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1. Introduction and summary. There has been considerable interest in the develop-
ment of numerical methods for solving nonlinear systems of equations F(X) = 6, which
do not require the evaluation of partial derivatives of F. The development of such
methods has been slow, since proofs of convergence for well-known one-dimensional
methods such as the method of bisections or the method of false position are not easily
extended to higher dimensions. Nevertheless, there is an effective analogue to the method
of false position due to Kincaid [1] and several higher-dimensional ‘“Newton-like”
methods (see Rheinboldt [3] and Dennis [4]), as well as some minimization methods
(see Powell [7]). A direct extension of the method of false position is the method of
Gauss [2, p. 234] for which no proof of convergence appears to exist.

In the present paper we develop a two-dimensional method for obtaining an approxi-
mate solution of the system of equations

F(X) = F@,y) = (fx,9), 9z, y)) = 6 = (0,0) (L.1)

which resembles the one-dimensional method of bisections. Let us motivate the two-
dimensional method by a brief description of the one-dimensional method.

At the outset, we want to ensure that we can in fact apply the method of bisections
to determine an approximate solution ¢ of the one-dimensional problem

Q) = 0. 1.2)

There are simple sufficient conditions for this to be the case, namely, if @ is continuous
and real on a finite interval [e, b] and if we can find two points z, and z,(x; < ;) on
[a, b] such that Q(z,)Q@(x:) < 0. At the outset, then, we can search for two such points
z, and z, by evaluating Q at

2k — 1
2n

a,b, a+ (b — a), k=1,2,--- ,n.
If we can find two points z, and z, or [a, b] such that Q(z,)Q(z,) < 0, then there exists
a point £ on the interval [z, , x,] such that ¢(¢) = 0. We can then compute an approximate
value of ¢ by the method of bisections, i.e., by means of the following algorithm:

(i) Set ¢ = (x, + x2)/2;

* Received September 16, 1972; revised version received August 5, 1974.
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(i) If {(x)f(c) < 0, set z, = c and return to (1); If f(z,)f(c) > 0, set x, = ¢ and return
to (i).
Using this algorithm we halve the interval [z, , x,] at each step. If after n steps we approx-
imate £ by either x, or z, , the error is at most 2, — z, < (b — a)/2".

In Sec. 2 we describe a simple test to determine whether the system (1.1) has a
solution in a polygonal domain D with boundary points at X', - - - , X*, which one meets
consecutively as one traverses D in a counter-clockwise manner. Our test is based on
the use of the formula

_ 1 & kgn (X  sgn g(XY)
5N(F, D, 0) = 8 ; sgn f(XiH) sgn g(XHl) (13)

where X”*' = X', This formula yields é5(F, D, §) = d(F, D, ), which is the topological
degree of F at 8 relative to ©, provided that f and g are real and continuous in 3, the
closure of ©, F # 6 on the boundary of D, and fg has at most one sign change on each
line segment X*X**! joining the points X* and X**'. By Kronecker’s theorem [9, p. 161],
if d(F, D, 6) # 0 then the system (1.1) has at least one solution in .

In Sec. 3 we devise a simple test for determining whether or not the point 8 is con-

tained in a triangle,

3 3
ML = {X:X = 2 NALN 20, XN = 1},
i=1 i=1

where the points A° are three non-collinear points in the plane. If A = (a; , a.) and
B = (b, , b,) are two distinct points in the plane, then we can define a linear form
LA,B,X) = (b, — ax)(x — ay) — (by — a)(y — aa). 1.4)
We show that 6§ € AA'A®A® if and only if
LA, A LAY, A A7) >0 for ¢=1,2,3. (1.5)

where A*** = A°. We then describe an algorithm (Algorithm 3.1) for finding an approxi-
mate solution of (1.1) which combines the results of Sec. 2 and uses the relations (1.5)
as well as the idea of bisecting triangles. We bisect AA'A*A® by first locating the longest
edge A"A"Y, setting D = (A* + A**")/2, and then forming two triangles, AA'DA""*
and ADA*TTA?,

In Sec. 4 we state conditions which enable us to prove the convergence of Algorithm
3.1

Algorithm 3.1 has been tested in applications. In [11] a Fortran program has been
written which begins with a rectangular region D, and which computes d(F, D, 6) using
(1.3). If d(F, D, ) = 0, the program requests a new rectangle; if d(F, D, 6) # 0, the
program branches to the “triangulation stage,” which starts by bisecting D into two
triangles. Indeed, for the problem

_ 3M, — 6M\M, + 2M,’

=1 =0
fz, ) 5 @M, — M) (1.6)
AM, — 12M,M, + 12M,M > — 3M*
g(z,y) = 3.2 — * (‘ZZM(: ——i'_ 11102);)/2 0 m=0

in which M; = T'((G + 1)/z)T(y — (G + 1)/z)/(zT'(y)), and which arose in statistical
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applications, Newton’s method, Powell’s method [7] the method of steepest descents,
Box’s complex algorithm [12] and the flexiplex algorithm [13] all failed to produce a
solution, whereas the program of [11] enabled us to solve (1.6) to 3 dec. accuracy.

