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Abstract. A triangulation of a set S of points in the plane is a subdivision of the convex
hull of S into triangles whose vertices are points of S. Given a set S of n points in R2, each
moving independently, we wish to maintain a triangulation of S. The triangulation needs to
be updated periodically as the points in S move, so the goal is to maintain a triangulation
with a small number of topological events, each being the insertion or deletion of an edge.

We propose a kinetic data structure (KDS) that processes n22O(
√

log n·log log n) topological
events with high probability if the trajectories of input points are algebraic curves of fixed
degree. Each topological event can be processed in O(log n) time. This is the first known
KDS for maintaining a triangulation that processes a near-quadratic number of topological
events, and almost matches the �(n2) lower bound [1]. The number of topological events

can be reduced to nk · 2O(
√

log k·log log n) if only k of the points are moving.

1. Introduction

A triangulation of a set S of points inR2 is a subdivision of the convex hull of S into trian-
gles whose vertices are points of S. Motivated by applications in several areas, including
computer graphics, physical simulation, collision detection, and geographic informa-
tion systems, triangulations have been widely studied [9], [12]. With the advancement
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in technology, many applications, for instance, video games, virtual reality, dynamic
simulations, and robotics, call for maintaining a triangulation as the points move. For
example, the arbitrary Eulerian–Lagrangian method [11] provides a way to integrate
the motion of fluids and solids within a moving finite-element mesh. The time axis is
discretized and the mesh vertices are moved between each time step so as to respect the
interfaces between the different media. However, numerical problems arise when the
mesh becomes too distorted, and the mesh generated depends on the discretization of
time. Another approach to build more adaptive triangulations for such problems is to
work in the space–time domain [13].

Given a set S of points in R2, each moving independently, we wish to maintain a
triangulation of S. As the points in S move, any fixed triangulation of S also deforms
continuously. However, a triangulation computed for the initial configuration cannot be
guaranteed to remain valid all the time. Therefore, it becomes necessary to update a
triangulation over time by deleting some of the existing edges and inserting some other
edges. We refer to each such insertion or deletion in the triangulation as a topological
event. The topological events occur only at discrete time instances. In this paper we study
how to maintain a triangulation so that the number of topological events is near-quadratic.

Related Work. Since Atallah’s seminal paper [7] on kinetic geometry, much work has
been devoted to this area due to its importance in both theory and applications of com-
putational geometry; see [3], [5], and [14] for reviews on kinetic geometric algorithms
and data structures. The early work on kinetic geometry mostly focused on bounding
the number of combinatorial or topological changes in various geometric structures as
the input objects move. Basch et al. [8] introduced a general framework, the so-called
kinetic data structure (KDS), for maintaining a discrete attribute of objects in predictable
motion. Their approach to maintain a given attribute A(t) for a continuously changing
scene S(t) is as follows: at a given time t , we create a proof of correctness of the at-
tribute based on elementary tests called certificates. For each certificate, we compute the
time at which it fails and put it in a global event queue. As the attribute cannot change
while all tests remain valid, it is unnecessary to perform any computation until the first
certificate fails. When a certificate fails, the discrete attribute is updated if it needs to
be, and a new proof of correctness is constructed by making certain modifications to
the previous proof of correctness. Their approach led to efficient algorithms for several
kinetic problems [14].

In the context of triangulation, a longstanding open problem is to bound the number
of topological events in the Delaunay triangulation of a set of moving points in R2.
The best known upper bound is near-cubic if trajectories of input points are algebraic
curves of fixed degree; the bound is cubic if each point moves with unit speed in a
fixed direction [6]. Although it is conjectured that the number of topological changes
is O(n2), no such bound is known even for maintaining an arbitrary triangulation of
a set of moving points in R2. Agarwal et al. [2] described a scheme for maintaining
a triangulation of a set of points that incurs roughly n7/3 topological changes if the
points are moving linearly. Chew [10] proved that the Delaunay triangulation of S under
L1-metric changes O(n2α(n)) times, where α(n) is the inverse Ackermann function;
however, the Delaunay triangulation under L1-metric is not necessarily a triangulation
of the convex hull of the point set.
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Agarwal et al. [1] showed that the convex hull of a moving point set may change
�(n2) times if the points are moving linearly; this result immediately implies a lower
bound �(n2) on the number of topological changes to any triangulation. This lower
bound on the number of topological events holds even if a linear number of Steiner
points are allowed [4].

Our Results. Let S = {p1, . . . , pn} be a set of points moving in R2. Let pi (t) =
(xi (t), yi (t)) denote the position of pi at time t , and let S(t) denote the configuration of
S at time t . We assume that xi (·), yi (·) are polynomials of fixed degree. We describe a

KDS for maintaining a triangulation of S(t) that processes n22O(
√

log n·log log n) topological
events with high probability, each of which is insertion or deletion of an edge. Each
topological event can be processed in O(log n) time. This is the first KDS for maintaining
a triangulation that processes near-quadratic topological events. The number of events

can be reduced to nk · 2O(
√

log k·log log n) if only k of the points are moving.
Our algorithm relies on a randomized hierarchical scheme. We first describe the

so-called fan triangulation (Section 2), and then introduce the notion of constrained fan
triangulation with respect to a planar subdivision (Section 3). We choose a random sample
R ⊆ S, compute a triangulation of R recursively, and then compute the constrained fan
triangulation of S with respect to the triangulation computed for R (Section 4). We
analyze the events in constrained fan triangulation and show that if R is a random subset
of appropriate size, the total number of events is near-quadratic (Section 5).

