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A Two-Dimensional Numerical
Wave Flume—Part 1: Nonlinear
Wave Generation, Propagation,
and Absorption
A numerical model is developed to simulate fully nonlinear transient waves in a s
infinite, two-dimensional wave tank. A mixed Eulerian-Lagrangian formulation is ado
and a high-order boundary element method is used to solve for the fluid motion at
time step. Input wave characteristics are specified at the upstream boundary of the
putational domain using an appropriate wave theory. At the downstream bounda
damping region is used in conjunction with a radiation condition to prevent wave re
tions back into the computational domain. The convergence characteristics of the nu
cal model are studied and the numerical results are validated through a comparison
previous published data.@DOI: 10.1115/1.1365117#
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Introduction
The numerical wave tank concept has received consider

attention in the last few years; much effort has been directed
wards developing the computational equivalent of a laborat
wave tank facility. Most of the work has been focused on dev
oping fully nonlinear, inviscid time-domain solutions for wav
generation and propagation in both two and three dimensi
Although a variety of different numerical techniques have be
employed by the various investigators, the most popular, and
cessful, approach is undoubtedly the mixed Eulerian-Lagrang
~MEL! formulation originally developed by Longuet-Higgins an
Cokelet@1#. In this approach, the wave propagation is treated a
transient process in which a time-stepping scheme is used to
date the computational domain at successive instants during
simulation. The velocity potential at each instant of time is o
tained through the application of the boundary integral equa
method to the instantaneous fluid domain. This integral equa
is solved in an Eulerian frame, while the time integration of t
free-surface boundary conditions is performed in a Lagrang
manner. Several authors have extended the basic formulatio
Longuet-Higgins and Cokelet to study the generation and pro
gation of nonlinear waves in a numerical wave-tank~NWT!. Re-
cent two-dimensional~flume! solutions include the works o
Wang et al.@2,3#, Clément @4#, Skourup and Schaffer@5#, and
Grilli and Horillo @6,7#. Related perturbation-approach-based
lutions for nonlinear wave generation in a two-dimensional wa
flume have been developed in the frequency-domain by Huds
and Sulisz@8#, Moubayed and Williams@9#, and Schaffer@10#,
and in the time-domain by Zhang and Williams@11,12# and Stas-
sen et al.@13#. In an NWT, the fluid motion is generated either b
a prescribed wavemaker motion at the upstream boundary, o
specifying wave properties according to a chosen wave theor
the inflow boundary of the tank. In the fully nonlinear NWT a
proach~as opposed to a perturbation theory-based method!, the
second option is simpler, since it does not involve the cons
updating of the fluid domain due to the wavemaker motion. T
method is adopted in the present work.

In the NWT model, the computational fluid domain is truncat
at a finite downstream boundary. A mechanism that prevents
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waves that are propagating toward this boundary from being
flected back into the region in a nonphysical manner, is, theref
an essential element in the simulation. The most common meth
for accomplishing this goal are the use of a radiation condition
active or passive wave absorbers. A radiation condition may
specified at infinity to make the wave propagation problem w
posed. One approach for imposing Sommerfeld’s radiation co
tion was first developed by Orlanski@14#, in which the phase
velocity required in this condition was evaluated numerically
the vicinity of the boundary. However, care must be taken
ensure that the computed phase velocity is relatively stable
non-negative. Passive wave absorption may be accomplished
ing a so-called damping layer or absorbing beach in front of
radiation boundary. In this approach, the free-surface bound
conditions inside the damping layer are modified by adding
dissipative term so that outgoing waves are absorbed with as
wave reflection as possible. This approach may be easily im
mented; however, it requires that the computational domain
extended to accommodate the damping layer. Skourup@15# and
Skourup and Schaffer@5# have devised an active wave absorpti
method for an NWT. The approach consists of implementing
active wavemaker at the outflow boundary of the flume who
movements are determined instantaneously from the time his
of the local surface elevation in order to absorb the incident~out-
going! wave system. In the present work, an Orlanski-type rad
tion boundary condition will be specified; also, the performance
the radiation boundary condition when combined with a pass
wave absorber~an absorbing beach! will be investigated.

