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A Two-Dimensional Spectrum for Bistatic SAR
Processing Using Series Reversion

Yew Lam Neo, Student Member, IEEE, Frank Wong, and Ian G. Cumming, Life Senior Member, IEEE

Abstract—This letter derives the two-dimensional point target
spectrum for an arbitrary bistatic synthetic aperture radar con-
figuration. The method described makes use of series reversion,
the method of stationary phase, and Fourier transform pairs to
derive the point target spectrum. The accuracy of the spectrum is
controlled by keeping enough terms in the two series expansions,
and is verified with a point target simulation.

Index Terms—Bistatic SAR, point target spectrum, SAR simu-
lation, series reversion, synthetic aperture radar (SAR).

I. INTRODUCTION

THE IDEAL solution for bistatic synthetic aperture radar

(SAR) image formation is a two-dimensional (2-D)

matched filtering process. The time-domain method [1] is a

direct matched filtering of the baseband signal using the exact

replica of the echo signal at each location and thus gives the

optimum reconstruction. However, this method is computation-

ally intensive as it scales with an order ofO((N ×M)2), where

N ×M is the number of pixels in the image.

Efficiency can be improved by performing the focusing in

the frequency domain. The point target spectrum is the basis

for most efficient processing algorithms operating in the 2-D or

range Doppler domain [2]. The individual transmitter and re-

ceiver range histories are hyperbolic, as in the monostatic case.

However, because the transmit and receive range equations are

not the same in the bistatic case, the total range is no longer

a hyperbola. This means that the point target spectrum of the

monostatic and bistatic cases are inherently different and thus,

in general, monostatic algorithms are not able to focus bistatic

configurations.

The point target spectrum for the monostatic case has been

derived in [3], and an approximate point target spectrum for

some bistatic cases has been derived in [4]. In [5], it was

shown how the 2-D spectrum can be modified to change the

leader–follower bistatic case with a constant baseline into an

equivalent monostatic case for which a conventional monostatic

algorithm can be applied. In this letter, the 2-D frequency

spectrum is derived for the general bistatic case, based on the

reversion of a series approximation. A simulation is performed

to illustrate its accuracy.
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Fig. 1. General bistatic configuration of transmitter and receiver at η = 0.

The results of this letter will be useful for developing efficient

bistatic algorithms operating in the 2-D frequency domain or

the range Doppler domain. Several bistatic airborne experi-

ments involving geometries with fixed baseline [6] and [7]

were conducted recently. For these flight configurations, point

targets with the same closest range of approach would have the

same range Doppler histories. Thus, using the same point target

spectrum, we are able to focus a family of points and hence

achieve processing efficiency. In another paper [8], this method

was used to develop an efficient frequency-domain matched

filter.

II. BISTATIC SAR SIGNAL MODEL

A general bistatic SAR geometry is shown in Fig. 1, includ-

ing nonparallel tracks, unequal velocities, and antenna squint.

The time-domain matched filter is constructed by forming the

instantaneous slant range to a point target, referred to as the

range equation

R(η) =RT(η) +RR(η)

=
√

V 2
Tη

2 +R2
Tcen − 2VTηRTcen sin θsqT

+
√

V 2
Rη

2 +R2
Rcen − 2VRηRRcen sin θsqR (1)

where η is azimuth time, V is the velocity of the platform, R
is the instantaneous range to the point target, and the subscripts

T and R refer to the transmitter and receiver, respectively. The

subscript, cen, refers to a target at the center of the imaged area.

Zero azimuth time (η = 0) is defined as the midpoint of the

integration path for the transmitter, as shown in Fig. 1. The

receiver position is shown at the same time. θsqT is the squint
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angle of the transmitter, and θsqR is the squint angle of the

receiver at this time.

After demodulation to baseband, the received signal can be

written in terms of the range time (fast time) τ and azimuth time

(slow time) η

s(τ, η) = ρr

(

τ −
R(η)

c

)

waz(η) exp

{

−j2π
R(η)

λ

}

(2)

where ρr(·) is the range envelope and the azimuth envelope

waz(·) is determined by the composite antenna pattern.

III. DERIVATION OF THE SIGNAL SPECTRUM

To derive the 2-D spectrum, the first step is to remove the

linear phase and the linear range cell migration (LRCM). This

reason for this step will become apparent when we apply the

series reversion at a later step. After removal of these terms, the

point target signal in the time domain is

sA(τ, η) = ρr

(

τ −
R1(η)

c

)

waz(η) exp

{

−j2π
R1(η)

λ

}

(3)

where

R1(η) = Rcen + k2η
2 + k3η

3 + k4η
4 + · · · (4)

is the range after removing the linear term and Rcen is the sum

of RTcen and RRcen, and the coefficients

k2 =
1

2!

(

dR2
T(η)

dη2
+
dR2

R(η)

dη2

)∣

∣

∣

∣

η=0

(5)

k3 =
1

3!

(

dR3
T(η)

dη3
+
dR3

R(η)

dη3

)∣

∣

∣

∣

η=0

(6)

k4 =
1

4!