2. Fan Triangulation

Let S = {p1, . . . , pn} be a set of n (stationary) points in R2, sorted in non-increasing
order of their y-coordinates, i.e., y(p1) ≥ y(p2) ≥ · · · ≥ y(pn). For a point q ∈ R2,
let Sq = {pi ∈ S | y(pi ) > y(q)}. Denote by V(q) ⊆ S the set of points on ∂ conv(Sq)

that are visible from q , i.e., pi ∈ V(q) if the relative interior of the segment qpi does
not intersect conv(Sq). Furthermore, let ρ(q) denote the point from V(q) such that the

oriented line
−−−→
qρ(q) is the left tangent of conv(Sq), and let γ (q) denote the point from

V(q) such that the oriented line
−−−→
qγ (q) is the right tangent of conv(Sq). Obviously, V(q)

is the subset of vertices on ∂ conv(Sq) lying between ρ(q) and γ (q), assuming that the
vertices are ordered in counterclockwise direction.

The fan triangulation of S is constructed by sweeping a horizontal line h from y =
+∞ to y = −∞. At any time the algorithm maintains the fan triangulation of points
from S that lie above h. It updates the triangulation when the sweep line crosses a point
pi ∈ S by adding the edges pi pj for all pj ∈ V(pi ); see Fig. 1. The triangulation at the
end of the sweep is the fan triangulation of S, which we denote as F(S).

We classify the edges of F(S) incident upon a point pi ∈ S into two classes:

(i) Up edges: edges pi pj so that j < i ; pj is also referred to as an up neighbor
of pi .

(ii) Down edges: edges pi pj so that j > i ; pj is also called a down neighbor of pi .
Furthermore, if pi = ρ(pj ) or pi = γ (pj ), then edge pi pj is referred to as a
convex edge; otherwise, it is a reflex edge.
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Fig. 1. Construction of fan triangulation at various stages—the point denoted by double circle is being
inserted, and the thick edges are added. The points are ordered from top to bottom by their indices.

The following properties of F(S) are straightforward to prove:

(F1) For 1 ≤ i < n, pi pi+1 is an edge of F(S).
(F2) For each pi , at most one of its down edges is a reflex edge. Indeed if pi pj is a

reflex edge of pi , then pi lies in the interior of conv(Spj+1), and therefore there
is no down edge pi pk , for k > j . Let the edges pi pj1 , pi pj2 , . . . , pi pjk be the
sequence of the down edges incident upon pi sorted in the clockwise direction.
Then either j1 < · · · < jk and pi = ρ(pjl ) for l < k (l ≤ k if pi pjk is not a
reflex edge, e.g., p5 in Fig. 1(c)), or j1 > · · · > jk and pi = γ (pjl ) for l < k
(l ≤ k if pi pjk is not a reflex edge, e.g., p4 in Fig. 1(c)).

Now suppose we are given a set of moving points S(t) = {p1(t), p2(t), . . . , pn(t)}
in the plane, and we wish to maintain F(S(t)) for any t ∈ R. As the points from S
move, F(S(t)) deforms continuously. However, the topology of F(S(t)) changes only
at discrete times, which we refer to as events. Note the difference between events and
topological events: an event may cause multiple topological events to the triangulation.
As observed in [2], there are two types of events.

Ordering Event. The y-coordinates of two points pi and pj become equal at time t0.
Assume that y(pi (t

−
0 )) > y(pj (t

−
0 )) and y(pi (t

+
0 )) < y(pj (t

+
0 )), where t−0 is the time im-

mediately before t0 and t+0 is the time immediately after t0. By property (F1), pi (t
−
0 )pj (t

−
0 )

and pj (t
+
0 )pi (t

+
0 ) are present inF(S(t−0 )) andF(S(t+0 )), respectively. In fact, both of them

are necessarily convex edges; assume pi (t
−
0 ) = ρ(pj (t

−
0 )) and pj (t

+
0 ) = γ (pi (t

+
0 )). Let

pk1 , pk2 , . . . , pku be the sequence of vertices in Vpi pj (t0) = V(pi (t
−
0 )) ∩ V(pj (t

+
0 )) or-

dered in the counterclockwise direction along ∂ conv(Spi (t0)). Obviously, at time t−0 ,
pkl pi , for all 1 ≤ l ≤ u, and pku pj are edges in F(S(t−0 )), while at time t+0 , pkl pj , for all
1 ≤ l ≤ u, and pk1 pi are edges in F(S(t+0 )). So to update the triangulation, we delete
the edges pk2 pi , . . . , pku pi and insert the edges pk1 pj , . . . , pku−1 pj to obtain F(S(t+0 )).
See Fig. 2(a). Hence, an ordering event induces O(|Vpi pj (t0)|) topological events.

Visibility Event. For a point pj ∈ S, either ρ(pj ) or γ (pj ) changes at time t0. Suppose
that pi (t

−
0 ) = ρ(pj (t

−
0 )) and pk(t

+
0 ) = ρ(pj (t

+
0 )) with y(pk(t0)) > y(pi (t0)); the other

cases are symmetric. Then pi (t0), pj (t0), and pk(t0) are collinear. Furthermore, among



A Two-Dimensional Kinetic Triangulation 577

pi
pj

pi
pj

pk1
pku

pku

pk1

(a)

pi

pl pl

pj pj

pi

pkpk

(b)

Fig. 2. (a) Ordering event. Points denoted by hollow circles are from Vpi pj (t0). (b) Visibility event.

all the convex edges incident upon pi at t−0 , pi pj is the leftmost edge. It then follows
from property (F2) of the fan triangulation that there is at most one edge (the reflex
edge), say pi pl , between pi pj and pi pk in clockwise order around pi . If pi pl does not
exist, then pi , pj , and pk are collinear on ∂ conv(S(t0)). To update the fan triangulation,
we delete the edge pi pl (if it exists) and insert the edge pj pk (Fig. 2(b)). Each visibility
event induces O(1) topological events.

In order to detect the above events, we maintain three families of certificates in a
global priority queue:

(i) For each edge pi pj ∈ F(S(t)), the next time t0 at which y(pi (t0)) = y(pj (t0)).
(ii) For each triangle pi pj pk ∈ F(S(t)), with y(pj ) < y(pi ) < y(pk), the next time

t0 at which pi (t0) ∈ pj (t0)pk(t0).
(iii) For each point pi , let pj be the point with the minimum y-coordinate so that pi =

ρ(pj ) (resp. pi = γ (pj )) if it exists. We add the time t0 at which pj (t0), pi (t0),
and ρ(pi (t0)) (resp. γ (pi (t0))) become collinear.