Theoretical Development
A finite two-dimensional control domain,V, containing fluid is

considered. A Cartesian coordinate system~x,z! is employed; the
x-axis coincides with the reference position of the free-surface
the z-axis is directed vertically upward~see Fig. 1!. The fluid is
considered to be inviscid and incompressible, and the flow is
sumed to be irrotational; therefore, it can be described in term
a velocity potentialf(x,z,t) that satisfies Laplace’s equation i
the region of flow, namely

¹2f50 in V (1)

On the free-surface, there are two boundary conditions, kinem
and dynamic. The kinematic boundary condition requires that
fluid be transported across the free-surface

m-
ns,

d
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Dxs

Dt
5¹f on G f s (2)

wherexs denotes the position vector of a free-surface particle. T
dynamic boundary condition is based on the Bernoulli equat
and is given by

Df

Dt
52gh1

1

2
~¹f•¹f! on G f s (3)

The tank bottom is a rigid and impermeable boundary; therefo

]f

]n
50 on Gb (4)

On the inflow boundary,Gu , the fluid motion is generated by
imposing the properties~surface elevation, velocity potentia
and/or normal velocity! of a known theoretical wave form~such
as a single linear or nonlinear wave or multiple linear comp
nents!. The input wave properties at the upstream wall are
creased gradually using a ramping function, which initially sat
fies a calm water condition and smoothly approaches unity as
simulation proceeds. The ramping function is given by

Rm5H 1

2 S 12cosS pt

Tm
D D if t<Tm

1 if t>Tm

(5)

whereTm is specified as the length of time for which the inp
wave is ramped.

The computational domain is finite; therefore, on the outflo
boundary,G rd , a radiation condition is required. Physically, th
condition ensures that the waves on this boundary are outgoin
the present case, a Sommerfeld-type boundary condition is u
This condition takes the form

]f

]n
52

1

c

]f

]t
on G rd (6)

and requires the numerical evaluation of the phase velocity,c.
Finally, as the problem is solved in the time domain, the f

lowing initial conditions are also specified:

f~x,z,0!50

h~x,0!50

¹f~x,z,0!50
J in V and on allG

(7a)

(7b)

(7c)

The solution of the Laplace equation is based on a high-or
boundary element method~HOBEM!. The boundary element for-
mulation is based on Green’s second identity applied to the ve
ity potential f and the free-space Green procedure leads to
following integral equation:

Fig. 1 Definition sketch
Journal of Offshore Mechanics and Arctic Engineering
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a~x!f~x!2E
G
H f~xs ,t !

]G

]n
~x,xs!2

]f

]n
~xs ,t !G~x,xs!J dG

50 (8)

whereG5G f søGuøGbøG rd ; xs5(xs ,zs) is the position vector
of an integration point which is situated at the boundaryG(t) of
the domain;x5(x,z) is the position vector of the node unde
consideration; anda(x) depends on the position ofx on the
boundary.

In order to obtain a numerical solution to the BIE, a collocati
method is used. The boundaryG(t) is discretized intoM elements
by using N collocation points. Within each element, a certa
specified behavior ofx, f, and ]f/]n may be assumed. In the
present case, cubic shape functions are introduced to describ
variation of the geometry and of the boundary functions over e
four-node line element. The mapping relationship on a sim
reference element is given by

S~j!5(
q51

4

Nq~j!Sq (9)

for S5x, z, f, or ]f/]n; Nq are the shape functions. The dis
cretization method transforms the integral equation, Eq.~8!, into a
system of linear algebraic equations. Due to the high-order sh
functions, the integrals involved in the equation cannot be eva
ated analytically. Numerical integration over each boundary e
ment is performed using Gauss-Legendre quadrature with 16
tegration points.

The behavior of the discretized system at a corner node at
intersection of two sub-boundaries becomes a significant issu
cases where the formulation involves linear or higher-or
boundary elements. In these cases, some collocation points
located at the intersection of two different domain sub-boundar
Since the boundary conditions are, in general, different for e
side of a corner point in the computational domain~e.g., on the
input boundary and on the free-surface!, a special approach is
required to ensure continuity of the potential at these locations
split-node technique has been developed by Grilli et al.@16# to
allow specification of different boundary conditions at intersect
boundaries. Each corner node is represented by multiple node
which the coordinates of the nodes are identical, but their nor
vectors are different. This technique has been used in the pre
numerical model to preserve the continuity of the potentialf and
the compatibility of]f/]n at the corner nodes.