2. Location of a region containing a root. Let P be a polygon in the X = zy-plane,
with N vertices X', X?, ---, X", which one meets consecutively as one traverses P in
a counter-clockwise manner. Let the polygon P form the boundary of a simply connected
and bounded domain ©. With reference to (1.1), let f, ¢, f. , f, , 9. and ¢, be real, con-
tinuous and bounded on D, where D denotes the closure of D(D = D — P), and let
ff+g¢° 0onP.

It can be shown [6, p. 321], that

1 fdg — gdf

N,—-N_= o I 2.1)
where N, (N _) denotes the number of solutions of (3.1) in D at which f.g, — f,9. > 0(<0),
provided that (f.g, — f.,9.)(Y) £ 0 for all Y & D such that F(Y) = 6. In general, if
F = (,g) # 6 = (0,0) on P, then the right-hand side of (2.1) is called the topological
degree of F at 6 relative to D and is denoted by d(F, ©, 8). If d(F, D, §) # 0, then by
Kronecker’s theorem (see [9, p. 161]) there exists at least one point X & D such that
F(X) = 6. Since the integrand in (2.1) is just d(arctan (g/f)), if the maximum distance
between X* and X**! is sufficiently small, then (2.1) can be evaluated by means of the
formula

g( ) X3t
diF, D, 6) = Z:l arctan <o+ HX) | g (2.2)
where XV*' = X

The above sum can be very simply evaluated. To this end, we introduce a simple
notion of a sign change of (f, g). Let AB denote the closed line segment in the plane,
joining the points A and B. A point X € AB is called a sign change of (f, g) on AB if fg
changes sign at X.

We shall assume that the vertices X* of P are chosen such that (f, g) has at most one
sign change on each segment X*X**', 72 = 1,2, ... , N. We then replace the coordinates
(X%, ¢(X%) by (u; , v;), where u; = sgn f(X*)(sgna = 1ifa > 0,0if a = 0, and
—1if a < 0) and v; = sgn ¢g(X*). We thus get a “graph” as in Fig. 2.1, where the u;
and v; are either =1 or 0.

Let us assign the numerical value b, to the line segment joining (u. , v;) and (441 , v;41),
where

Us V;
Uie1 Vi

=1
‘T8

and where (uy.;1 , txs1) = (U, v0).

The following result is then established in [8].

THEOREM 2.1. Let the polygon P be defined as above, where {* + ¢° # 0 on P, and such
that {g has at most one sign change on each of the line segments X*X**', ¢ = 1,2, --- , N.
Then the number d(F, D, 6) on the right-hand side of (2.1) is also given by

— Ulivr — Usinals
Wl s 2.3)

d(f, ®, 6) = ZN: b; (2.4)

i=1
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Fie. 2.1. Graph of the sign changes of F on P.

where the b; are defined in (2.3).
Ez. 2.1. Let us apply the above procedure to show that the system of equations

has at least one solution in the domain
D= {(y: x| <2yl <1/4}. (2.6)

Notice that the system (f, ¢) = (0, 0) has the solution (z, y) = (0, 0) in D.

We enclose the domain D by a polygon P, being careful to choose the vertices of P
in consecutive and counter-clockwise order so that (f, g) has at most one sign change
on each of the segments X*X**'. Seven points were thus chosen, to yield the results
in Table 2.1. Evaluating the sum of the b, , we get

7
dF, D,0) = > b,=-3+0—-14+0+0—-%—-%=—1
i=1
Hence the system of equations (f, g) = (0, 0) has at least one solution in D. Notice that
it does not suffice to take only the points X* X° X° and X°, i.e. the corner points of

the rectangular region D, although the points X°, X* and X® could, for example, have
been dropped.

TaBLE 2.1. Zeros in D of (f, g) = (0, 0).

T zi yi M TR gz, yi) Ui vi b
1 - .5 .25 - .75 2.0625 -1 1 —1/4
2 —2.0 .25 3.0 5.0625 1 1 0
3 -2.0 —.25 5.0 3.0625 1 1 —1/4
4 .75 —.23 1.5625 —2.4375 1 -1 0
5 2.0 —.25 5.0 —4.9375 1 —1 0
6 2.0 .25 3.0 —2.9375 1 -1 —1/4
7 .75 .25 — .4375 — .4375 -1 —1 —1/4
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In practice, it will often be worth while to start with a rectangular domain and to
continually add points at each mid-point between every pair of consecutive points on
the boundary, until the sum (2.4) remains a fixed integer.

3. Method of bisection of triangles. In this section we describe an algorithm for
solving the system

FX) =F@x,y) = (fx,y), gy) =206=(0,0). (3.1)

At the outset, we introduce some fundamental definitions which simplify the descripfion
of the algorithm. We then give a brief algorithmic statement of the algorithm, and we
follow up each step by a detailed discussion. A proof of convergence is given in Sec. 4.

