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Introduction waves that are propagating toward this boundary from being re-

The numerical wave tank concept has received considera&FCted back into the region in a nonphysical manner, is, therefore,

attention in the last few years: much effort has been directed 1%lﬁeessentlal element in the simulation. The most common methods

; . . r accomplishing this goal are the use of a radiation condition, or
xZ\r/dest:ﬁIl/ ?é%ﬂ:g? Itzlgstcgfm[ﬁzti\sgnkarlwaesqtl;g/:r!efr:)tcgfse% Igrl:])c:jr:\tlcg ictive or passive wave absorbers. A radiation condition may be
’ specified at infinity to make the wave propagation problem well

oping fully nonlinear, inviscid time-domain solutions for wave . : X o .
ggnegratio)r: and propagation in both two and three dimensiorﬁ’gsed' On_e approach for imposing Somm_erfeld_s radiation condi-
Although a variety of different numerical techniques have beef/'olrl)c\’i\ssrggifrgs\gﬁl?ﬁidcgz dggﬁnvigg]évguggghnhhn?eﬁggﬁi in
employed by the various investigators, the most popular, and suyc-~". 7. .

cessful, approach is undoubtedly the mixed Eulerian-Lagrangi ne vicinity of the boundary. However,. care must be taken to
(MEL) formulation originally developed by Longuet-Higgins an nsure that the computed phase velocity is relatively stable and

Cokelet[1]. In this approach, the wave propagation is treated asngn-negatlve. Passive wave absorption may be accomplished us-

transient process in which a time-stepping scheme is used to ing a so-called damping layer or absorbing beach in front of the

: . O - diation boundary. In this approach, the free-surface boundar
date the computational domain at successive instants during cogﬁditions inside )t/he dampinpgp layer are modified by adding ay

simulation. The velocity potential at each instant of time is ob;._ . . . ; 4
tained through the application of the boundary integral equati?cli\rhs&patlve term so that outgoing waves are absorbed with as little

. : . J .wave reflection as possible. This approach may be easily imple-
method to the instantaneous fluid domain. This integral equati . ; ; . .
is solved in an Eulerian frame, while the time integration of th(r)‘r?ented, however, it requires that the computational domain be

extended to accommodate the damping layer. Sko{it6p and

free-surface boundary conditions is performed in a Lagrangi@gf . f .
) . urup and Schaff¢5] have devised an active wave absorption
manner. Several authors have extended the basic formulatlonrn thod for an NWT. The approach consists of implementing an

Longuet-Higgins and Cokelet to study the generation and PTOPsttive wavemaker at the outflow boundary of the flume whose

gation of nonlinear waves in a numerical wave-tahkvT). Re- movements are determined instantaneously from the time history

cent two-dimensionalflume) solutions include the works of of the local surface elevation in order to absorb the incident-

Wang et al.[2,3], Clement [4], Skourup and Schaffei5], and oing wave system. In the present work, an Orlanski-type radia-

Grilli and Horillo [6,7]. Related perturbation-approach-based s‘ﬁ’on boundary condition will be specified; also, the performance of

lutions for nonlinear wave generation in a two-dimensional wave - e . . .
; ; radiation boundary condition when combined with a passive

flume have been developed in the frequency-domain by Hudsp(t—z i . - . :

and Sulisz[8], Moubayed and Williamg9], and Schaffef10], V\}ave absorbefan absorbing beaghwill be investigated.

and in the time-domain by Zhang and Williarftsl,12 and Stas-

sen et al[13]. In an NWT, the fluid motion is generated either by .

a prescribed wavemaker motion at the upstream boundary, or bpeoretical Development

specifying wave properties according to a chosen wave theory afa finite two-dimensional control domait), containing fluid is

the inflow boundary of the tank. In.the fully nonlinear NWT apronsidered. A Cartesian coordinate systena) is employed; the
proach(as opposed to a perturbation theory-based metttbe y.axis coincides with the reference position of the free-surface and
second option is simpler, since it does not involve the constafe z-axis is directed vertically upwartsee Fig. 1 The fluid is
updating of the fluid domain due to the wavemaker motion. Thigonsidered to be inviscid and incompressible, and the flow is as-
method is adopted in the present work. sumed to be irrotational; therefore, it can be described in terms of

In the NWT model, the computational fluid domain is truncateg| velocity potential(x,z,t) that satisfies Laplace’s equation in
at a finite downstream boundary. A mechanism that prevents i region of flow, namely

2, .
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ZA B dG B d¢
a(X)¢(X) JF{ (ﬁ(XS.t)%(X,XS) m(xsvt)G(X,Xs) dr’

=0 (8)

wherel' =T UT',UT',UT 4 ; Xs=(Xs,Zs) is the position vector
of an integration point which is situated at the boundB(y) of
the domain;x=(x,z) is the position vector of the node under
consideration; andx(x) depends on the position of on the
boundary.