By our above discussion, it is easy to verify that these certificates detect all events.
Moreover, each topological event can be processed in O(log n) time, including the time
spent in updating the global event queue.

3. Constrained Fan Triangulation

In this section we introduce the notion of constrained fan triangulation and show how
to maintain it under motion. As earlier, let S = {p1, . . . , pn} be a set of n (stationary)
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Fig. 3. Constructing constrained fan triangulation with respect to � (thick edges) at various stages.

points in R2 sorted in non-increasing order of their y-coordinates, and let � be a set
of segments with pairwise-disjoint interiors whose endpoints lie in S. We are mostly
interested in the case in which � is a triangulation of a subset R ⊆ S, but we give the
definition for the general setting.

We construct the constrained fan triangulation of S by sweeping a horizontal line h
from y = +∞ to y = −∞. Let F(0) = �, and let F(i−1) be the partial triangulation
computed after the sweep line has processed pi−1. If the interior of segment pi pj , for
j < i , does not intersect F(i−1), then pi pj is called visible with respect to F(i−1). Define
V(pi ), ρ(pi ), and γ (pi ) similarly as before, under the modified concept of visibility
(with respect to F(i−1)); note that ρ(pi ) and γ (pi ) depend on �. When the sweep line
crosses pi , we compute F(i) by adding the edges pi pj for all vertices pj in V(pi ). See
Fig. 3. Note that unlike the sweeping process to construct the fan triangulation, F(i) is
not necessarily a constrained fan triangulation of the already swept points. In fact, F(i)

might not even be a triangulation; it is possible that only one point from p1, . . . , pi−1

is visible from pi due to the constraint �, in which case we add only one edge to F(i),
and this “dangling” edge of F(i) will become part of a triangle at a later stage; see the
edge incident upon p2 in F(6) of Fig. 3. The final triangulation F(n) is the constrained fan
triangulation of S (with respect to �), denoted by F(S,�).

Observe that if � = ∂ conv(S), then F(S,�) = F(S). If � is a triangulation of a
subset R ⊆ S, then � partitions S into various subsets: S� = S ∩� (including vertices
of�), where� ∈ � is a triangle or� = � is the exterior of the convex hull of R. By the
above observation, the constrained fan triangulation F(S,�) restricted to S� is the same
as F(S�) for � ∈ �. Hence, F(S,�) can be computed by constructing independently
F(S�) for each triangle � ∈ � and constructing F(S�, ∂ conv(R)) within the exterior
of conv(R), i.e., the constrained fan triangulation of S� with respect to the boundary of
conv(R).

The following properties of constrained fan triangulation are generalizations of (F1)
and (F2):

(C1) For j < i , if pj is the lowest vertex visible from pi , then pj pi is an edge in
F(S,�).

(C2) If pi pj1 , . . . , pi pjk are the down edges incident upon pi sorted in clockwise
direction so that no edges of� lie between them, then either j1 < · · · < jk and
pi = ρ(pjl ) for l < k (l ≤ k if pi pjk is not a reflex edge), or j1 > · · · > jk and
pi = γ (pjl ) for l < k (l ≤ k if pi pjk is not a reflex edge).
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Next, we describe how to maintain F(S,�) as the points in S move. For the time
being, we assume that� is a triangulation of a subset R ⊆ S and that motion is such that
the topology of � does not change and remains a valid triangulation of R throughout
the motion. In addition to ordering and visibility events, a new type of event, called the
crossing event, arises when a point of S\R crosses an edge of �. In the following we
discuss each of them.

Ordering Event. There are two points pi , pj ∈ S so that (i) pi (t0) is visible from pj (t0)
with respect to �, and (ii) y(pi (t0)) = y(pj (t0)). An ordering event is processed in the
same way as in Section 2. If pi (t0) is not visible from pj (t0), then F(S,�) does not
change at t0. Note that the visibility relation between two points can change only by a
crossing or a visibility event described below.

Visibility Event. For a point pi ∈ S, either ρ(pi ) or γ (pi ) changes at time t0, and pi

does not cross any edge of � during [t−0 , t+0 ]. We process this event in the same way as
in Section 2. Note that ρ(pi ) or γ (pi ) could also change as pi crosses some edge from
�, which will be covered by the crossing event below.

Crossing Event. A point pi crosses an edge pj pk of � at time t0; assume y(pk(t0)) >
y(pj (t0)). Recall that � is a triangulation of a subset of S. � partitions R2 into several
connected components, each region being either a triangle of�or the exterior of conv(R).
Suppose pi moves from the region�− to�+. Let S�− (resp. S�+ ) be the subset of points
of S in �− (resp. �+) at t−0 . Then the crossing event corresponds to deleting pi from
S�− , inserting it into S�+ , and updating the triangulations in �− and �+. First, we
consider �−.

Given an arbitrary point q ∈ S, the star of q, denoted by St(q), is the union of
triangles adjacent to q . St(q) is a star-shaped polygon with q in its kernel—every point
in St(q) is visible from q . The link of q, denoted by Lk(q), is defined as ∂ St(q). Lk(q)
is a closed polygonal curve. If q ∈ ∂ conv(S), then q ∈ Lk(q); otherwise q lies in the
interior of St(q). Given the fan triangulation of S, Lk(q) consists of a convex chain,
corresponding to the up neighbors of q, a y-monotone polygonal chain, corresponding
to the down neighbors of q , and one more edge that connects the lowest neighbor of q
to an up neighbor of q (or to q if q ∈ ∂ conv(S)); see Fig. 4(a).