Let A = (a,, as) and B = (b, , b;) denote two distinet points in the plane. We denote
by L(A; B; X) = L(A; B; (z, y)) the linear form

L4;B; X) = (b, — @)@ — a)) — (by — a))(y — a»). (3.2)

Let
lin ={X:L(4; B; X) = 0} (3.3)
denote the straight line through the points A and B. The line [, divides the plane into
two regions B, ' amnd{R,“;2 where R ;' = {X:L(4;B;X) > 0}, R = {X:L(4; B; X)
< 0}. Let B* = (b, b,’) (+ = 1, 2, 3) denote three non-collinear points in the plane,

and let us further set B'** = B*, ¢ = 1, 2, 3. We denote a triangle with vertices at B', B
and B® by

3
AB'B’B* = M {X: L(B'; B"*'; X)L(B'; B'*'; B'*?) > 0}. (3.4
i=1

That is, AB'B’B? is the region common to the three half planes, Rp:pi+:’*, where ji is
either 1 or 2, and Rpipis.’* is that half plane defined above by the points B* and B**
which contains the point B***. Thus the point § = (0, 0) is in AB'B°B® if and only if

L(B*; B*"'; )L(B; B""'; B™"" >0, =123 (3.5)

Notice that L(B"; B'*'; B**?) is independent of 7 and has the same value, plus or minus
twice the area of AB'B°B?, for ¢ = 1, 2, 3, and that

L(B'; B%; ) + L(B*; B® 6) + L(B*;, B'; ) = L(B"; B*; B%). (3.6)
It will be convenient to let
T+B'B’B* = AF(B")F(B*)F(B®). 3.7

The process of bisecting a triangle AA*A*A® into two triangles is defined as follows.
We first locate the longest side A*A™* of AA'A®A®, where A'** = A’. Next, we set D =
(A7 4+ A**Y)/2, to get two new triangles, AA*DA*** and ADA*'A**2,

Avrgorrram 3.1.
1. Form the polygon P and evaluate d(F, D, 6).
2. Does D contain a solution of (1.1)?

(Yes) Go to 3.

(No) Go to 1.
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A detailed description of Steps 1 and 2 is given in Sec. 2. The number
d(F, D, 0) is computed using (2.4).

3. Triangulate ® with M suitable triangles A, , I = 1,2, --- , M, such that all interior
angles of the triangles are >«, where 0 < o < 7/3, such that
M
U A = iﬁr
I=1

and such that the intersection of any two of the triangles has zero area.
Upon arriving at Step 3, we have found a polygon P for which
d(F, D, 0) ¥ 0. We triangulate = D U P by adding points in the in-
terior of D, if necessary, such that the size of each interior angle of the
triangle is at least «, where 0 < a < 7/3. Here «a is arbitrary, although
the convergence of the algorithm may be more rapid for a larger value
of @. We also index each of the triangles and then proceed to Step 4.
4 I =1.
5 Is1 < M?
(No) Go to 10.
Yes) 6 &€ Tp A;?
(No) I =1+ 1.Gotob.
(Yes) Go to 7.
In steps 4 and 5 we systematically test each of the triangles A; in D
in order to find a triangle T, A; (see Eq. (3.7)) which contains the
point 8 = (0, 0), by means of (3.5). If we find such a triangle A, ,
we proceed to Step 7. If we do not find such a triangle after all of the
M triangles have been tested, we proceed to Step 10.
6. Bisect A, = AA'4°A%into A = AA'DA*** and A® = ADA'"'A™"
A— A
A, — AL
Ay —A,, J=MM—-1,--- T +1

()
Al+1 — A

Fie. 3.1. The region D and its triangulation.
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M—M+1

6E Tr Ay ?
(Yes) Go to 7.
No) I«—TI+41

8 e Tp AI ?
(Yes) Go to 7.
(No) Go to 8.

Upon arriving at Step 6, 8 € T» A; . We bisect A, = AA'A*A° into
A" = AA'DA**® and A® = ADA''A**?, where AA**! is the
longest edge of A; , and D = (A° + A*")/2. The triangles A" and
A then become A; and A, ,; ; the remaining triangles A; in the array
(J=1+4+1,---,M)aremoved up one position to make room for the
newly defined triangles. If 8 is in one of Tr A, or Tr A;., , Wwe proceed
to Step 7; if 6 is in neither of these, we go to Step 8. Note that we
require (D) in order to carry out the test § € Ty A, .
. h; = length of longest side of AA*A’A°,
Is h[ S €7
(Yes) Print by, A', A%, A® and stop.
(No) Go to 6.
. Let A = AA'AA® where A*A"*'is the longest side of A. Set E = A* 4+ A***
_ Ai+2. )
Is AA* EA**" wholly in D?
(No) Go to 10.
(Yes) AV «— AA'ED
A(2) — ADE i+l
Ajyo— Ay, J =M, M-1,---,1+1
Apyy — AV
Apig — A?
M—M+4 2 Goto9.
In Step 8 we locate a point £ by forming a parallelogram H whose
vertices are A, E, A**' and A*** and such that A'** and E are
opposite corners of ][ (see Fig. 3.2). Thus E = A® + A'*' — A**2
We then check whether or not the newly formed triangle AA’EA***

Ai+2

E
Fig. 3.2. Location of the point E.