In order to obtain a numerical solution to the BIE, a collocation
method is used. The boundadryt) is discretized intdV elements
Fig. 1 Definition sketch by using N collocation points. Within each element, a certain
specified behavior ok, ¢, andd¢/dn may be assumed. In the
present case, cubic shape functions are introduced to describe the
variation of the geometry and of the boundary functions over each
four-node line element. The mapping relationship on a simple

Input
Wave

Dxs _ reference element is given by
Dt =V¢ on I'¢g (2) .
wherexg denotes the position vector of a free-surface particle. The S(é)= E Nqy(8)S, 9)
dynamic boundary condition is based on the Bernoulli equation a=1
and is given by for S=x, z, ¢, or d¢/an; N, are the shape functions. The dis-
D& 1 cretization method transforms the integral equation,(Bg.into a
Bt —gy+ E(Vd,.vqg) on I'¢s (3) system of linear algebraic equations. Due to the high-order shape

functions, the integrals involved in the equation cannot be evalu-
thereforded analytically. Numerical integration over each boundary ele-
ment is performed using Gauss-Legendre quadrature with 16 in-
tegration points.
op -0 only (4) The behavior of the discretized system at a corner node at the
intersection of two sub-boundaries becomes a significant issue in
On the inflow boundaryI',, the fluid motion is generated by cases where the formulation involves linear or higher-order
imposing the propertiegsurface elevation, velocity potential, boundary elements. In these cases, some collocation points are
and/or normal velocityof a known theoretical wave forrgsuch located at the intersection of two different domain sub-boundaries.
as a single linear or nonlinear wave or multiple linear compdince the boundary conditions are, in general, different for each
nents. The input wave properties at the upstream wall are irside of a corner point in the computational doméng., on the
creased gradually using a ramping function, which initially satisnput boundary and on the free-surfca special approach is
fies a calm water condition and smoothly approaches unity as thegjuired to ensure continuity of the potential at these locations. A

The tank bottom is a rigid and impermeable boundary;

simulation proceeds. The ramping function is given by split-node technique has been developed by Grilli efHb] to
allow specification of different boundary conditions at intersecting
1(1_005( 1‘)) if t<T boundaries. Each corner node is represented by multiple nodes for
Rn=1 2 T m (5) Wwhich the coordinates of the nodes are identical, but their normal

vectors are different. This technique has been used in the present

numerical model to preserve the continuity of the potengiaind

where T, is specified as the length of time for which the inputhe compatibility ofd¢/dn at the corner nodes.

wave is ramped. After solving the boundary value problem and obtaining the
The computational domain is finite; therefore, on the outflofuid velocities and normal vectors on the free-surface, the free-

boundaryI',4, a radiation condition is required. Physically, thissurface boundary conditions given by E¢®.and(3), considered

condition ensures that the waves on this boundary are outgoing 2 ordinary differential equations fab and 7, are advanced in

the present case, a Sommerfeld-type boundary condition is usé@e. For this purpose, a fourth-order Adams-Bashforth-Moulton

1 if t=T,,

This condition takes the form (ABM4) scheme was used. The method is fourth-order but re-
quires only two evaluations of the functidift,x,y,#) at each

i 1d¢ time step. An alternative would be to use the fourth-order Runge-
- e O Tw (6)  Kutta (RK4) scheme that has a larger stability regid¥], how-

ever, the ABM4 is generally preferred since the RK4 scheme

and requires the numerical evaluation of the phase velagity, requires twice as many function evaluations as the ABM4 method.
Finally, as the problem is solved in the time domain, the fol- The simulation of nonlinear wave motions requires special at-
lowing initial conditions are also specified: tention to maintain numerical accuracy and avoid instability,
while allowing the simulation to develop for longer times. In the