If pi ∈ ∂ conv(S) at time t−0 (in which case �− represents the exterior of conv(R)),
we can simply remove edges pi pk and pi pj from F(S(t−0 ),�). We now assume that
pi (t

−
0 ) /∈ ∂ conv(S(t−0 )), implying that pi (t

−
0 ) /∈ Lk(pi (t

−
0 )).

Lemma 3.1. Within �−, any edge from F(S(t−0 ),�) not incident upon pi at time t−0
is present in F(S(t),�) for all t ∈ [t−0 , t+0 ].

The above lemma is straightforward, as any two points that are previously visi-
ble to each other within �− will remain visible after pi moves out of �−. In view
of Lemma 3.1, we delete the edges incident upon pi at time t−0 and re-triangulate
within Lk(pi (t

−
0 )). The portion of the triangulation on and outside Lk(pi (t

−
0 )) re-

mains unchanged. We re-triangulate within Lk(pi (t
−
0 )) as follows (Fig. 4). Let Q =

〈pk = q0, q1, . . . , qw, qw+1, . . . , qu = pj 〉 be the sequence of vertices on Lk(pi ), where
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Fig. 4. Re-triangulation of St(pi (t
−
0 )) after deleting pi . The thick polygonal chain in (a) is Lk(pi (t

−
0 )).

q0, q1, . . . , qw is the convex chain formed by the up neighbors of pi , and y(pi ) >

y(qw+1) > y(qw+2) > · · · > y(qu). Since q0, · · · , qw are already in convex position, we
only visit qw+1, . . . , qu in order. Without loss of generality, assume that pi lies to the right
of the edge pk pj at time t−0 , i.e., pi crosses pk pj from right to left; the other case can be
handled symmetrically. Suppose we have processed qw+1, . . . , qz−1, i.e., added the new
edges incident upon them. Letting ρ(i)(·) = ρ(ρ(i−1)(·)), we maintain a subsequence
of Q,

�(z−1) = 〈qz−1 = ρ(0)(qz−1), ρ(qz−1), ρ
(2)(qz−1), ρ

(3)(qz−1), . . .〉,
i.e., the vertices that appear on the left boundary of the convex hull of q0, . . . , qz−1.
If the vertices qz−1, ρ(qz−1), . . . , ρ

(l)(qz−1) are visible from qz , we then add the edges
qzqz−1, qzρ(qz−1), . . ., qzρ

(l)(qz−1), delete qz−1, . . . , ρ
(l−1)(qz−1) from the sequence, set

�(z) = 〈qz, ρ(qz) = ρ(l)(qz−1), ρ
(l+1)(qz−1), . . .〉,

and repeat this process for qz+1 unless z = u.
Next, we describe how to insert pi into �+ and construct F(S�+ ∪ {pi }) at time t+0

from F(S�+). Roughly speaking, we need to do the opposite of what we did in�−. That
is, we identify Lk(pi (t

+
0 )) in F(S�+ ∪ {pi }), delete the edges of F(S�+) that lie within
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Fig. 5. Updating F(S�+ ) after inserting pi —the shaded triangle is being processed, and the dashed edge was
flipped.

the polygon formed by Lk(pi (t
+
0 )), and connect pi to all the vertices on Lk(pi (t

+
0 )) to

form St(pi (t
+
0 )). We assume that �+ lies to the left of pk pj . The following procedure

performs these steps simultaneously.
Let pl be the vertex in �+ adjacent to the edge pj pk at time t−0 . If pl does not exist,

then pj pk is an edge of conv(S), and pi becomes a vertex of conv(S), in which case
we simply add the triangle pi pj pk . We thus assume that pl exists. We add the edges
pi pj , pi pk , and pi pl . We maintain a stack S of triangles. Initially, we push pi pl pj and
pi pk pl to S (with the latter being on the top of S). We perform the following procedure
until S becomes empty. An example is illustrated in Fig. 5. For a triangle pi pw pz with
y(pw) > y(pz), we define the region τ(pi pw pz) to be the intersection of the following
three halfplanes: (i) y > y(pz); (ii) the halfplane lying below the line pi pw; and (iii) the
halfplane bounded by the line pw pz that does not contain pi ; see Fig. 6. Intuitively, this
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Fig. 6. If pv lies inside the shaded region τ(pi pw pz), then an edge flip is performed.
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region τ(pi pw pz) contains points that potentially should be visible to pi if edge pw pz

were not present.

(1) Remove the top triangle pi pw pz from S. Assume that y(pw) > y(pz).
(2) If pw pz is an edge of the convex hull or y(pz) > y(pi ), go to step (1).
(3) Let pv be the other vertex adjacent to edge pw pz . If pv /∈ τ(pi pw pz), go to

step (1).
(4) Delete the edge pw pz , and insert the edge pi pv (an edge flip).
(5) Push the triangle pi pv pz to S.
(6) Push the triangle pi pw pv to S.

By induction, one easily observes that the above algorithm constructs a valid trian-
gulation F within �+. Let F− and F+ denote the fan triangulation within �+ at time
t−0 and t+0 , respectively.

Lemma 3.2. F as constructed by the above procedure is the same as F+.

Proof. Observe that if an edge from F or F+ does not have pi as an endpoint, then the
edge is present in F− as well, because the newly added edges in F or F+ are all adjacent
to pi . Therefore, we only have to prove that the above procedure correctly identifies
Lk(pi ) in F+. Let Q = 〈pk = q0, q1, . . . , qu = pj 〉 be the sequence of neighbors of pi

in the resulting triangulation F . To prove the lemma, we need to show that (i) any pi qz

for 0 ≤ z ≤ u exists in F+, and (ii) for any pi pz ∈ F+, pz ∈ Q. The first claim is easily
shown by induction on the order in which the edges were added by the above procedure.
At any time, the newly added edge is guaranteed to be present in F+. We sketch the
proof for the second claim below.