357
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is in . If the original polygonal region © has many vertices, this may
be a difficult test to perform. If for example, D is a rectangle with
vertices at (z,, 1), (2, ¥1), (@2, ¥2), and (z, , y»), where z, < z, and
1 < ¥y, , then we need only check to ensure that z, < zx < 2, ,
1 L yp L y.,where E = (zz, yz). If AA*’EA**" is not wholly in D,
we go to Step 10. Otherwise we bisect AA'EA**" into A = AA'ED
and A®” = ADEA**', where D = (4° + A'"")/2, and we move the
triangles A, ,J = M, M — 1, --- , I + 1 up two positions to make
room for two newly defined triangles A;,, = A" and A;,, = A",
Notice that these newly formed triangles may overlap some of the
triangles that are already in the array.
9. I«—1+1
6E Te A ?
(Yes) Go to 7.
(No) Ie—T1+1
6E Tr A ?
(Yes) Go to 7.
(No) Go to 10.
In Step 9 we check whetherornot 6 € Ty A;or 8 € Ty Ay, Where
Arand Ap,; are defined in Step 8. If so we return to Step 7; if not, we
go to Step 10.
10. I — M
Bisect A; into A"’ and A",
A21 — A(l)
Agpoy — A®
I—I1-1
IsI > 1?
(Yes).
(No) M «— 2M. Go to 4.
In Step 10 we bisect every triangle A, , I = M, M — 1, --- , 1, to
create 2M new triangles. We then return to Step 4. It could happen
that M is a very large number. Then the problems of storage and an
overhead (or combinatory) cost of one iterative step appear. A method
of circumventing this difficulty has been implemented in [11].
Ex. 3.1. Let us apply the above algorithm to obtain an approximate solution of
the problem of Ex. 2.1, namely

f@,y) =2"—4 =0, g,y =y —2z+4y =0 (3.8)

We shall describe what happens in each step of Algorithm 3.1. The vertices of the
polygon P and the corresponding values of (f, ¢) are given in Table 2.1. The vertices
of the successive triangles A; such that § € T A, are tabulated in Table 3.1.

Steps 1 and 2. These have already been carried out in Ex. 2.1, where it was shown
that the system (3.8) has a solution in D.

Step 3. We triangulate D into 5 triangles as in Fig. 3.3:
A, = AX'X?XE A, = AX'XPXY A, = AX'X'XT, A = AXTX'XP, A, = AXPX°X'.
The points X' to X" in Fig. 3.3 are the same as those in Table 2.1. We arbitrarily take
a= .08 ¢=.2
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X2 X1 X7 X6
/”\\\ ™~o
- ~ [N
1 ‘L——’ \\\ 3 ! \\\\ 5
P o~ H T~
/"” 2 \\\ : 4 \\\
- S s
X3 X4 X5

Fia. 3.3. Triangulation of the region D.

Step 6. The following tests are carried out in Step 5. 6 € Tr A, ? No); 0 E Tr A, ?
(No); 8 & T A; ? (Yes). For example, to test whether or not 8 & T'p A, we evaluate

L(F(X"); F(X*); F(X")) = (—2.4375 — 2.0625)(—.4375 — (—.75))
— (1.5625 — (—.75))(—.4375 — 2.0625) ~ 4.37
L(F(X?); F(X*); 6) = (—2.4375 — 2.0625)(0 — (—.75))
— (1.5625 — (—.75))(0 — 2.0625) =~ 1.39
L(F(X*); F(X"); 6) = (—4.375 — 1 — 2.4375))(0 — 1.5625)
— (4375 — 1.5625)(0 — (—2.4375)) ~ 1.75
LF(X"; F(X"); 6) = 437 — 1.39 — 1.75 = 1.23.

Since 4.37 X 1.39 > 0,437 X 1.75 > 0,and 4.37 X 1.23 > 0,0 = (0,0) € Ty A; =
Tr X'X*X'. Notice that the system (3.8) has the solution (z, ¥) = (0, 0) € A, , whereas
(0,0) & T A, . _

Step 7. ks, the longest side of A, , is || X, — X,|| =~ 1.34 > .2, and so we go to
Step 6. o

Step 6. Here we bisect A; = AX'X*X". Since the longest side of A; is X'X* D =
(X' + X%/2 = (125, 0). Thus we set Ag «— A5, As — Ay, Ay — AP, Ay — AV, where
A" = AX'DX", A" = ADX*X". We then make the tests 6 € T A, ? (N0); 6 E Tr Ay ?
(No). We thus proceed to Step 8.

Step 8. Here we locate the point

E=X+4+X"—X = (-.5.25) + (.75, —.25) — (.75,.25) = (—.5, —.25).

Since —2 < —.5 < 2, and —.25 < —.25 < .25, the newly formed triangle, AX'EX*
clearly lies wholly in . We thus bisect AX'EX* into AX'ED and ADEX*, where D =
(X' 4+ X*)/2 = (.125, 0). The triangles AX'ED and ADEX"* become A; and A, respec-
tively; the triangles #6 and #7 now become A; and As respectively. Notice that the
triangles A; and A, overlap with triangle #2. We now proceed to Step 9.

