone CAB(CAC) with
vertex at F(A), opening in the direction F(B) — F(A)(F(C) — F(A)) and with interior
angle 2u(2v), where

tan u = h2r/2(i, tan v = k2r/2b (4.18)

The regions SAB and defined in (4.3) have only the point F{A) in common if the
corresponding cones CAIS and CAC have only the point F(A) in common, that is, if

tan u < (1/2) sin <p, tan v < (1/2) sin <p. (4.19)

We shall first prove that tan u < (1/2) sin <p. To this end, we insert the inequality

5=i r%-#(7(o) ^(y(o)_
1 0 umt)) g,(V(t))J

dt < kp (4.20)



364 CHARLES HARVEY AND FRANK STENGER

in (4.16). We furthermore assume without loss of generality that 0 < k < h, and we
also recall the inequality a/2 < |w| < w — a. The relation tan u < (1/2) sin <p will
thus be satisfied if

hj_ < h2j sin (a/2) - h3pr - hV/4
20 ~ 2h/3p ' 1 '

that is, solving for h, if

0 < h < r"'[(16p2 + 4j sin (a/2))I/2 - 4p], (4.22)

The proof that if Assumption 4.1 (vii) is satisfied then tan v < (1/2) sin <p is similar,
and we omit it.

Lemma 4.6. With reference to Fig. 3.2, let AA1A3A3 and AAXEA' + 1 be triangles in 2D,
constructed in Steps 6 and 8 of Algorithm 3.1, such that the sides of these triangles are < h
in length, where h satisfies (4.22). Set D = (A' + A, + 1)/2. // 8 G T F A1 A2 A3, then 6 is in
one of the triangles TFAlDAi+2, TFDAi+iAi+2, T.A'ED or TFDEA*+1.

Proof of Lemma 4-6. Let 9 £ TrAlA2A3. If 6 is in one of the triangles T,. A'DA'+2
or TFDAt + lA'+2, there is nothing further to demonstrate. If 6 is in neither of these
triangles, then we recall by Lemma 4.5 that the interiors of the regions <Sa<+>a<+>
and SAiAi+. (see Fig. 4.2) are non-intersecting. Also the intoriors of the regions
SAtAi+i and (S'^^.+ i are non-intersecting.

Let us next show that if (4.22) is satisfied, then F(A'*2) and F(E) lie on opposite
sides of the straight line through F(A') and F(A'+1). In (4.13), if we replace A by A',
B by A' + l and C first by A'*2 and then by E, we find, with reference to Figs. 3.2 and 4.2,
that

hki(ftgv - 1)'_1 sina),sin <pj — 0 8,

< (h + h)pr + ^^}/03S,), j = 1, 2, (4.23)

where h = ||4'+1 - A'\\ , fc. = ||^i + 1 - , h = |\E - A<\\ , p = ||F(A<+1) - F(A')|| ,
= ||F(Ai+2) — F(Ai + 1)|| , d2 = ||F(E) — F (A')|| , and co2 are defined as in Fig. 3.2,

and fxg„ — fugz is evaluated at A'. Now 0 < /c, < h, since A'A' + 1 is the longest edge of
A A1 A2 A3. Thus if (4.22) is satisfied, then

hie. h21c 2r2
hkj |fxgv - fvgx\ |sinu, | > (h + k,)pr + — (4.24)

Consequently (4.23) implies that sin > 0, sin <p2 < 0, i.e. that F(E) and F(A'+2) are
on opposite sides of the straight line through F(Al) and F(A' + 1).

Thus if 6 G TfA1A2A3, but 6 is in neither of TFA'DAt+2 nor in TFDA' + 1A'+then
we must have the situation in Fig. 4.2 where,-by Lemma 4.5, 6 £ <SA.Ai+.. Further-
more, Sa<a<+* then lies in the interior of the two triangles TFA*Ax+iAt+2 and TFA'EA'+1.
That is, 6 is contained in one of the triangles TFA'ED or TFDEA' + l.