We prove the second claim by contradiction. By the first claim, Q is a subset of
Lk(pi ) at time t+0 in F+. Therefore, similar to Lk(pi ), Q consists of a convex chain
q0, q1, . . . , qw, corresponding to the up neighbors of pi in Q, a y-monotone polyg-
onal chain qw+1, . . . , qu , corresponding to the down neighbors of pi in Q, and edge
q0qu (i.e., pk pj ). See Fig. 7. Moreover, edges pi q0, . . . , pi qu are ordered in clockwise
or counterclockwise order around pi . Assume that qs and qs+1 are two consecutive
vertices of Q such that there exists a point q ∈ Lk(pi ) lying between points qs and
qs+1 along Lk(pi ). Obviously, q lies inside the wedge formed by −−→pi qs and −−−→pi qs+1,
as Lk(pi ) is star-shaped. We now distinguish two cases, each of which leads to a
contradiction:

1. s + 1 ≤ w. As q0, . . . , qw form a subset of a convex chain, triangle pi qsqs+1

contains point q (Fig. 7(a)). By construction, pi qsqs+1 is a triangle in F . However,
F is a valid triangulation, so triangle pi qsqs+1 cannot contain any of the input
points, a contradiction.

2. s + 1 > w. Recall that q lies in the wedge formed by the rays −−→pi qs and −−−→pi qs+1. If
q ∈ �pi qsqs+1, then we arrive at the same contradiction as in case 1 (Fig. 7(b)).
So q lies in the halfplane bounded by qsqs+1 that does not contain pi . Moreover,
since qs+1 lies on the y-monotone part of Lk(pi ) and q lies between qs and qs+1

along Lk(pi ), we have y(q) > y(qs+1), implying that q ∈ τ(pi qsqs+1). As qs

and qs+1 are two consecutive neighbors of pi in F , pi qsqs+1 must have been
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qs+1

pi

qs

q

qs+1

qs piq

(a) (b)

pv

qs+1

qs
pi

q

pi
qs

qs+1

pv

q

(c) (d)

Fig. 7. Dashed polygon is Lk(pi ), with points denoted by hollow circles being vertices of Q. (a),(b) q lies
inside triangle pi qsqs+1. (c),(d) q lies in the region τ(pi qsqs+1) (shaded), but triangle pvqsqs+1 prevents
vertex q from being connected to pi . All cases lead to a contradiction.

processed at some moment. The fact that pi q was not added at that time implies
that there was another triangle, say, pvqsqs+1 ∈ F−, incident upon edge qsqs+1,
and pv /∈ τ(pi qsqs+1). Notice that q is not contained in either triangle pvqsqs+1

or pi qsqs+1. Now assume pv lies below qs+1 (Fig. 7(c)). However, in this case,
edge pvqs could not have been present in F− as it crosses edge qqs+1 of F−, but
both points q and qs+1 are above pv , a contradiction. The other case in which pv
lies above line pi qs can be handled similarly (Fig. 7(d)).

This proves the second claim, and the lemma follows.

The following lemma follows immediately from the above algorithm.

Lemma 3.3. The number of topological events induced by a crossing event of pi is
proportional to the old degree plus the new degree of pi .

Each topological event can be handled in O(log n) time, including the time spent in
updating the global event queue. To detect all the three types of events, we can maintain
the same three families of certificates as for a fan triangulation.
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Fig. 8. A hierarchical fan triangulation with three levels—points in R1 are denoted by double circles, in
R2\R1 by hollow circles, and in R3\R2 by black circles.

4. Hierarchical Fan Triangulation

We now use the constrained fan triangulation to define a hierarchical fan triangulation
F. Let ∅ = R0 ⊆ R1 ⊆ · · · ⊆ Rw = S. Set F0 = ∅, and for i ≥ 1, define Fi =
F(Ri ,Fi−1), i.e., Fi is the constrained fan triangulation of Ri with respect to Fi−1. By
construction,F1 is the fan triangulation of R1 andFi−1 ⊆ Fi . SetF = Fw. See Fig. 8 for an
example.

Hereditary Event. As the points move, each Fi deforms continuously. The topology
of F changes when there is an ordering, a visibility, or a crossing event in one of the
Fi ’s, and it can be processed as described in Sections 2 and 3. However, a topological
change in Fi also propagates changes in Fj for j > i , as the insertion or deletion of
an edge in Fi affects the visibility of points in Rj . We refer to an event in Fi+1 caused
by another event in Fi , as a hereditary event of Fi+1. We process hereditary events as
follows. If conv(Ri ) changes, i.e., a point q ∈ Ri appears or disappears on conv(Ri ), we
update Fi+1 within the exterior of conv(Ri ) by inserting or deleting q as described in the
crossing event of Section 3. The number of topological events in this case is proportional
to the new degree (if q is inserted) or old degree (if q is deleted) of q within the exterior
of conv(Ri ). Moreover, if a triangle � in Fi is destroyed due to an edge insertion or
deletion, we simply delete all the edges of Fi+1 lying inside �. As destroying a triangle
unavoidably leads to creation of other triangle(s), we only describe how we perform
reconstruction after creating a new triangle. Suppose a triangle � is created in Fi , we
reconstruct the affected portion of Fi+1. More specifically, let R�i+1 = Ri+1 ∩ �. We
construct the fan triangulation F(R�i+1) inside �. The number of topological events in
each newly created triangle � can be bounded by O(|R�i+1|). Each topological event
induced by hereditary events can be handled in O(log n) time, including the time spent
in updating the global event queue.

In the next section we analyze the performance of the hierarchical fan triangulation,
assuming that Ri is a random subset of Ri+1 of an appropriate size.
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5. Analysis

In the hierarchical fan triangulation F defined in Section 4, we choose Ri−1 to be a
random subset of Ri of size

min{|Ri |, 5|Ri |1−1/ i log|Ri |}, (1)

for 1 < i ≤ w. Let w = �√log n/ log log n�. In this section we show that F has a
near-quadratic number of topological changes as promised. To do this, we first focus
on a specific level of the construction of F. For notational convenience, let P = Ri ,
R = Ri−1, T(P) = Fi , T(R) = Fi−1, n = |P|, and r = n1−1/ i , for some 1 < i ≤ w. It
follows that T(P) = F(P,T(R)), and |R| = min{n, 5r log n}.