$(x,2,0=0 (73) MEL approach it is found that, as the simulation proceeds, the
7(x,00=0 in Q and on alll’ (7b) free-surface profile starts to develop sawtooth instabilities, due to
VY h(x,2,00=0 the presence of higher wave modds. In the present study, in

(7c) order to remove these nonphysical oscillations, a five-point
Chebyshev smoothing scheme is applied to the free-surface pro-
file, the velocity potential and the normal velocity after a certain
The solution of the Laplace equation is based on a high-ordenmber of time steps. This smoothing method has been found to
boundary element methdtHOBEM). The boundary element for- efficiently remove these nonphysical oscillatidd8] and is ap-
mulation is based on Green'’s second identity applied to the velgdied every 5-20 time steps. In general, the smoothing interval
ity potential ¢ and the free-space Green procedure leads to thaust be reduced in the case of steeper waves. In each application
following integral equation: considered herein, attention is given to maximizing the smoothing
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interval for a given set of input parameters. Indeed, it is knon 0.2

that excessive smoothing may result in a significant reduction g [ Nw=20

the free-surface profil€l9]. One possible source of these insta:2 b oo Nw=25 A A A ﬂ A
bilities is use of a Lagrangian approach in the time-integration § o, J_ = N%=27 A

the free-surface which results in high concentrations of collocs b

tion nodes in regions of high velocifR0]. Therefore, a regriding § I

algorithm is also implemented during the simulation. A new, ar(‘g A~

length-based free-surface mesh is generated each time the smc# 07 \
ing procedure is applied, and the velocity potentials and the$ r

derivatives at these new nodes are determined by interpolatior.—gl
g 01 Vv Vv Y
Numerical Applications E
To quantify the effect of the mesh size on the solution, thre L
different meshes are used and their results compared. In each ¢ 0.2 ' ' ' ' '
30 50 70 90 110 130 150

a linear wave of known heighH,, and period.T, is input at the . . i
upstream boundary to propagate downstream into the wave ta Dimensionless Time

First, a deepwater wave of heighi,/h,=0.1 and period

T/yh,7g=3.5515 is considered. This case represents a relativ&jig- 3 Comparison of the dimensionless free-surface eleva-
short wave witth, /L corresponding to the linear deepwater limit{ion at x/h,=55 due to a linear input wave of kA ,=0.094, for
whereL is the linear wavelength. Mesh sizes®%=L/20, L/25, various m(_ash sizes, calculated using ~ At= T/140 and smoothing
and L/30 are considered, i.e., the number of nodes per wave-" 10 time steps
length, N,,=20, 25, and 30. For all runs, a time step &f

=T/90 is used. The wave elevation, velocity potential, normal

derivative of potential and velocities on the boundary ar rease in the free-surface elevation. Similar results for the inter-
smoothed every ten timesteps. The simulations were run for

wave periods. The wave data and tank dimensions are given_l diate water depth wave of height, /n,=0.3 andT/h,/g

. . ) 1M0.622 (also described in Table)lare shown in Fig. 3. To
Tablle L FO'NWZZ.O’ the boundary Was_d|scret|zed o= 16.0 ensure the stability of the solution and allow a longer simulation
cubic elements with a total number bf=484 nodes, of which

T time, a finer time step is required in this case. The mesh sizes
234 were located on the free-surface. Similarly, Xgy= 25, there ! _ : . ~
areN=610 nodes andl = 202 cubic elements, and fd,, =30, tested areN,,= 20, 25, and 27, using a time step &t=T/140.

the corresponding values al=724 and M—240. Figure 2 Surface profiles are shown at a locatidin,=55 in the tank, and

: - . the simulations are carried out for 15 wave periods.
s.hows.the. wave profile aifh,=11 for the different ”.‘eShe.S- The A convergence test with regard to the size of time step was also
figure indicates convergence of the surface elevation with me Jried out. For the shorter wave, which has a steepkéss
size. An initial transient front can be seen, before the wave heighty 157 "\ nered —=H /2 three cases corresponding to time steps
stabilizes at a dimensionless tire/h,/g~70. The steady state \; “1/70 T/90. andT/110 were run withN..—=20. The goal of
observed implies low reflection from the downstream boundary.t se runls is t(’) determine the maximum ‘évime étep Giee the
can be seen that an increased nodal density allows a more accugfe "0 b oo o steps per wave pejitalobtain accept-
computation of the wave kinematics, which, in turn, results in aly) . (esuits. For the longer wave, whéu,=0.092, simulations
were run forAt=T/120, T/140, andT/150, again withN,,= 20.
Time histories of the surface wave profile are shown in Figs. 4

