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A Two-dimensional Mapping with a Strange Attractor

M. Henon

Observatoire de Nice, F-06300 Nice, France

Abstract. Lorenz (1963) has investigated a system of three first-order differential
equations, whose solutions tend toward a "strange attractor". We show that
the same properties can be observed in a simple mapping of the plane defined
by: xi+1 = yi-\-l — axj, yi+1 = bxt. Numerical experiments are carried out
for a = lΛ, b = 03. Depending on the initial point (xOiyo), the sequence of
points obtained by iteration of the mapping either diverges to infinity or
tends to a strange attractor, which appears to be the product of a one-
dimensional manifold by a Cantor set.

1. Introduction

Lorenz (1963) proposed and studied a remarkable system of three coupled first-
order differential equations, representing a flow in three-dimensional space.
The divergence of the flow has a constant negative value, so that any volume
shrinks exponentially with time. Moreover, there exists a bounded region R
into which every trajectory becomes eventually trapped. Therefore, alΓ trajectories
tend to a set of measure zero, called attractor. In some cases the attractof is simply
a point (which is then a stable equilibrium point) or a closed curve (known as a
limit cycle). But in other cases the attractor has a much more complex structure; it
appears to be locally the product of a two-dimensional manifold by a Cantor set.
This is known as a strange attractor. Inside the attractor, trajectories wander in an
apparently erratic manner. Moreover, they are highly sensitive to initial conditions.
These phenomena are of interest for weather prediction (Lorenz, 1963) and more
generally for turbulence theory (Ruelle and Takens, 1971; Ruelle, 1975). Further
numerical explorations of the Lorenz system have been made by Lanford (1975)
and Pomeau (1976).

We present her a "reductionist" approach in which we try to find a model
problem which is as simple as possible, yet exhibits the same essential properties
as the Lorenz system. Our aim is (i) to make the numerical exploration faster
and more accurate, so that solutions can be followed for a longer time, more
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Fig. 1. The initial area a is mapped by T into b, then by T" into c, and finally by T" into d

detailed explorations can be conducted, etc.; (ii)to provide a model which might

lend itself more easily to mathematical analysis.

2. The Model

Our first step is classical (Birkhoff, 1917) and consists in considering not the whole
trajectories in the three-dimensional space, but only their successive intersections
with a two-dimensional surface of section S. We define a mapping T of S into
itself as follows: given a point A of S, we follow the trajectory which originates
from A until it intersects S again; this new point is T(A). This mapping is some-
times called a Poincarέ map. A trajectory is thus replaced by an infinite set of
points in S, obtained by repeated application of the mapping T. The essential
properties of the trajectory are reflected into corresponding properties of the set of
points. We have thus formally reduced the problem to the study of a two-
dimensional mapping.

At this point, however, the only advantage really gained is in clarity of presenta-
tion of the results; the actual computation of the mapping still requires the
numerical integration of the differential equations. Now comes the second and
decisive step: we forget about the differential system, and we define a mapping T
by explicit equations, giving directly T(A) when A is known. This of course
simplifies the computation drastically. The new mapping T does not any more
correspond to the Lorenz system; however, by choosing it carefully we may hope
to retain the essential properties which we wish to study. Past experience in the
measure-preserving case (see Henon, 1969, and references therein) has shown
indeed that the same features are found in dynamical systems defined by differential
equations and in mappings defined as such.

The third step consists in specifying T. Here we have been inspired by the
numerical results of Pomeau (1976) on the Lorenz system, which show clearly
how a volume is stretched in one direction, and at the same time folded over itself,
in the course of one revolution. This folding effect has been also described by
Ruelle (1975, Fig. 5 and 6). We simulate it by the following chain of three mappings
of the (x, y) plane onto itself. Consider a region elongated along the x axis (Fig. la).
We begin the folding by

V :x' = ax2
(1)
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which produces Figure lb ; a is an adjustable parameter. We complete the folding
by a contraction along the x axis:

Ύ" . Y" — hx1 v" — v' (2)

which produces Figure lc; b is another parameter, which should be less than 1 in
absolute value. Finally we come back to the orientation along the x axis by

T"\x"' = y", y"' = x", (3)

which results in Figure 1 d.
Our mapping will be defined as the product j=j'"j"j' We write now

(xf, yt) for (x, y) and (x ί + 1 5 yi+ x). for (x'"5 /") (as a reminder that the mapping will
be iterated) and we have

T:xi+1=yi+l — axf, yi+i=bXi. (4)

This mapping has some interesting properties. Its Jacobian is a constant:

-b. (5)

The geometrical interpretation is quite simple: T preserves areas; T" also
preserves areas but reverses the sign; and T" contracts areas, multiplying them
by the constant factor b. The property (5) is welcome because it is the natural
counterpart of the constant negative divergence in the Lorenz system.