Lemma 4.7. If Assumptions 4.1 (i)-(vii) are satisfied, then 6 (E TF A, for some
triangle A, in 2D.

Proof of Lemma 4-7. Let X(t) and Y(t) be defined as in (4.4) and (4.6) respectively,
where X(t) £ 53 for 0 < I < 1. Since <(1 — t) < 1/4 for 0 < t < 1, (4.7) yields
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F(Ai+2)

F(tAi+1 + (1-t)A')

FIA1) F(Ai+1)

FIE)

Fig. 4.2. The images of the boundaries of AAlA2A3 and of AA'EA'+1.

HTOO) - F(<)ll <Y" (4.25)
Let us now consider only those A, in 35 whose union is SD and for which the intersection
of any two distinct A, has zero area. On every such A, = A ABC we define a linear map
G(X) such that G{A) = F(A), G{B) = F(Ii) and G(C) = F(C). The resulting function G
defined on all of SD is continuous on 25. If h satisfies Assumption 4.1 (vii), namely, h <
(7d/r)"2, then

||F(X) - G(Z)|| < h2r/8 < h'r/7 < d < ||F(Z) - 0|| (4.26)

for all X£P. Hence by Roche's theorem (see e.g. [10]) d(G, D, 6) = d(F, 2D, 6). However,
by Assumption 4.1 (vi), d(F, 2D, 6) ^ 0. Hence d(G, 2), 0) 5^ 0. By Kronecker's theorem
[9, p. 161], there exists a point Z £ 2D such that G(Z) = 6. That is, Z£A,, for some
A; C 2D. This implies, however, by the linearity of G on A/ , that 6 £ Ta Af = TF A, .

Lemma 4.8. Let the conditions of Lemma 4.7 be satisfied, and let A7 C T) be the
triangle of Lemma 4.7 such that 8 £ TF A/ . Then

min [|X — F|| Si h. (4.27)
XGAi.YEP

Proof of Lemma 4-8. Every point W of TF A/ = T F A ABC may be uniquely repre-
sented in the form

W = aF{A) + PF{B) + yF(C), (4.28)
where a, /3 and 7 are nonnegative numbers such that a + 0 + y = 1.

Let X and Y be two points of 2D such that ||X — F|| = k. Let us set X(t) = Y +
tk(c, s), 0 < t < 1, where (c, s) = (X — Y)/\\X — F|| , and let us assume that the
segment XY is in £>. Then
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F(X) - F(Y) = fc(c, s) f
•>0

gx(X(t))

jy(X(t)) gv{X{t)) J
(4.29)

so that, by taking the norm of each side,

||F(X) - F(F)|| < hp. (4.30)

Now let Z be a point on A/ which is nearest to P, and let F be a point on P, such that

min \\Z - X\\ = ||Z - Y\\ = k. (4.31)
(xep)

By the triangle inequality,
\\W\\ = ||aF(A) + 0F(B) +7f(C)|| > ITOII

- {a ||F(Z) - F(A)|| + p ||F{Z) - F{B)\\ + y \\F(Z) - F(C)||}. (4.32)
However, since Z, A, B and C are all on A; and hence ||Z — A\ \ , ||Z — £||, and ||Z — C||
are bounded by h, we substitute (4.30) into (4.32) and use ||F(Z)|| > ||f(F)|| — ||F(Z) —
/^(y)|| > d — pk, to get

||aF(A) + pF(B) + tF(C)|| > d - pk - (a + 0 + y)ph = d - p(h + k). (4.33)
Since W given by (4.28) is an arbitrary point of TF Aj , it follows from (4.33) and the
Assumption 4.1 (vii), h < d/(2p), that if k < h, then d (£ TF A7. Eq. (4.27) thus follows.