Step 9. Here we make the test 8 € T'» A5 ? (Yes). Hence we go to Step 7. From this
point onward the algorithm does not return to Steps 8 and 9, but remains in Steps 7 and 6.

4. Convergence. In this section we obtain sufficient conditions for the convergence
of Algorithm 3.1,
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TasrE 3.1. Tabulation of the successive vertices of A1 = AA4'4243 such that 6 &€ TrAr .

Al A2 As
-.5 .25 .75 —-.25 .75 .25
—-.5 .25 —.5 —-.25 .125 0
—.1875 L1235 —.5 —-.25 .125 0
—.1875 .125 —.1875 —.125 125 0
—.03125 .0625 —.1875 —.125 125 0
—.03125 .0625 —.03125 —.0625 .125 0

Assumptions 4.1.

W £ 9 feyfos 95890 fezs o Juw s G2z » 92 and g, are real, continuous and
bounded in D;

(i) p=max(.> + 1"+ 9.+ 0.)"" < =;
D

(iV) ql ms_?’x (fzzz + 2fzu2 + fvvz)l/z < ©

¢ = max (¢.." + 2¢.," + 9,,9)"" < »;
D

(v) d=min f + ¢ > 0;
P

i) dF, ,0) =5 [ LGTEH o,

(vi)) A < A* = min {d/(2p), [(16p® + 4j sin (a/2))"* — 4p]/r, (7d/r)'"*} where h is
the longest side of any triangle in D and r = (¢,° + ¢.°)"">.

THEOREM 4.2. Let 0 < e < h* where ¢ appears in Step 7 of Algorithm 3.1 and
where h* is defined in Assumptions 4.1 (vii). If Assumptions 4.1 (1)-(vi) are satisfied,
then Algorithm 3.1 prints h; , A', A® and A® where h; is the longest edge of AA'A*A® and
where each A' is within 2¢ of a solution (£, 5) in D of Eq. (1.1).

Notice that we do not assume a sufficiently small distance between X* and X**' in
the definition of P such that the conditions of Theorem 2.1 are satisfied.

It is convenient to split the proof of this theorem into statements and proofs of a
series of lemmas.

Let A,y = AABC be a triangle having all of its interior angles > « > 0. Let us
bisect A, to form two triangles A, , 7 = 1, 2, then bisect each of the triangles A,; to
obtain four triangles, A;; , 7 = 1, 2, 3, 4, and so on, to form a family 7 of triangles. The
following result is established in [5].

Lemma 4.3. If A € T and 0 is an interior angle of A, then 6 > /2.

We next establish several interpolation results.

If A = (a,,a,) and B = (b, , b,) we denote the distance [(a, — az)® + (b — b)*]'"?
by [|B — Al

For given positive 8, h and r, consider the lens-shaped region

Ss = {X =(z,1):0 <z <8,y <8 B — 2)h’r/2}. (4.1)
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Suppose 7 is as defined in Assumption 4.1 (vii), h = ||B — A||,and g8 = [|F(B) — F(4)]| .
Define ¢ and s by

(c, s) = [F(B) — F(A)V/||F(B) — F(4)|| . (4.2)
We may then define a region S,; by

Sas = {U ~ @ U=FD) + oY) wwe s,,}- 4.3)

The lens-shaped region S,; is illustrated in Fig. 4.1.
LemMmA 4.4.  If the line segment

(X =(@y:X=Xt)=tB+ (1 —-84,0<t< 1} (4.4)
lies in D, then the image curve
(Z=(z,y):Z=Zt) =F(tB+ (1 —1HA4),0 <t <1} (4.5)
liesin Sap .
Proof of Lemma 4.4. Let X(t) be defined as in (4.4) and let us define Y (¢) by
Yt) =tFB)+ (1 — t)F(4),0 <t < 1. (4.6)

Then by use of Lagrange interpolation with error,

Fxa) - v = LS 0(L f(X(t))l 5 g(X(t»I @)

for some numbers £ and # between 0 and 1. Now if A = (a,, a2), B = (b, , b,), then
X(¢) takes the form
X(@) =y, b)) + (1 —-t)(a1,a), 0t <1,

and so

T 1O = G = b= a1 )0~ )

2 — Qg

h2e F(B)
8

F(tB+(1-1)A)

tF(B) +(1-)F(A)

F(A)

F1c. 4.1. The lens-shaped region S,5 .
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By applying Schwarz’s inequality we get

d’ d?

T f(X(t))’ < ahb, I g(X(t))‘ g (4.8)
where h = ||B — Al|, and ¢, and ¢, are defined in Assumptions 4.1 (iv). Combining (4.7)
and (4.8), we get

IPx@) — Yol < =0 g (4.9)

for0 <t < 1, wherer = (¢, + ¢.°)""

Let us first assume that F(4) = (0, 0), F(B) = (8, 0). The inequality (4.9) then
states that the curve F(X(f)) lies in the region bounded by the two parabolas, y =
+87%2(8 — 2)h’r/2, where 0 < < B and where 8 = ||[F(B) — F(A4)|| . If we make the
transformation

Y = F(4) + X(_c 8)

S C

where (¢, ) = [F(B) — F(A)l/||F(B) — F(4)|| to transform the vector (¢8, 0) in the
X-plane onto the vector tF(B) + (1 — t)F(A) in the Y-plane, the statement of Lemma 4.4
follows.