After solving the boundary value problem and obtaining t
fluid velocities and normal vectors on the free-surface, the fr
surface boundary conditions given by Eqs.~2! and~3!, considered
as ordinary differential equations forf and h, are advanced in
time. For this purpose, a fourth-order Adams-Bashforth-Moul
~ABM4! scheme was used. The method is fourth-order but
quires only two evaluations of the functionf (t,x,y,f) at each
time step. An alternative would be to use the fourth-order Run
Kutta ~RK4! scheme that has a larger stability region@17#, how-
ever, the ABM4 is generally preferred since the RK4 sche
requires twice as many function evaluations as the ABM4 meth

The simulation of nonlinear wave motions requires special
tention to maintain numerical accuracy and avoid instabili
while allowing the simulation to develop for longer times. In th
MEL approach it is found that, as the simulation proceeds,
free-surface profile starts to develop sawtooth instabilities, du
the presence of higher wave modes@1#. In the present study, in
order to remove these nonphysical oscillations, a five-po
Chebyshev smoothing scheme is applied to the free-surface
file, the velocity potential and the normal velocity after a certa
number of time steps. This smoothing method has been foun
efficiently remove these nonphysical oscillations@18# and is ap-
plied every 5–20 time steps. In general, the smoothing inte
must be reduced in the case of steeper waves. In each applic
considered herein, attention is given to maximizing the smooth
MAY 2001, Vol. 123 Õ 71
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interval for a given set of input parameters. Indeed, it is kno
that excessive smoothing may result in a significant reduction
the free-surface profile@19#. One possible source of these inst
bilities is use of a Lagrangian approach in the time-integration
the free-surface which results in high concentrations of collo
tion nodes in regions of high velocity@20#. Therefore, a regriding
algorithm is also implemented during the simulation. A new, a
length-based free-surface mesh is generated each time the sm
ing procedure is applied, and the velocity potentials and th
derivatives at these new nodes are determined by interpolatio

Numerical Applications
To quantify the effect of the mesh size on the solution, thr

different meshes are used and their results compared. In each
a linear wave of known height,Ho , and period,T, is input at the
upstream boundary to propagate downstream into the wave t
First, a deepwater wave of heightHo /ho50.1 and period
T/Aho /g53.5515 is considered. This case represents a relativ
short wave withho /L corresponding to the linear deepwater lim
whereL is the linear wavelength. Mesh sizes ofDx5L/20, L/25,
and L/30 are considered, i.e., the number of nodes per wa
length, Nw520, 25, and 30. For all runs, a time step ofDt
5T/90 is used. The wave elevation, velocity potential, norm
derivative of potential and velocities on the boundary a
smoothed every ten timesteps. The simulations were run for
wave periods. The wave data and tank dimensions are give
Table 1. ForNw520, the boundary was discretized intoM5160
cubic elements with a total number ofN5484 nodes, of which
234 were located on the free-surface. Similarly, forNw525, there
areN5610 nodes andM5202 cubic elements, and forNw530,
the corresponding values areN5724 and M5240. Figure 2
shows the wave profile atx/ho511 for the different meshes. The
figure indicates convergence of the surface elevation with me
size. An initial transient front can be seen, before the wave he
stabilizes at a dimensionless timet/Aho /g;70. The steady state
observed implies low reflection from the downstream boundary
can be seen that an increased nodal density allows a more acc
computation of the wave kinematics, which, in turn, results in

Fig. 2 Comparison of the dimensionless free-surface eleva-
tion at x Õh oÄ11 due to a linear input wave of kA oÄ0.157, for
various mesh sizes, calculated using DtÄTÕ90 with smoothing
every 10 time steps

Table 1 Wave and numerical tank data

Wave
no. Ho /ho T/Aho /g L/ho kAo kho l d /ho

1 0.1 3.5515 2.0324 0.1570 3.1415 24
2 0.2 10.622 10.261 0.0942 0.6283 120
72 Õ Vol. 123, MAY 2001
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increase in the free-surface elevation. Similar results for the in
mediate water depth wave of heightHo /ho50.3 andT/Aho /g
510.622 ~also described in Table 1!, are shown in Fig. 3. To
ensure the stability of the solution and allow a longer simulati
time, a finer time step is required in this case. The mesh s
tested areNw520, 25, and 27, using a time step ofDt5T/140.
Surface profiles are shown at a locationx/ho555 in the tank, and
the simulations are carried out for 15 wave periods.