Completion of proof of Theorem 1+.2. (a) Let us assume at the outset that Assump-
tions 4.1 (i)-(vii) are satisfied. We thus arrive at Step 5 of Algorithm 3.1 and by Lemma
4.7 we there find a triangle A, such that 9 G TF A, . We thus arrive at Step 7.

We remark that since the interior angles of the initial triangles were > a, then by
Lemma 4.3, the interior angles of the resulting triangles obtained by repeated bisection
are > a/2.

In Step 7 we check whether or not the longest side of A7 is less than or equal to e.
If so, a printout of /i, , A, B and C follows, where A, = AABC. If not, we proceed to
Step 6.

Now consider Fig. 4.3, in which the triangles A ACF, AC BE, A ADB and A ABC are
congruent. By Lemma 4.6 it follows that TFABC C F(AABC) VJ F(AACF) F(ACBE)
VJ F(AADB), where e.g. F(AABC) = {F = F(X): X £ AABC\. Since 6 E TFABC,
it follows that there exists a point E in one of the four triangles in Fig. 4.3 such that
F(E) = 0. It, follows from Lemma 4.8 that each of these triangles lies wholly in S;
moreover, from our construction, max {||E — ^4|| , ||E — £|| , ||E — C||} < 2h < 2e.

Fig. 4.3. AABC and its neighbors.
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Let us now examine what happens in Step 6 in the case that printout did not occur
in Step 7. Here we first bisect A/ and then check to see which of the new triangles A(,)
(i = 1,2) thus formed satisfies 0 £ T F A(,). If one of the range triangles T F Ac,) (i = 1,2)
does contain 8, we return to Step 7. If neither of these contains 8, we proceed to Step 8
and form two new triangles by locating the point E as described there. By Lemma 4.8
the two new triangles All> = A/1 'ED and A(2) = ADEA'+l formed in Step 8 lie wholly
in £). Moreover, by Lemma 4.6, S £ TF Al,) for either j = 1 or j = 2. We thus proceed
to Step 9 and then return to Step 7.

In all cases we therefore remain in Steps 6, 7, 8 and 9. At every bisection the longest
side of a triangle is halved. Thus after a finite number of returns to Step 7, the test
h, < e becomes satisfied, where hr denotes the longest side of the triangle A/ such that
0 6 TpA,.

(b) Let us now assume that only the Assumptions 4.1 (i)-(vi) are satisfied. In this
case we either achieve convergence in Steps 6, 7, 8 and 9, or else we may branch to
Step 10 from either Step 5, because 8 is not contained in any TF Ar, from Step 8, because
the new triangle, AA'EA'*1 is not wholly in S, or from Step 9, because 8 is in neither
TFA'ED nor in TFDEA, + l. However, each time we arrive at Step 10, the longest length h
of the sides of each triangle in 33 is halved, and since 3) ,and hence p, d, j and r, are fixed
(see Assumptions 4.1), unless convergence occurs first, the Assumption 4.1 (vii) becomes
satisfied after arriving at Step 10 a finite number of times.

Remark 4.9. It is evident from the above proof, that after we reach Step 6 and h is
sufficiently small, the number of times we need to evaluate F in Step 9 is small relative
to the number of times we need to evaluate F in Step 6. If at the nth evaluation of F,
we find that 9 £ TFA1A2A3, and we are still in Step 6 after two bisections of A A1 A2 A3 and
two evaluations of F, the lengths of all the sides of the resulting triangle, AB1B2B3, such
that 8 £ TFBlB'B3 are half of the lengths of those of AAlA2A3.

Hence if we traverse the route Steps 6-7-6-7-6:., the rate of convergence after
n evaluations of F is 0(2~"/2) as n —> <*>. At worst, if we continually traverse the route
Steps 6-8-9-7-6-8-9-7-6-8-9-7 etc. (an impossible occurrence, as is evident from the
proofs of the preceding lemmas and theorem), the rate of convergence is 0(2""/4) as
n —> co.
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