A polynomial mapping satisfying (5) is known as an entire Cremona trans-
formation, and-the inverse mapping is also given by polynomials (Engel, 1955,
1958). Indeed we have here

T'1 :xi = b~1yi+1, yi = xi+1 — l+ab~2y2

+1. (6)

Thus T is a one-to-one mapping of the plane onto itself. This is also a welcome
property, because it is the natural counterpart of the fact that in the Lorenz
system there is a unique trajectory through any given point.

The selection of T could have been approached in a different way, by looking
for the "simplest" non-trivial mapping. It is natural then to consider polynomial
mappings of progressively increasing order. Linear mappings are trivial, so the
polynomials must be at least of degree 2. The most general quadratic mapping is

yi+1 = f' + a' x^V yt + d x2 +d' xiyi + e' y2 (7)

and depends on 12 parameters. But if we impose the condition that the Jacobian
is a constant, some relations must be satisfied by these parameters. We can
further reduce the number of parameters by an appropriate linear change of co-
ordinates in the plane. In this way, by a slight extension of the results of Engel
(1958), it can be shown that the general form (7) is reducible to a "canonical form"
depending on two parameters only. This is a generalization of our earlier result
(Henon, 1969) that a quadratic area-preserving mapping can be brought into a
form depending on one parameter only. The canonical form can be written in
several different ways; and one of them turns out to be identical with (4), which is
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thus reached by an entirely different road! The mapping (4), which was initially
constructed in empirical fashion, is in fact the most general quadratic mapping with
constant Jacobian.

One difference with the Lorenz problem is that the successive points obtained
by repeated application of T do not always converge towards an attractor;
sometimes they "escape" to infinity. This is because the quadratic term in (4)
dominates when the distance from the origin becomes large. However, for partic-
ular values of a and b it is still possible to prove the existence of a bounded "trapping
region" R, from which the points can never escape once they have entered it
(see below Section 5).

T has two invariant points, given by

y = bx. (8)

These points are real for

(9)

When this is the case, one of the points is always linearly unstable, while the other
is unstable for

a>aί = 3(i-b)2/4. (10)

3. Choice of Parameters

We select now particular values of a and b for a numerical study, b should be
small enough for the folding described by Figure 1 to occur really, yet not too
small if one wishes to observe the fine structure of the attractor. The value b = 0.3
was found to be adequate. A good value of a was found only after some experi-
menting. For a<a0 or a>a3, where a0 is given by (9) and a3 is of the order of 1.55
for i> = 0.3, the points always escape to infinity: apparently there exists no attractor
in these cases. For ao<a<a3, depending on the initial values (xo,yo\ either the
points escape to infinity or they converge towards an attractor, which appears to
be unique for a given value of a. We concentrate now on this attractor. For
ao<a<aί, where a1 is given by (10), the attractor is the stable invariant point.
When a is increased over au at first the attractor is still simple and consists of a
periodic set of p points. (An equivalent attractor in the Lorenz problem would
be a limit cycle intersecting the surface of section p times). The value of p increases
through successive "bifurcations" as a increases, and appears to tend to infinity
as a approaches a critical value α2, of the order of 1.06 for b = 0.3. For a2<a<a3,
the attractor is no more simple, and the behaviour of the points becomes erratic.
This is the case in which we are interested. We adopt the following values:

0 = 1.4, b = 0.3. (11)

4. Numerical Results

Figure 2 shows the result of plotting 10000 successive points, obtained by iteration
of T, starting from the arbitrarily chosen initial point xo = 0, yo = O; the vertical
scale is enlarged to give a better picture. Figure 3 shows the result of 10000
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Fig. 2. 10000 successive points obtained by iteration of the mapping T starting from xQ — 0, yo=^

iterations of T again, starting from a different point: x0 = 0.63135448, yo =
0.18940634 (this choice will be explained below). The two figures are seen to be
almost identical. This suggests strongly that what we see in both figures is
essentially the attractor itself: the successive points quickly approach the attractor
and soon become undistinguishable from it at the scale of the figure. This is
confirmed if one looks at the first few points on Figure 2. The initial point at
xo = O, yo = O and the first iterate at x1 = l, y^=0 are clearly visible; the second
iterate is still visible at x2 = —0.4, j ; 2 = 0.3; the third iterate can barely be distin-
guished at x3 = 1.076, y3=-0.12; and the fourth iterate at x4 = -0.7408864,
y4 = 0.3228 is already lost inside the attractor at the resolution of Figure 2. The
following points then wander over the attractor in an apparently erratic manner.

One of the two unstable invariant points has the coordinates, given by (8):

x = 0.63135448..., y = 0.18940634... . (12)

This point appears to belong to the attractor. The two eigenvalues λί9 λ2 and the
slopes pu p2 of the corresponding eigenvectors are

λ1 = 0.15594632..., Pl = 1.92373886...,

λ2= -1.92373886..., p2= -0.15594632... . (13)

The instability is due to λ2. The corresponding slope p2 appears to be tangent to
the "curves" in Figure 2.
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Fig. 3. Same as Figure 2, but starting from xo = 0.63135448,

1.0 1.5

o=0.18940634

These properties allow us to eliminate the "transient regime" in which the
points approach the attractor, and which is not of much interest: we simply start
from the close vicinity of the unstable point (12), by rounding off its coordinates
to 8 digits. This is done in Figure 3 and in the following figures. The points quickly
move away along the line of slope p2 since \λ2\ is appreciably larger than 1.