A convergence test with regard to the size of time step was a
carried out. For the shorter wave, which has a steepnesskAo
50.157, whereAo5Ho/2, three cases corresponding to time ste
Dt5T/70, T/90, andT/110 were run withNw520. The goal of
these runs is to determine the maximum time step size~i.e., the
minimum number of time steps per wave period! to obtain accept-
able results. For the longer wave, wherekAo50.092, simulations
were run forDt5T/120, T/140, andT/150, again withNw520.
Time histories of the surface wave profile are shown in Figs
and 5 for each case. It can be seen that the numerical result
the wave elevation do not differ as significantly with time step
they do for the different mesh sizes studied in the foregoing. I
concluded that the primary influence of the time step is on
stability of the simulation.

Fig. 3 Comparison of the dimensionless free-surface eleva-
tion at x Õh oÄ55 due to a linear input wave of kA oÄ0.094, for
various mesh sizes, calculated using DtÄTÕ140 and smoothing
every 10 time steps

Fig. 4 Comparison of the dimensionless free-surface eleva-
tion at x Õh oÄ11 due to an input linear wave of kA oÄ0.157, for
various time steps, calculated using NwÄ20 and smoothing ev-
ery 10 time steps
Transactions of the ASME
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The influence of the smoothing interval on the computed fr
surface profile has also been investigated. The free-surface p
for the short ~i.e., steeper! wave case, corresponding tokAo
50.157, is shown atx/ho511 for three different smoothing inter
vals in Fig. 6. It can be seen that the smoothing interval has s
influence on the magnitude, but not the phase, of the gener
waves: the larger the smoothing interval, the larger the w
height. For this data set, the computed wave heights obta

Fig. 5 Comparison of the dimensionless free-surface eleva-
tion at x Õh oÄ55 due to an input linear wave of kA oÄ0.094, for
various time steps, calculated using NwÄ20 and smoothing ev-
ery 10 time steps

Fig. 6 Comparison of the dimensionless free-surface eleva-
tion at x Õh oÄ11 due to an input linear wave of kA oÄ0.157, for
various smoothing intervals, calculated using DtÄTÕ90 and
NwÄ20
Journal of Offshore Mechanics and Arctic Engineering
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when smoothing every 10 time steps are 6–7 percent smaller
those obtained when smoothing every 17 time steps. The dif
ence in the computed wave heights between smoothing ever
time steps to those when smoothing every 17 time steps is stil
the order of 2 percent.

As stated previously, at the downstream boundary, a condi
has to be specified in order to simulate outgoing waves, and
avoid any reflection back into the computational domain. For t
purpose, a Sommerfeld-Orlanski radiation condition has b
adopted, Eq.~6!. In the numerical implementation of this cond
tion at timestep (n11), the ‘‘celerity’’ c is first determined based
on the values of]f/]t ~obtained from the free-surface condition!
and]f/]x ~obtained from the boundary integral equation!, both at
timestepn. If the calculated celerity is greater thanDx/Dt it is set
equal toDx/Dt for that time step, while if the calculated celerit
is negative, then its value is set to zero for that timestep. A fin
difference representation of the radiation boundary condition
applied at time step (n11) using this celerity to calculate th
velocity potentialf(x,z,tn11) on G rd .

In the following, an energy absorption region is used in co
junction with the foregoing radiation condition. The energy a
sorption approach consists of adding an artificial dissipation te
to the free-surface boundary conditions over the region of
free-surface adjacent to the radiation boundary. The purpos
this damping zone is to absorb the incident wave energy befo
reaches the downstream wall and to further absorb any energy
is subsequently reflected back into the computational domain.
two free-surface boundary conditions, are modified as follo
@21#:

Dxs

Dt
5¹f2n~x!~x2xe! (10a)