(

dR4
T(η)

dη4
+
dR4

R(η)

dη4

)
∣

∣

∣

∣

η=0

(7)

. . .

are evaluated at the aperture center. The derivatives of the

transmitter range are given by

d2RT(η)

dη2

∣

∣

∣

∣

η=0

=
V 2

T cos2 θsqT

RTcen

(8)

d3RT(η)

dη3

∣

∣

∣

∣

η=0

=
3V 3

T cos2 θsqT sin θsqT

R2
Tcen

(9)

d4RT(η)

dη4

∣

∣

∣

∣

η=0

=
3V 4

T cos2 θsqT(4 sin2 θsqT−cos2 θsqT)

R3
Tcen

. (10)

Similar equations can be written for the derivatives of the

receiver range RR(η).
If we keep the terms up to the fourth-order term in (8) and

expand up to the fourth azimuth frequency term, the 2-D point

target spectrum is given by

S ′
A(fτ , η)=Wr(fτ )waz(η) exp

{

−j2π
(fo+fτ )R1(η)

c

}

(11)

where Wr(·) represents the spectral shape (e.g., bandwidth) of

the transmitted pulse, fo corresponds to the center frequency,

and fτ is the range frequency. Next, we perform an azimuth

Fourier transform (FT). Using the method of stationary phase

[9], azimuth frequency is related to azimuth time by

(

−
c

fo + fτ

)

fη = 2k2η + 3k3η
2 + 4k4η

3 + · · · (12)

where fη is the azimuth frequency. We can derive an expression

of η in terms of fη by using the series reversion (refer to the

Appendix). In the forward function (26), we replace x by η, y
by (−c/(fo + fτ ))fη , and substitute the coefficients of x by the

coefficients of η. Inverting this power series, we arrive at

η(fη) = A1

(

−
c

fo + fτ

fη

)

+A2

(

−
c

fo + fτ

fη

)2

+ A3

(

−
c

fo + fτ

fη

)3

+ · · · . (13)

The rationale for removal of the linear phase term and

LRCM becomes clear at this step. In order to apply the series

reversion directly in (12), we should remove the constant term

in the forward function since the constant term is absent in

the forward function (26). Both the linear phase term and the

LRCM term are removed so that there is no constant term left

after applying azimuth FT to (11).1

Using (13) with (11), we obtain the 2-D spectrum of sA(τ, η)

SA(fτ , fη) = Wr(fτ )Waz(fη) exp

{

− j2πfηη(fη)

}

× exp

{

−j
2π(fo + fτ )

c
R1 (η(fη))

}

(14)

whereWaz(·) represents the shape of the Doppler spectrum and

is approximately a scaled version of the azimuth time envelope

waz(·). To get the 2-D point target spectrum for s(τ, η), we

reintroduce the LRCM and linear phase into sA(τ, η) in (3)

s(τ, η) = sA

(

τ −
k1η

c
, η

)

exp

{

−j2π
fok1
c
η

}

= ρr

(

τ −
R1(η) + k1η

c

)

waz(η)

× exp

{

−j2π

(

foR1(η)

c
+
fok1η

c

)}

(15)

where

k1 =
dRT(η)

dη

∣

∣

∣

∣

η=0

+
dRR(η)

dη

∣

∣

∣

∣

η=0

. (16)

The derivatives (16) at the aperture center are given by

dRT(η)

dη

∣

∣

∣

∣

η=0

= − VT sin θsqT (17)

dRR(η)

dη

∣

∣

∣

∣

η=0

= − VR sin θsqR. (18)

1An alternate approach is to move the constant term to the left-hand side of
(12) and treat the whole term on the left-hand side as y. We would still end up
with the same solution (20).
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TABLE I
SIMULATION PARAMETERS

To derive the 2-D point target spectrum for s(τ, η), we use

the FT skew and shift properties [2]

g(τ, η) ←→G(fτ , fη)

g(τ, η) exp{−j2πfκη} ←→G(fτ , fη + fκ)

g(τ − κη, η) ←→G(fτ , fη + κfτ ) (19)

where g is a 2-D time function,G is its corresponding frequency

function, and κ and fκ are constants. Applying these FT pairs

to (14) and (15), we arrive at the desired 2-D point target

spectrum

S(fτ , fη) = SA

[

fτ , fη + (fo + fτ )
k1
c

]

. (20)

The accuracy of the spectrum is limited by the number of terms

used in the expansion of (20). In general, we would like to limit

the uncompensated phase error to be within ±π/4, in order to

avoid significant deterioration of the image quality.

IV. SIMULATION RESULTS

To prove the validity of the formulation, a point target signal

is simulated in the time domain and matched filtering is carried

out in the 2-D frequency domain. Processing efficiency is

achieved by focusing point targets in an invariance region with

the same matched filter. The size of the invariance region is

dependent upon the radar parameters and the imaging geometry.

The purpose of this letter is to prove accuracy of the derived

spectrum. Analysis of the extent of the invariance region will

be investigated in a separate paper.

The simulation uses airborne SAR parameters given in

Table I. An appreciable amount of antenna squint is assumed,

as well as unequal platform velocities and nonparallel tracks.