Leanva 4.5, Let AABC be a triangle lying in D with sides of length < h and interior
angles > «/2 > 0. If Assumption 4.1 (vii) is satisfied, then the regions Sup and Sic
defined in (4.3) have only the point F(A) in common.

Proof of Lemma 4.5. Let us first obtain a lower bound on the modulus of the sine of
the angle ¢ between F(B) — F(A) and F(C) — F(A4). For this purpose, set B — A =
hic,s),C — A = k(y, ¢), where¢ = cosw, s = sinw,y = cos (w + w), ¢ = sin (i + ),
and where «/2 < |o| € 7 — . Taylor’s formula then yields

f(B) — f(4) = hlcf. + sf,] + &'

f(C) - f(A) = ]C[’Yf: + O'fu] + ef(2) (410)
g(B) — g(4) = hlcg. + sg,] + &'

g(C) — g(4) = klvg. + 0g,] + &7,

where ., /., ¢.and g, are evaluated at A. The errors ¢, and ¢,'” ( = 1, 2) are given by

(8] 1 d2 (2) 1
& = 5&5 J(X(@®) ) & = §d 5 J(Y(9)
b= o7 4.11)
(n __ 1 & (2) ld_
€ - 2 dt2 g(X(t)) ‘e “7 € 2 d g(Y(t)) ere

where X(t) = A + th(c, ), Y{&) = A + th(y, 0), 0 < ¢ < 1, and where 0 < r; < 1,
i =1, 2, 3, 4. By proceeding as for (4.7), we find that

2 2

s ha, ez ka

(4.12)

21
V] < R
94

K
I




A TWO-DIMENSIONAL ANALOGUE 363

Now setting 8 = ||F(B) — F(4)||, 8 = ||F(C) — F(4)||, and using (4.10), it follows
that

[F(B) — F(A)] X [F(C) — F(A)]

sin @ = 85
_ UB) = f(][g(C) — g(A)] — [f(C) — {(A)[g(B) — g(A)]
Bo
= hk(fzgu _ fugz) Sinw + T + N2
Bé (4.13)
where
m = ¢ Vk(yg. + 0g.) — &Vk(vf. + of,) + & Phicf. + sf.) — & Phlcg. + s4.),
Ny = el(l)e (2) _ 6,(2)6 (l). (414)

Using Schwarz’s inequality and (4.12), we find that

kh?
<
|771| = 9

ne] < [(e™)* + (&)™) + (7)1

h2 k2 h2k2
S E (q12 + q22)1/2 5 (ql2 + q22)1/2 — Trz

2n1/2 ? 2 172 k
(" + ¢ + —kzh (0" + ¢ = ?h (h + Eyrp
4.15)

where p and r are defined in Assumptions 4.1.
We now combine (4.13), (4.14), (4.15) and Assumption 4.1 (ii) to get the lower bound

> Rkj [sin w| — hk(h + k)pr/2 — B’k**/4
2 85
on the modulus of the sine of the angle between the vectors F(B) — F(A) and F(C) —
F(A).

Let us assume without loss of generality that the angle ¢ is a positive acute angle,
so that

|sin ¢ (4.16)

tan (p/2) = —SR® ~> (/2 sin . 4.17)

1 4 cos

Using (4.1), we find that the region S,;(S4¢) lies entirely in a cone C,5(C4c) with
vertex at F(4), opening in the direction F(B) — F(A)(F(C) — F(4)) and with interior
angle 2u(2¢), where

tan v = h%/28, tan v = kr/25 (4.18)

The regions S,5 and S,¢ defined in (4.3) have only the point F(4) in common if the
corresponding cones C, 5 and C ¢ have only the point F(A4) in common, that is, if

tan 4 < (1/2) sin ¢, tan v < (1/2) sin ¢. (4.19)

We shall first prove that tan v < (1/2) sin ¢. To this end, we insert the inequality
1

[ wr - 0>B:<Y(t>) gmt»} it
1]

8 = < kp (4.20)

(Y(@®) g.Y(0)
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in (4.16). We furthermore assume without loss of generality that 0 < &k < h, and we
also recall the inequality «/2 < |0} € # — «a. The relation tan v < (1/2) sin ¢ will
thus be satisfied if

Br _ K§sin (@/2) — BPpr — K%’ /4
— <
55 < S , 4.21)
that is, solving for h, if
0 < h < r'[(16p* + 4j sin (a/2))""* — 4p]. (4.22)

The proof that if Assumption 4.1 (vii) is satisfied then tan v < (1/2) sin ¢ is similar,
and we omit it.