Df

Dt
52gh1

1

2
~¹f•¹f!2n~x!~f2fe! (10b)

where the subscripte corresponds to the reference configurati
for the fluid, that is, the initial conditions. In Eq.~10!, n(x) is a
damping coefficient, assumed linear in wave frequency. It can
expressed as

n~x!5avS x2x0

L D 2

f x>x0 , x05bL (11a)

n~x!50 if x,x0 (11b)

whereL is the wavelength, anda andb are constants. As in the
case of real wave tank, numerical ‘‘beaches’’ are usually desig
to attenuate the waves over a distance on the order of one w
length. A comparison will be made of the efficiency of the abso
ing beach, depending on the values ofa and b chosen, i.e., the
strength of the absorption and the length of the beach, res
Fig. 7 Comparison of the dimensionless free-surface elevation at t ÕTÄ44.86 due to an input linear wave
of kA oÄ0.094, for various absorbing beach sizes, b„L Õh o…, and a constant a value, calculated using
NwÄ25, DtÄTÕ140 and smoothing every 10 time steps
MAY 2001, Vol. 123 Õ 73
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Fig. 8 Comparison of the dimensionless free-surface elevation at t ÕTÄ44.86 due to an input linear wave
of kA oÄ0.094, for various absorption strengths, a, with a constant b value, calculated using NwÄ25,
DtÄTÕ140 and smoothing every 10 times steps
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tively. If the absorption effect is too weak, a portion of the ener
will be reflected from the downstream boundary; conversely
the absorption effect is too strong, the damping zone will beh
more like a solid boundary and wave reflection will again occ

Results are only displayed for the case of long waves. Figu
presents the dimensionless free-surface profile at various dim
sionless times for different values of the absorbing beach len
b(L/ho), and a fixed value ofa. Similarly, Fig. 8 shows the
dimensionless surface elevation at various dimensionless time
different values ofa, and a constant value ofb. It can be seen tha
use of a radiation condition alone gives satisfactory results,
better wave absorption is observed when using an absor
beach. A substantial difference can be observed in the free-su
profiles whenb.1. The wave amplitude decreases significan
when approaching the downstream wall; stronger absorptio
also observed whena50.5.

Although the convergence study has shown satisfactory res
a comparison with previous authors verifies the accuracy of
model and thus completes the validation process. The pre
model has been compared with the fully nonlinear potential fl
model developed by Grilli and Horrillo@6#. In their model, the
boundary of the computational domain is discretized with q
dratic isoparametric elements on the lateral and bottom bou
aries, and mixed cubic elements on the free-surface. The inci
wave was generated either by a numerical flap wavemaker o
stream function wave theory. They use an absorbing beach a
far end of the tank. A feedback procedure was developed to a
tively calibrate the beach absorption coefficient to absorb

Fig. 9 Comparison of the results of the present model †6‡ for
the dimensionless free-surface elevation at x Õh oÄ11 due to a
Stokes fifth-order input wave of kA oÄ0.157, calculated using
NwÄ25, DtÄTÕ90 and smoothing every 17 time steps
123, MAY 2001
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period-averaged energy of waves entering the absorbing beac
some computations, they combined the beach model with an
sorbing piston in order to achieve better absorption of lo
frequency waves. A comparison between the free-surface obta
by the present approach and that of Grilli and Horrillo for t
short wave case studied is shown in Fig. 9. It can be seen tha
two sets of results are in reasonable agreement, with Grilli
Horrillo’s model predicting slightly higher crests and flatt
troughs. This is probably due to the differences in the input wa
profiles and associated kinematics between the two models.

Conclusions
In the present paper, the simulation of fully nonlinear transi

waves in a two-dimensional numerical wave tank was succ
fully completed. The time-domain analysis of the fully nonline
wave motion was carried out using a mixed Eulerian-Lagrang
boundary element method. The Laplace equation was solved
Eulerian frame using a boundary integral equation approach b
on Green’s second identity. The temporal updating of the fr
surface was obtained from the fully nonlinear kinematic and
namic free-surface boundary conditions by application of
fourth-order Adams-Bashforth-Moulton integration techniqu
The fluid boundary was discretized with four-node cubic line
ements. A split-node technique was used to overcome the si
larities and ensure continuity of the solution at the corner node
radiation boundary condition was applied at the downstre
boundary in order to simulate outgoing waves and avoid refl
tions back into the computational domain. Waves were gener
at the inflow boundary by prescribing the surface elevation,
locity potential, and normal velocity according to an appropria
theoretical wave theory. A validation process was performed
demonstrate the accuracy and stability of the numerical mode
convergence study was carried out with respect to the param
of mesh size, time increment, and smoothing interval. The in
ence of the theoretical form of the waves input into the numer
wave tank, and the efficiency of the radiation boundary condit
have also been addressed. Finally, the robustness of the sol
concerning the wave generation, propagation, and absorp
problem was illustrated by a comparison with previous publish
results.
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