Let p, p1, p2, p3 ∈ P , t, t1, t2 ∈ R, and m ∈ N. Let h(p1, p2) be the open halfplane
to the left of the oriented line −−→p1 p2. We define (see Fig. 9)

〈p1, p2, p3; t〉 = {p ∈ P | p(t) ∈ �p1(t)p2(t)p3(t)},
〈p1, p2; t1, t2〉s = {p ∈ P | ∃t ∈ [t1, t2] s.t., p(t) ∈ p1(t)p2(t)},
〈p1, p2; t1, t2〉h = {p ∈ P | ∃t ∈ [t1, t2] s.t., p(t) ∈ h(p1(t), p2(t))},
〈p;m; t〉ρ = {ρ(k)(p(t)) | 1 ≤ k ≤ m},
〈p;m; t〉γ = {γ (k)(p(t)) | 1 ≤ k ≤ m}.

p1(t)

p2(t)

p(t)

p3(t)

p2(t)
p(t)p1(t)

(a) (b)

p1(t)

p(t)

p2(t)

p(t)�(p(t))

�(2)(p(t))

(2)(p(t))

(p(t))

p(t)

(c) (d) (e)

Fig. 9. Examples of different ranges: (a) 〈p1, p2, p3; t〉, (b) 〈p1, p2; t1, t2〉s , (c) 〈p1, p2; t1, t2〉h ,
(d) 〈p;m; t〉ρ , (e) 〈p;m; t〉γ .
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We then let

R1 = {〈p1, p2, p3; t〉 | p1, p2, p3 ∈ P, t ∈ R},
R2 = {〈p1, p2; t1, t2〉s | p1, p2 ∈ P, t1, t2 ∈ R},
R3 = {〈p1, p2; t1, t2〉h | p1, p2 ∈ P, t1, t2 ∈ R},
R4 = {〈p;m; t〉ρ | p ∈ P,m ∈ N, t ∈ R},
R5 = {〈p;m; t〉γ | p ∈ P,m ∈ N, t ∈ R}.

Finally, let X = (P,R) be the range space with R =⋃1≤ j≤5 Rj . We have the following
lemma.

Lemma 5.1. |R| = O(n5).

Proof. Consider three points p1, p2, and p3 of P . As t increases, 〈p1, p2, p3; t〉 changes
only when some point q ∈ P moves in or out of the triangle p1 p2 p3. For any point q, this
can only happen a constant number of times. Thus 〈p1, p2, p3; t〉 can change O(n) times
as t goes from −∞ to +∞ for fixed p1, p2, and p3. There are O(n3) different choices
of p1, p2, p3, implying that |R1| = O(n4). Similarly we can prove |R2| = O(n4) and
|R3| = O(n4).

For any p, q ∈ P , if y(p(t)) < y(q(t)), let θ(p(t), q(t)) denote the angle formed
by −→pq and the +x-direction at time t ; θ(p(t), q(t)) is undefined at t otherwise. The
number of changes to ρ(p) is the same as the complexity of the upper envelope of
{θ(p(t), q(t)) | q �= p, q ∈ P}, which can be bounded by λs(n) [16], where λs(·) is the
maximum length of a Davenport–Schinzel sequence of order s. The value of s depends
on the maximum degree of polynomial of the trajectories of points in P; for example,
s = 4 if points move linearly. For fixed p and m, as t increases, 〈p;m; t〉ρ changes only
when ρ(q) changes for some q ∈ P . There are at most n different choices for p and m
each, thus we have |R4| = O(n3λs(n)), which is slightly larger than O(n4). Similarly
|R5| = O(n3λs(n)). Putting everything together, |R| = O(n3λs(n)) = O(n5).

As time t varies, the topological structure of T(P)may change: features such as edges
or triangles may appear or disappear. The lifetime of a feature is the period between two
of its consecutive appearances and disappearances. If an edge or a triangle occurs more
than once, we count each occurrence as a different feature.

By (1), Lemma 5.1, and standard results from random sampling theory [15], R is
a (1/r)-net of the range space X with high probability. Thus we obtain the following
lemmas.

Lemma 5.2. With high probability:

(a) At any time, there are less than n/r points of P inside any triangle of T(R).
(b) Less than n/r points of P can cross any edge ever appearing in T(R) during its

lifetime.
(c) Less than n/r points of P can ever appear in h(p, q) during the period when

p, q ∈ R are two neighboring points on the convex hull of R in clockwise order.
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Lemma 5.3. With high probability:

(a) For any p ∈ P,m ∈ N, t ∈ R,

|〈p;m; t〉ρ | ≤ (|〈p;m; t〉ρ ∩ R| + 1) · n/r.

(b) For any p ∈ P,m ∈ N, t ∈ R,

|〈p;m; t〉γ | ≤ (|〈p;m; t〉γ ∩ R| + 1) · n/r.

Proof. Suppose that

〈p;m; t〉ρ ∩ R = {ρ(i1)(p(t)), ρ(i2)(p(t)), . . . , ρ(iv)(p(t))},
where 1 ≤ i1 < i2 < · · · < iv ≤ m. Let i0 = 0 and iv+1 = m + 1. We have

〈p;m; t〉ρ =
(
v+1⋃
j=1

〈ρ(i j−1)(p(t)); i j − i j−1 − 1; t〉ρ
)

∪ {ρ(i1)(p(t)), ρ(i2)(p(t)), . . . , ρ(iv)(p(t))}.
Moreover, by the properties of a (1/r)-net of X, we know that with high probability,

|〈ρ(i j−1)(p(t)); i j − i j−1 − 1; t〉ρ | ≤ n/r − 1,

for 1 ≤ j ≤ v + 1. We thus obtain

|〈p;m; t〉ρ | ≤ (v + 1) · (n/r − 1)+ v ≤ (v + 1) · n/r.