LeEvMA 4.6, With reference to Fig. 3.2, let AA'A’A® and AA’EA**! be triangles in D,
constructed in Steps 6 and 8 of Algorithm 3.1, such that the sides of these triangles are < h
in length, where h satisfies (4.22). Set D = (A" + A*"")/2. If § € TrA'AA®, then 6 is in
one of the triangles TrA'DA***, TeDA'"*A***, Tz A'ED or T, DEA™"".

Proof of Lemma 4.6. Let 8§ € TrA'A*A®. If 6 is in one of the triangles T, A'DA’**
or TeDA*"'A***, there is nothing further to demonstrate. If 8 is in neither of these
triangles, then we recall by Lemma 4.5 that the interiors of the regions Suqits, Sqirig:+
and S,i4+» (see Fig. 4.2) are non-intersecting. Also the intoriors of the regions S,:g,
Saiqi+: and Sgp,e+: are non-intersecting.

Let us next show that if (4.22) is satisfied, then F(4'**) and F(E) lie on opposite
sides of the straight line through F(A") and F(4'*'). In (4.13), if we replace A by A°,
Bby A**' and C first by A*** and then by E, we find, with reference to Figs. 3.2 and 4.2,
that

hle;(fgy — f,9:)(=1)""" sin o,
B8;

sin ¢; —

hk, Rk :

< {?’ (h + kpr + —T’r—}/(ﬁé,), J

where h = ||[4**! — A"_|| o = ||[ATT — A ke = [|E — A'l,8 = ||[F(4**Y) — F(AY||,

8, = |[F(A™®) — F(A™™)]||, 8, = ||F(E) — F (A")]| , @, and w, are defined as in Fig. 3.2,

and f.g, — 1,9 is evaluated at A*. Now 0 < k; < h, since A*A"*" is the longest edge of
AA'A?A®. Thus if (4.22) is satisfied, then

1,2, (4.23)

Wk "
4
Consequently (4.23) implies that sin ¢, > 0, sin ¢, < 0, i.e. that F(E) and F(4°*") are

on opposite sides of the straight line through F(A*) and F(4™"").

Thus if § & TrA'A%4% but 6 is in neither of T-A'DA*** nor in T;DA"'A*"*, then
we must have the situation in Fig. 4.2 where, by Lemma 4.5, 8 & 8,:4:+.. Further-
more, S: 4+ then lies in the interior of the two triangles TrA*A**'A*** and T-A'EA**".
That is, 6 is contained in one of the triangles TrA'ED or TDEA"*".

Levma 4.7. If Assumptions 4.1 (i)—(vii) are satisfied, then 8§ & Tr A; for some
triangle A, in D.

Proof of Lemma 4.7. Let X(¢) and Y () be defined as in (4.4) and (4.6) respectively,
where X(3) € Dfor0 < i < 1.Since t(l — ¢) < 1/4for0 <t < 1, (4.7) yields

. hk;
Wh; 1f.0, — fug.] lsin ;| > 75 (b + kpr + 5 (4.24)
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Fiea*1+(1.0a)

%,
%‘ i’ R ’7/’,'/,
Fl Ai) Y4 ////////// ////////// 2 //////IMW/”//I//,, :;o’f'
7

Q
20000t

A e

Fie. 4.2. The images of the boundaries of A4!A4243 and of AAEA*,

IFCR) — Yol < & (4.25)

Let us now consider only those A; in © whose union is D and for which the intersection
of any two distinct A; has zero area. On every such A; = AABC we define a linear map
G(X) such that G(A) = F(A), G(B) = F(B) and G(C) = F(C). The resulting function ¢
defined on all of D is continuous on ®. If & satisfies Assumption 4.1 (vii), namely, b <
(7d/r)'’?, then

IFX) — GX)I| < K*r/8 < K'r/T < d L ||IF(X) — 6 (4.26)

for all X € P. Hence by Roché’s theorem (see e.g. [10]) d(G, D, 8) = d(F, D, 6). However,
by Assumption 4.1 (vi), d(F, D, 8) # 0. Hence d(G, D, 6) # 0. By Kronecker’s theorem
[9, p. 161], there exists a point Z &€ D such that G(Z) = 6. That is, Z € A, , for some
A; C D. This implies, however, by the linearity of G on A, , that 8 &€ T Ay = Tp A, .
LemMma 4.8.  Let the conditions of Lemma 4.7 be satisfied, and let A; C D be the
triangle of Lemma 4.7 such that § € Ty A; . Then
min [|X — Y|| 2 &. (4.27)
X€EAr, YEP
Proof of Lemma 4.8. Every point W of Tr A; = Tp AABC may be uniquely repre-
sented in the form

W = aF(A) + BF(B) + vF(C), (4.28)

where «, 8 and vy are nonnegative numbers such that « + 8 + v = 1.