The attractor appears to consist of a number of more or less parallel "curves"
the points tend to distribute themselves densely over these curves. The few gaps
that can still be seen on Figures 2 and 3 have probably no particular significance.
Their locations are not the same on the two figures. They are simply due to
statistical fluctuations in the quasi-random distribution of points, and they would
disappear if more moints were plotted. Thus, the longitudinal structure of the
attractor (along the curves) appears to be simple, each curve being essentially a
one-dimensional manifold.

The transversal structure (across the curves) appears to be entirely different,
and much more complex. Already on Figures 2 and 3 a number of curves can be
seen, and the visible thickness of some of them suggests that they have in fact an
underlying structure. Figure 4 is a magnified view of the small square of Figure 3:
some of the previous "curves" are indeed resolved now into two or more com-
ponents. The number n of iterations has been increased to 105, in order to have a
sufficient number of points in the small region examined. The small square in
Figure 4 is again magnified to produce Figure 5, with n increased to 106: again the
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Fig. 4. Enlargement of the squared region of Figure 3. The number of computed points is increased

number of visible "curves" increases. One more enlargement results in Fig. 6,
with n = 5 x 106: the points become sparse but new curves can still easily be traced.

These figures strongly suggest that the process of multiplication of "curves"
will continue indefinitely, and that each apparent "curve" is in fact made of an
infinity of quasi-parallel curves. Moreover, Figures 4 to 6 indicate the existence
of a hierarchical sequence of "levels", the structure being practically identical
at each level save for a scale factor. This is exactly the structure of a Cantor set.

The frames of Figures 4 to 6 have been chosen so as to contain the invariant
point (12). This point appears to lie on the upper boundary of the attractor.
Surprisingly, its presence is completely invisible on the figures; this contrasts with
the area-preserving case, were stable and unstable invariant points play a very
conspicuous role (see for instance Henon, 1969). On the other hand, the presence
of the invariant point explains, locally at least, the hierarchy of similar structures:
at each application of the mapping, the scale of the transversal structure is
multiplied by λx given by (13). At the same time, the points spread out along the
curves, as dictated by the value of λ2.

5. A Trapping Region

The fact that even after 5 x 106 iterations the points have not diverged to infinity
suggests that there is a region of the plane from which the points cannot escape.
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Fig. 5. Enlargement of the squared region of Figure 4; n = 106
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This can be actually proved by finding a region R which is mapped inside itself.

An example of such a region is the quadrilateral ABCD defined by

xA=-133, j ^ = 0.42, xB=1.32, j / β = 0.133,

xc = 1.245, yc=-0A4, x ^ - 1 . 0 6 , ^ = - 0 . 5 . (14)

The image of ABCD is a region bounded by four arcs of parabola, and it can be
shown by elementary algebra that this image lies inside ABCD. Plotting the
quadrilateral on Figure 2 or 3, one can verify that it encloses the observed
attractor.

6. Conclusions

The simple mapping (4) appears to have the same basic properties as the Lorenz
system. Its numerical exploration is much simpler: in fact most of the exploratory
work for the present paper was carried out with a programmable pocket computer
(HP-65). For the more extensive computations of Figures 2 to 6, we used a IBM
7040 computer, with 16-digit accuracy. The solutions can be followed over a much
longer time than in the case of a system of differential equations. The accuracy
is also increased since there are no integration errors.

Lorenz (1963) inferred the Cantor-set structure of the attractor from reasoning,
but could not observe it directly because the contracting ratio after one "circuit"
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Fig. 6. Enlargement of the squared region of Figure 5; n = 5 x 106

was too small: 7x10 5. A similar experience was reported by Pomeau (1976).
In the present mapping, the contracting ratio after one iteration is 0.3, and one
can easily observe a number of successive levels in the hierarchy. This is also
facilitated by the larger number of points.

Finally, for mathematical studies the mapping (4) might also be easier to
handle than a system of differential equations.

References

Birkhoff,G.D.: Trans. Amer. Math. Soc. 18, 199 (1917)
Engel,W.: Math. Annalen 130, 11 (1955)
Engel,W.: Math. Annalen 136, 319 (1958)
Henon,M.: Quart. Appl. Math. 27, 291 (1969)
Lanford,O.: Work cited by Ruelle, 1975
Lorenz,E.N.: J. atmos. Sci. 20, 130 (1963)
Pomeau, Y.: to appear (1976)
Ruelle, D., Takens,F.: Comm. math. Phys. 20, 167; 23, 343 (1971)
Ruelle, D.: Report at the Conference on "Quantum Dynamics Models and Mathematics" in Bielefeld,

September 1975

Communicated by K. Hepp

Received March 25, 1976