We can prove (b) in a similar manner.

Let deg(p(t)) denote the degree of point p ∈ P in T(P) at time t .

Lemma 5.4. If a point p ∈ P lies on an edge of T(R) at time t0, then both deg(p(t−0 ))
and deg(p(t+0 )) are bounded by n/r with high probability.

Proof. If p(t−0 ) or p(t+0 ) lies in the interior of conv(R), then we have deg(p(t−0 )) ≤ n/r
or deg(p(t+0 )) ≤ n/r with high probability by Lemma 5.2(a). If p crosses an edge p1 p2

of ∂ conv(R) at t0, say, from inside to outside, then at t+0 , all points adjacent to p lie in
the open halfplane bounded by p1 p2 that is disjoint from conv(R). It then follows from
Lemma 5.2(c) that deg(p(t+0 )) ≤ n/r . A symmetric argument shows deg(p(t−0 )) ≤ n/r
if p moves from the exterior to the interior of conv(R) at t0.

For a set A ⊆ P of points, let ψ(A) denote the total number of topological changes
to T(A) over time. We will bound ψ(P) in terms of ψ(R), where R is a (1/r)-net with
respect to the range space X. For simplicity, we omit the phrase “with high probability.”
We now bound the number of topological changes induced by each type of event as
discussed in Section 3 and 4.
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Hereditary Events. Each hereditary event either causes us to re-triangulate T(P) inside
O(1) triangles of T(R), or insert or delete a point of R that appears or disappears on
∂ conv(R). By Lemma 5.2(a) and 5.4, each such event induces O(n/r) topological
changes. Since each hereditary event is caused by a topological event of T(R), the total
number of topological changes induced by the hereditary events is

O(n/r) · ψ(R). (2)

Crossing Events. By Lemma 5.2(b), at most n/r points cross an edge of T(R) during its
lifetime. By Lemmas 3.3 and 5.4, each such event induces O(n/r) topological changes.
Since there are O(ψ(R) + |R|) distinct edges in T(R) over the entire history, the total
number of topological changes induced by crossing events is

O((n/r) · (n/r) · (ψ(R)+ |R|)) = O(n2/r2) · ψ(R). (3)

Visibility Events. Recall that a visibility event occurs when there is a change in ρ(p) or
γ (p)with respect to� ∈ T(R) for some point p ∈ P� (recall P� is the set of points of P
inside�). As discussed earlier, each such event induces a constant number of topological
changes. Therefore, we only need to bound the number of visibility events.

A visibility event occurs due to the collinearity of p and two other points q and z,
where p, q , and z lie within the same face, say�, of T(R). If� is a triangle in T(R) (i.e.,
p ∈ conv(R)), then by Lemma 5.2, only O(n/r) points can ever appear in � during its
lifetime. Using a lower-envelope argument as in the proof of Lemma 5.1, it can be shown
that the number of visibility events happening to p while p ∈ � is O(λs(n/r)). Since
there are O(ψ(R) + |R|) triangles in T(R) over the entire history, the total number of
visibility events inside conv(R) is

O((n/r) · λs(n/r) · (ψ(R)+ |R|)) = O(n2 log(n)/r2) · ψ(R).
Next, suppose a point p /∈ conv(R) causes a visibility event. Let lt (resp. lb) be the

horizontal line passing through the highest (resp. lowest) point of R. We distinguish
three cases: (a) p lies between lt and lb and to the left (resp. right) of conv(R), and γ (p)
(resp. ρ(p)) changes; (b) p lies between lt and lb and to the left (resp. right) of conv(R),
and ρ(p) (resp. γ (p)) changes; and (c) p lies above lt or below lb.

It is easy to observe that cases (b) and (c) at t = t0 correspond to a change in

arg max
q∈P

θ(p(t), q(t)) or arg min
q∈P

θ(p(t), q(t))

at time t0. Therefore, there are an O(nλs(n)) = O(n2 log n) number of such events, by
a lower-envelope argument similar to the one in the proof of Lemma 5.1.

Now consider case (a) (depicted in Fig. 10). Assume without loss of generality that
p lies to the left of conv(R). Let p1 p2 be the edge on conv(R) that is hit by the ray
emanating from p towards its right (assuming p1, p2 are in clockwise order). Observe
that q, z, the two points that are involved in the visibility event with p, must lie in
the triangle pp1 p2, and therefore p, q, z ∈ h(p1, p2). Thus, during the period when
p1, p2 are two neighboring points on conv(R) in clockwise order, the number of events
that three points of P in h(p1, p2) become collinear is O(n3/r3), by Lemma 5.2(c). If
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p1
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q

z
p

lt

p2

q′

Fig. 10. The shaded region is conv(R), and the thick chain is V(p).

points move along algebraic trajectories, the combinatorial structure of conv(R) changes
O(|R|λs(|R|)) = O(|R|2 log n) times [16]. Therefore there are O(n3|R|2 log(n)/r3)

such events.
In total, the number of topological changes to the triangulation of P caused by visi-

bility events is bounded by

O(n3|R|2 log(n)/r3 + n2 log n)+ O(n2 log(n)/r2) · ψ(R). (4)

Ordering Events. The number of topological changes induced by an ordering event at
time t0 when the y-coordinates of two mutually visible points p and q become equal is
proportional to |Vpq(t0)|, i.e., the number of points that are visible from both p and q
at time t0. If p and q lie inside a triangle face of T(R), then |Vpq(t0)| = O(n/r). Since
there are O(n2) ordering events, the total number of topological changes induced by
such events is O(n3/r). Now assume that p and q lie in the exterior of conv(R), and let
I be the set of such events. Obviously, |I | ≤ n2. Denote by mi the number of points of R
on Vpq(t0) for the i th such event from I . By Lemma 5.3, the total number of topological
changes caused by this type of event is at most∑

i

(mi + 2)n/r = O(n3/r)+ (n/r) ·
∑

i

mi .