Let X and Y be two points of D such that || X — Y|| = k. Let us set X(t) = Y +
th(c, 8), 0 < t < 1, where (¢, s) = (X — Y)/||X — Y||, and let us assume that the
segment XY is in . Then
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F(X) = F(Y) = ke, s) [ l [f’(X(t)) ”XU))} at (4.20)
¢ LEX®)  gX(®)
so that, by taking the norm of each side,

IFX) — F()|| < kp. (4.30)
Now let Z be a point on A; which is nearest to P, and let ¥ be a point on P, such that
min ||[Z — X|| = |{|Z - Y|| = k. (4.31)

(XEP)

By the triangle inequality,
W] = [laF(4) + BF(B) + ~F(C)|| 2 ||IF(2)||

—{a|[F(Z) - FA +81IF@) — FB)| + 7 |[F(2) - FO]}.  (4.32)

However, since Z, A, Band C are all on A; and hence ||Z — A||, ||Z — B||, and ||Z — C}
are bounded by h, we substitute (4.30) into (4.32) and use [|[F(Z)|| > [|[F(D)|| — ||[F(Z) —
F(Y)|| 2 d — pk, to get

llaF(A) + BF(B) + vF(C)ll 2 d — pk — (@ + B8 +v)ph = d — p(h + k). (4.33)

Since W given by (4.28) is an arbitrary point of Tr A; , it follows from (4.33) and the
Assumption 4.1 (vii), » < d/(2p), thatif k < h, then 8 € T'r A; . Eq. (4.27) thus follows.

Completion of proof of Theorem 4.2. (a) Let us assume at the outset that Assump-
tions 4.1 (1)—(vii) are satisfied. We thus arrive at Step 5 of Algorithm 3.1 and by Lemma
4.7 we there find a triangle A; such that 6 € Tr A; . We thus arrive at Step 7.

We remark that since the interior angles of the initial triangles were > «, then by
Lemma 4.3, the interior angles of the resulting triangles obtained by repeated bisection
are > a/2.

In Step 7 we check whether or not the longest side of A; is less than or equal to e
If so, a printout of k; , A, B and C follows, where A; = AABC. If not, we proceed to
Step 6.

Now consider Fig. 4.3, in which the triangles AACF, ACBE, AADB and AABC are
congruent. By Lemma 4.6 it follows that TrABC C F(AABC)\J F(AACF)\J F(ACBE)
U F(AADB), where e.g. F(AABC) {Y = F(X): X &€ AABC}. Since 8 € T-ABC,
it follows that there exists a point E in one of the four triangles in Fig. 4.3 such that
F(E) = 6. It follows from Lemma 4.8 that each of these triangles lies wholly in D;
moreover, from our construction, max {||E — 4|, ||E — B||, ||E — C||} £ 2k £ 2«

—
)
_

c

D

Fic. 4.3. AABC and its neighbors.
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Let us now examine what happens in Step 6 in the case that printout did not occur
in Step 7. Here we first bisect A; and then check to see which of the new triangles A"
(¢ = 1, 2) thus formed satisfies 8§ € T A", If one of the range triangles T, A’ (4 = 1, 2)
does contain 8, we return to Step 7. If neither of these contains 6, we proceed to Step 8
and form two new triangles by locating the point £ as described there. By Lemma 4.8
the two new triangles A’ = AA’ED and A'"® = ADEA**" formed in Step 8 lie wholly
in . Moreover, by Lemma 4.6, § € Tr A" for either j = 1 or j = 2. We thus proceed
to Step 9 and then return to Step 7.

In all cases we therefore remain in Steps 6, 7, 8 and 9. At every bisection the longest
side of a triangle is halved. Thus after a finite number of returns to Step 7, the test
h; < e becomes satisfied, where h; denotes the longest side of the triangle A; such that
6 T Ar.

(b) Let us now assume that only the Assumptions 4.1 (i)~(vi) are satisfied. In this
case we either achieve convergence in Steps 6, 7, 8 and 9, or else we may branch to
Step 10 from either Step 5, because 8 is not contained in any T'» A, , from Step 8, because
the new triangle, AA’EA’*" is not wholly in ®, or from Step 9, because ¢ is in neither
TrA’ED norin T,DEA**'. However, each time we arrive at Step 10, the longest length h
of the sides of each triangle in D is halved, and since D ,and hence p, d, j and r, are fixed
(see Assumptions 4.1), unless convergence occurs first, the Assumption 4.1 (vii) becomes
satisfied after arriving at Step 10 a finite number of times.

Remark 4.9. It is evident from the above proof, that after we reach Step 6 and b is
sufficiently small, the number of times we need to evaluate F in Step 9 is small relative
to the number of times we need to evaluate F' in Step 6. If at the nth evaluation of F,
we find that § € TrA'A”A®, and we are still in Step 6 after two bisections of A4'4°4°% and
two evaluations of F, the lengths of all the sides of the resulting triangle, AB'B*B’, such
that 8 € T»B'B’B? are half of the lengths of those of AA'A%4°,

Hence if we traverse the route Steps 6-7-6-7-6:., the rate of convergence after
n evaluations of F is 0(27"%) as n — . At worst, if we continually traverse the route
Steps 6-8-9-7-6-8-9-7-6-8-9-7 etc. (an impossible occurrence, as is evident from the

proofs of the preceding lemmas and theorem), the rate of convergence is 0(2™*) as
n— o,
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