Table 1 Wave and numerical tank data and 5 for each case. It can be seen that the numerical results for

W the wave elevation do not differ as significantly with time step as

ave - . el . .
no.  Hy/h, TIASTg L/h, KA, kh, I,/h, they do for the different mesh sizes studied in the foregoing. It is

T o1 35515 50524 01570 31415 " concluded that the primary influence of the time step is on the

2 02 10622 10261 00942 06283 120 StaPility of the simulation.
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Fig. 2 Comparison of the dimensionless free-surface eleva- Fig. 4 Comparison of the dimensionless free-surface eleva-

tion at x/h,=11 due to a linear input wave of kA ,=0.157, for tion at x/h,=11 due to an input linear wave of kA ,=0.157, for
various mesh sizes, calculated using ~ At= T/90 with smoothing various time steps, calculated using N, =20 and smoothing ev-
every 10 time steps ery 10 time steps

72 | Vol. 123, MAY 2001 Transactions of the ASME



0.2
—ndt=120

£ ---ndt=140

- ndt=150

A

= I

8

]

E N /\

& 0

1]

8

K-

2

E -01 v v v v v

o

E

a

02 e e e
30 50 70 90 110 130 150

Dimensionless Time

Fig. 5 Comparison of the dimensionless free-surface eleva-
tion at x/h,=55 due to an input linear wave of kA ,=0.094, for
various time steps, calculated using N, =20 and smoothing ev-
ery 10 time steps
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Fig. 6 Comparison of the dimensionless free-surface eleva-
tion at x/h,=11 due to an input linear wave of kA ,=0.157, for

when smoothing every 10 time steps are 6—7 percent smaller than
those obtained when smoothing every 17 time steps. The differ-
ence in the computed wave heights between smoothing every 15
time steps to those when smoothing every 17 time steps is still on
the order of 2 percent.

As stated previously, at the downstream boundary, a condition
has to be specified in order to simulate outgoing waves, and thus
avoid any reflection back into the computational domain. For this
purpose, a Sommerfeld-Orlanski radiation condition has been
adopted, Eq(6). In the numerical implementation of this condi-
tion at timestep i+ 1), the “celerity” cis first determined based
on the values ob ¢/dt (obtained from the free-surface conditjon
andd ¢/ dx (obtained from the boundary integral equajidioth at
timestepn. If the calculated celerity is greater thax/At it is set
equal toAx/At for that time step, while if the calculated celerity
is negative, then its value is set to zero for that timestep. A finite
difference representation of the radiation boundary condition is
applied at time stepn(+1) using this celerity to calculate the
velocity potential(x,z,t,, 1) onT' 4.

In the following, an energy absorption region is used in con-
junction with the foregoing radiation condition. The energy ab-
sorption approach consists of adding an artificial dissipation term
to the free-surface boundary conditions over the region of the
free-surface adjacent to the radiation boundary. The purpose of
this damping zone is to absorb the incident wave energy before it
reaches the downstream wall and to further absorb any energy that
is subsequently reflected back into the computational domain. The
two free-surface boundary conditions, are modified as follows
[21]:

Dxg

¢ = Vb v(0)(x=Xe) (10e)
D¢ 1
Sr= 97t 5(Vé- V) —v()(s—de)  (100)

where the subscripg corresponds to the reference configuration
for the fluid, that is, the initial conditions. In E@L0), »(x) is a
damping coefficient, assumed linear in wave frequency. It can be
expressed as

various smoothing intervals, calculated using At=T/90 and
N,=20 X— x| 2
0
v(x)=aw( 0 ) fx=xy, Xo=pBL (11a)
The influence of the smoothing interval on the computed free- p(X)=0 if Xx<Xo (11b)

surface profile has also been investigated. The free-surface profile

for the short(i.e., steeper wave case, corresponding t0A, wherelL is the wavelength, and and g are constants. As in the
=0.157, is shown at/h,= 11 for three different smoothing inter- case of real wave tank, numerical “beaches” are usually designed
vals in Fig. 6. It can be seen that the smoothing interval has someeattenuate the waves over a distance on the order of one wave-
influence on the magnitude, but not the phase, of the generatedgth. A comparison will be made of the efficiency of the absorb-
waves: the larger the smoothing interval, the larger the waweg beach, depending on the valueswfind B8 chosen, i.e., the
height. For this data set, the computed wave heights obtaingdength of the absorption and the length of the beach, respec-