The axes are defined in a right-hand Cartesian coordinate

system with the flight direction of the transmitter parallel to the

y direction and z is the altitude of the aircraft. The oversampling

ratio is 1.33 in range and azimuth. Rectangular weighting is

used for both azimuth and range processing.

If we keep the terms up to a fourth-order term in (20) and

expand up to the fourth azimuth frequency term, the 2-D point

target spectrum is given by

S(fτ , fη)=Wr(fτ )Waz

(

fη+(fo+fτ )
k1
c

)

exp {jφ(fτ , fη)}

(21)

where the phase is given by

φ(fτ , fη)=− 2π

(

fo+fτ

c

)

Rcen

+ 2π
c

4k2(fo+fτ )

(

fη+(fo+fτ )
k1
c

)2

+ 2π
c2k3

8k3
2(fo+fτ )2

(

fη+(fo + fτ )
k1
c

)3

+ 2π
c3

(

9k2
3 − 4k2k4

)

64k5
2(fo+fτ )3

(

fη+(fo+fτ )
k1
c

)4

. (22)

The magnitudes of the cubic and quartic terms in (22) are

∆φ3 ≈

∣

∣

∣

∣

∣

2π
c2k3

8k3
2f

2
o

(

Ba

2

)3
∣

∣

∣

∣

∣

(23)

∆φ4 ≈

∣

∣

∣

∣

∣

2π
c3

(

9k2
3 − 4k2k4

)

64k5
2f

3
o

(

Ba

2

)4
∣

∣

∣

∣

∣

(24)

where Ba is the Doppler bandwidth. For this simulation case,

Ba = 150 Hz, k2 = 1.31 m/s, k3 = 0.0146 m/s2, and k4 =
0.000184 m/s3. The phase component ∆φ3 is more than π/4
and ∆φ4 is much less than π/4. Therefore, it is sufficient to

retain only terms up to the cubic term in the phase expansion

(22) for accurate focusing in this radar case. Matched filtering is

performed by multiplying the 2-D spectrum of the point target

by exp(−jφ(fτ , fη)).
The point target spectrum after matched filtering has a

2-D envelope given by Wr and Waz in (21), as shown in

Fig. 2(a). Note that the spectrum has a skew as a result of

the range/azimuth coupling. This results in skewed sidelobes as

shown in Fig. 2(b). However, in order to measure image quality

parameters such as the 3-dB impulse response width (IRW) and

the peak sidelobe ratio (PSLR), it is convenient to remove the

skew by shearing the image along the range time axis by the

amount

δτ = −

(

VT sin(θT) + VR sin(θR)

c

)

η. (25)

The deskewed sidelobes are seen in Fig. 2(d). The deskewing

operation is equivalent to deskewing the spectrum, as shown in

Fig. 2(c).

The quality of the focus can be examined using the one-

dimensional expansions shown in Fig. 3. The excellent focus

is demonstrated by the IRW, which meets the theoretical limits
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Fig. 2. Point target spectrum and image before and after the shear operation.
(a) Spectrum after matched filtering. (b) Point target after matched filtering.
(c) Spectrum after shear operation. (d) Point target after shear operation.

Fig. 3. Measurement of point target focus using a matched filter derived from
the new 2-D point target spectrum.

in range (1.184/1.33 = 0.89) and in azimuth (1.188/1.33 =
0.89) for rectangular weighting. Furthermore, the sidelobes

agree with the theoretical values of −10 and −13.3 dB for

the integrated sidelobe ratio (ISLR) and PSLR, respectively. In

addition, the symmetry of the sidelobes is another indication of

correct matched filter phase.

V. CONCLUSION

The 2-D point target spectrum for the general bistatic case

is developed by expressing the bistatic range equation as a

power series and using the method of series reversion to express

azimuth time as a function of azimuth frequency during the

azimuth FT. This results in a power series expression for the

spectrum of the point target, whose accuracy is controlled by

the degree of the power series. The accuracy of the derived

spectrum is confirmed using a simulation where the point target

is simulated in the time domain, then compressed using a 2-D

matched filter derived from the spectrum.

The method of series reversion is also applicable to mono-

static stripmap and spotlight situations where the simple hyper-

bolic range equation does not hold.

APPENDIX

SERIES REVERSION

Series reversion is the computation of the coefficients of

the inverse function given those of the forward function (26).

For a function expressed in a series with no constant term

a0 = 0

y = a1x+ a2x
2 + a3x

3 + · · · (26)

the series expansion of the inverse function is given by

x = A1y +A2y
2 +A3y

3 + · · · . (27)

Substituting (27) into (26), the following equation is obtained:

y = a1A1y +
(

a2A
2
1 + a1A2

)

y2

+
(

a3A
3
1 + 2a1A1A2 + a1A3

)

y3 + · · · . (28)

By equating terms, the coefficients of the inverse function are

A1 = a−1
1

A2 = − a−3
1 a2

A3 = a−5
1

(

2a2
2 − a1a3

)

. . . . (29)

The formula for the nth coefficient is given in [10], as summa-

rized in the handbook [11].
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