Lemma 5.5.
∑

i≤|I | mi = O(n2|R|2 log(n)/r2).

Proof. Suppose two points p and q lying outside conv(R) induce an ordering event at
time t0, i.e., y(p(t0)) = y(q(t0)) and p is visible from q at t0. Let z1, z, z2 ∈ R be three
consecutive points on ∂ conv(R) in clockwise order at t0 and z ∈ Vpq(t0). Recall that
h(z1, z) is the open halfplane to the left of −→z1z. We have that p, q ∈ h(z1, z) ∪ h(z, z2)

as z is visible to both p and q . For fixed edges z1z and zz2 of ∂ conv(R), z can only
be involved in O(n2/r2) such events because, by Lemma 5.2(c), only O(n/r) points
ever appear in h(z1, z) (resp. h(z, z2)) during the lifetime of edge z1z (resp. zz2). Let uz

be the total number of times that z is involved in such an event. As points in R move,
conv(R) may change O(|R|λs(|R|)) = O(|R|2 log n) times [16], therefore the number
of distinct triples of consecutive vertices on ∂ conv(R) is O(|R|2 log n). We then have∑

z∈R

uz = O(n2|R|2 log(n)/r2).
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Using a simple double counting argument, we obtain that
∑

i≤|I | mi =
∑

z∈R uz . This
proves the lemma.

It follows from the above lemma that the total number of topological changes induced
by ordering events is bounded by

O(n3/r + n3|R|2 log(n)/r3) = O(n3|R|2 log(n)/r3). (5)

Summing (2)–(5) and substituting the values of |R| and r , we obtain the following
recurrence for ψ(P):

ψ(P) ≤ O(n2+1/ i log3 n)+ O(n2/ i log n) · ψ(R).
Returning to the hierarchical fan triangulation, let ni be the size of Ri , then

ψ(ni ) ≤ c1n2/ i
i log(ni )ψ(ni−1)+ c2n2+1/ i

i log3 ni ,

where c1, c2 > 0 are constants, and

ni−1 = |Ri−1| = min{ni , 5n1−1/ i
i log ni }.

It can be verified by induction that the solution to the above recurrence is

ψ(ni ) ≤ n2+1/ i
i log3i (ni )2

ci ,

where c is a sufficiently large constant. In particular, for i = w = �√log n/log log n�,
i.e., the hierarchical fan triangulation, we have

ψ(n) = n22O(
√

log n·log log n).

We conclude with the following main result.

Theorem 5.6. Let S be a set of n points moving in R2. If the motion of S is algebraic,
a triangulation of S can be maintained by a randomized algorithm so that the number of

topological events processed by the algorithm is n22O(
√

log n·log log n) with high probability,
and each topological event requires O(log n) time.

As a special case of our problem, we consider a scenario in which only k out of n
points are moving. By extending our previous technique, we can show that there exists a
triangulation whose number of topological changes is roughly O(nk). We describe this
triangulation briefly.

The overall framework follows that for the case with n moving points. The major
difference is that, at each level of the hierarchical fan triangulation, instead of sampling
the points all at once, we sample the static and moving points separately. For any point
set P , let Ps ⊆ P be the set of static points in P , and let Pt ⊆ P be the set of moving
points in P .

Set w = �√log k/log log n�. Let ∅ = R0 ⊆ R1 ⊆ · · · ⊆ Rw = S, such that for
1 < i ≤ w, Rs

i−1 is a random subset of Rs
i of size

min{|Rs
i |, O(|Ri | · |Rt

i |−1/ i log|Rs
i |)},
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and Rt
i−1 is a random subset of Rt

i of size

min{|Rt
i |, O(|Rt

i |1−1/ i log|Rt
i |)}.

We construct the hierarchical fan triangulation F of S as described in Section 4.
Let ni = |Ri | and ki = |Rt

i |, for 1 ≤ i ≤ w. By the same method as in [2], one can
show that the fan triangulation F1 changes O(k4/3

1 λd(n1)) = O(n1k4/3
1 log n1) times.

Using this fact, and by similar analysis as above, it can be shown that the number of
topological changes to Fi is bounded by ni k

1+1/ i
i log3i (ni )2ci for some constant c, for

1 ≤ i ≤ w. In particular, the number of topological changes to the hierarchical fan

triangulation is nk · 2O(
√

log k·log log n). Without going into the detail, we conclude with
the following theorem.

Theorem 5.7. Let S be a set of n points in R2, with k of them moving with algebraic
trajectories of bounded degree. A triangulation of S can be maintained by a randomized
algorithm so that the number of topological events processed by the algorithm is nk ·
2O(
√

log k·log log n) with high probability, and each topological event requires O(log n)
time.

6. Conclusions

In this paper we have described a randomized algorithm for maintaining a triangulation
of a set of moving points in R2. If the motion is algebraic, then the expected number

of topological events is n22O(
√

log n·log log n). Our result almost matches the �(n2) lower
bound, and improves over the previously best known result [2] by nearly a factor of n1/3.
If only k points of the point set are moving, the expected number of topological changes

reduces to nk · 2O(
√

log k·log log n).
Although the triangulation that we maintain is conceptually simple, it is not clear

how to derandomize the algorithm efficiently. It will be interesting to find a simple
deterministic triangulation, easy to implement, and with a near-quadratic number of
topological changes. A major open problem in this area is, of course, bounding the
number of topological events in the Delaunay triangulation of a set of moving points. The
best known upper bound is near cubic while the best known lower bound is quadratic [6].

Another interesting problem is whether Steiner points can help to reduce the com-
plexity of kinetic triangulations. Agarwal et al. [1] showed that the �(n2) lower bound
on the total number of topological changes to a triangulation still holds even if O(n)
Steiner points are allowed and can move along any continuous trajectories. However, we
expect that with the introduction of Steiner points, a much simpler triangulation with a
near-quadratic number of topological changes may be found.
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