Dimensionless Surface
Elevation

0.4 + . . ' : : i
0 20 40 60 80 100 120
Dimensionless Distance from Input Boundary
Fig. 7 Comparison of the dimensionless free-surface elevation at t/ T=44.86 due to an input linear wave

of kA ,=0.094, for various absorbing beach sizes,  B(L/h,), and a constant e« value, calculated using
N, =25, At=T/140 and smoothing every 10 time steps
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Fig. 8 Comparison of the dimensionless free-surface elevation at
of kA ,=0.094, for various absorption strengths, a, with a constant
At=T/140 and smoothing every 10 times steps

period-averaged energy of waves entering the absorbing beach. In
some computations, they combined the beach model with an ab-
sorbing piston in order to achieve better absorption of low-
frequency waves. A comparison between the free-surface obtained
by the present approach and that of Grilli and Horrillo for the
short wave case studied is shown in Fig. 9. It can be seen that the
two sets of results are in reasonable agreement, with Grilli and
Horrillo’'s model predicting slightly higher crests and flatter
troughs. This is probably due to the differences in the input wave
profiles and associated kinematics between the two models.

0.08
| — Grilli & Horillo (1997)

----- Present model

0.04

A,/\\/\\/X\S.E
i

VR conclusions

In the present paper, the simulation of fully nonlinear transient
waves in a two-dimensional numerical wave tank was success-
fully completed. The time-domain analysis of the fully nonlinear

Dimensionless Surface Elevation
o

-0.08 b
15 © 30 45 60 75

Dimensionless Time

Fig. 9 Comparison of the results of the present model [6] for
the dimensionless free-surface elevation at ~ x/h,=11 due to a
Stokes fifth-order input wave of kA ,=0.157, calculated using
N,=25, At=T/90 and smoothing every 17 time steps

wave motion was carried out using a mixed Eulerian-Lagrangian
boundary element method. The Laplace equation was solved in a
Eulerian frame using a boundary integral equation approach based
on Green'’s second identity. The temporal updating of the free-
surface was obtained from the fully nonlinear kinematic and dy-

namic free-surface boundary conditions by application of the
fourth-order Adams-Bashforth-Moulton integration technique.
The fluid boundary was discretized with four-node cubic line el-

tively. If the absorption effect is too weak, a portion of the energgments. A split-node technique was used to overcome the singu-
will be reflected from the downstream boundary; conversely, f@rities and ensure continuity of the solution at the corner nodes. A
the absorption effect is too strong, the damping zone will behat@diation boundary condition was applied at the downstream
more like a solid boundary and wave reflection will again occuloundary in order to simulate outgoing waves and avoid reflec-
Results are only displayed for the case of long waves. Figurdipns back into the computational domain. Waves were generated
presents the dimensionless free-surface profile at various diméhthe inflow boundary by prescribing the surface elevation, ve-
sionless times for different values of the absorbing beach lengtfgity potential, and normal velocity according to an appropriate
B(L/h,), and a fixed value ofx. Similarly, Fig. 8 shows the theoretical wave theory. A validation process was performed to
dimensionless surface elevation at various dimensionless timesd@monstrate the accuracy and stability of the numerical model. A
different values ofy, and a constant value @ It can be seen that convergence study was carried out with respect to the parameters
use of a radiation condition alone gives satisfactory results, beft mesh size, time increment, and smoothing interval. The influ-
better wave absorption is observed when using an absorbigigce of the theoretical form of the waves input into the numerical
beach. A substantial difference can be observed in the free-surfiéve tank, and the efficiency of the radiation boundary condition
profiles wheng>1. The wave amplitude decreases significantif)ave also been addressed. Finally, the robustness of the solution
when approaching the downstream wall; stronger absorptiond@ncerning the wave generation, propagation, gnd absqrptlon
also observed whea=0.5. problem was illustrated by a comparison with previous published
Although the convergence study has shown satisfactory resuf@sults.
a comparison with previous authors verifies the accuracy of the
model and thus completes t_he validation process. The_ presﬁ@knowledgments
model has been compared with the fully nonlinear potential flow ) )
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