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Abstract

This paper develops a reduced form two-factor model for commodity spot prices
and futures valuation. This model extends the Gibson and Schwartz (1990)-Schwartz
(1997) two-factor model by adding two new features. First the Ornstein-Uhlenbeck
process for the convenience yield is replaced by a Cox-Ingersoll-Ross (CIR) pro-
cess. This ensures that our model is arbitrage-free. Second, spot price volatility is
proportional to the square root of the convenience yield level. We empirically test
both models using weekly crude oil futures data from 17th of March 1999 to the
24th of December 2003. In both cases, we estimate the models parameters using
the Kalman filter.
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1 Introduction

In this paper, we introduce a new reduced form model for commodity spot prices and

futures valuation which builds on and extends the reduced form models in the literature.

The earliest reduced form model for commodity prices appears to be due to Brennan

and Schwartz (1985). In this model the spot commodity price follows a geometric Brow-

nian motion and the convenience yield is treated as a dividend yield. This specification

is inappropriate since it does not take into account the mean reversion property of spot

commodity prices and neglects the inventory-dependence property of the convenience

yield. Gibson and Schwartz (1990) introduce a two-factor, constant volatility model

where the spot price and the convenience yield follow a joint stochastic process with

constant correlation. Specifically, the spot price follows a geometric Brownian motion

and the convenience yield follows a mean reverting stochastic process of the Ornstein-

Uhlenbeck (O-U) type. The convenience yield is brought into the spot price process as

a dividend yield. Schwartz (1997) further explores this model empirically by adopting a

more sophisticated calibration method and tests it with several commodities. Schwartz

(1997) three-factor model, Miltersen and Schwartz (1998) and Hilliard and Reis (1998)

add a third stochastic factor to the model to account for stochastic interest rates. Nev-

ertheless, the inclusion of stochastic interest rates in the commodity price models does

not have a significant impact in the pricing of commodity options and futures in practice.

Accordingly, interest rate can be assumed deterministic.

The reduced form class of models dominates the current literature and practice on en-

ergy derivatives. These models are particularly attractive from practitioner’s perspective

since they provide closed form solutions to evaluate futures and some other derivatives

contracts. This in turn allows for a relatively easy calibration and computational imple-

mentation of these models.

Although these multi-factor models generate a rich set of dynamics for the commodity

term structure and represent prevailing tools for derivatives pricing, they also present a

number of problems. First, these models do not guarantee that the convenience yield is
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always positive, possibly allowing for arbitrage opportunities. More specifically, arbitrage-

free arguments require that the discounted futures prices net of carrying costs cannot be

greater than the contemporaneous spot prices. By not ruling out negative values for

the convenience yield, this arbitrage argument may be violated. Secondly, these models

present other mis-specification problems due to the fact that both the spot price and

the convenience yield have constant volatility and correlation. Accordingly, they do not

allow the variance of the spot and futures, and the correlation between them, to depend

on the level of the price or convenience yield, as suggested by the theory of storage.

The commodity spot price volatilities are strongly heteroskedastic (see Duffie and Gray

(1995)) and closely reflect the supply, demand and inventory conditions in the market.

In particular, price volatilities are increasing with the degree of backwardation (see Ng

and Pirrong (1994)) and Litzenberger and Rabinowitz (1995)). These mis-specifications

may generate severe option mispricings, as pointed out by Pirrong (1998), Clewlow and

Strickland (2000) and Routledge et al. (2000).

The reduced form model presented in this paper extends the two-factor model of

Gibson and Schwartz (1990) - Schwartz (1997). More specifically, we develop a two-factor

model where spot prices and instantaneous convenience yield follow a joint stochastic

process with constant correlation. Our model introduces two significant additions to

Gibson and Schwartz model: it rules out arbitrage possibilities and it considers time

varying spot and convenience yield volatilities. Namely, the spot price follows a Geometric

Brownian Motion (GBM) where the convenience yield is treated as an exogenous dividend

yield and the volatility is proportional to the square root of the instantaneous convenience

yield level. The instantaneous convenience yield follows a Cox-Ingersoll-Ross (CIR) which

precludes negative values and makes the volatility proportional to the square root of the

instantaneous convenience yield level. This ensures that our model does not allow cash-

and-carry arbitrage possibilities.

We obtain a closed-form solution for the prices of futures prices of the exponential

affine form1. We solve the partial differential equation (PDE) for futures prices by sup-

1Since we assume that the interest rate is constant, the futures and forward prices are the same.
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posing that the solution has a general exponential affine form. By replacing this general

affine form into the initial PDE we obtain a system of two ordinary differential equations

(ODEs) with boundary conditions consistent with the futures price expiry condition. We

find that each of these ODEs has a unique closed form solution. These in turn pro-

vide the solution to the PDE satisfied by the futures prices2. This affine relationship is

tractable and offers empirical advantages. In particular, the linear relationship between

the logarithm of the futures price and the underlying state variables allows the use of

the Kalman filter in the estimation of the parameters of the model. Spot prices data

are not easily obtained in most of the commodity markets and therefore futures prices

with closest maturity are used as a proxy for the commodity price level. Additionally,

the instantaneous convenience yield is not observable and must be derived from the rela-

tionship between the spot and futures prices with closest maturity. On the other hand,

futures prices are widely observed and traded in diverse markets. The non-observability

of the state variables remains one of the main difficulties in modelling commodity spot

prices and contracts. Due to the non-observability of the state variables, the linearity

of the logarithm of the futures prices in the state variables and the Markovian property

of these, the Kalman filter seems to be the most appropriate technique to estimate the

model parameters. This method is also applied by Schwartz (1997). The basic principle

of Kalman filter is the use of temporal series of observable variables to reconstitute the

value of the non-observable variables. Accordingly, by observing futures prices, we can

estimate the parameter values for the spot price and convenience yield.

We apply the Kalman filter method to estimate the parameters of our model using

light crude oil futures data for the period from 17th of March 1999 to 24th of December

2003. Additionally, we also apply the Kalman filter to the Gibson and Schwartz (1990)

- Schwartz (1997) two factor model using the same data set for estimation purposes and

to compare the results. We also compare the futures volatility structure implied by the

data and by both our model and Schwartz model.

Very recently and through independent work, Nielsen and Schwartz (2004) present a

2A similar solution method has been applied in the interest rate models literature such as Hull and
White (1990), Brown and Schaefer (1994) and Duffie and Kan (1993, 1996).
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two-factor model which also assumes stochastic volatility of the Cox-Ingersoll-Ross type.

Additionally, they also compare their model to the Gibson and Schwartz (1990) - Schwartz

(1997) two-factor model and conclude that the latter prices futures contracts almost as

well. However, both the present model and the Nielsen and Schwartz (2004) model are

special cases of the more general theory of affine term structures for forward and futures

described by Bjork and Landen (2002). There are three important differences between

our work and that of Nielsen and Schwartz (2004). First, Nielsen and Schwartz consider

a general volatility function of the CIR type while in the present model the convenience

yield follows a familiar square root process exactly as used in Cox et al. (1985). Although

the Nielsen and Schwartz model appears to be more general, it does not preclude negative

values for the convenience yield. In fact, our model closely resembles the Heston (1993)

stochastic volatility model for standard asset prices and therefore can be interpreted as

the storable commodity version of this model3. The second difference lies in the nature of

the data used to test the models empirically, which follows Gibson and Schwartz (1990)

- Schwartz (1997). Nielsen and Schwartz (2004) use copper futures data to calibrate

their model while we use light crude oil futures data. Finally, we establish and empirical

comparison between the futures volatility structure implied by the data and by both

our model and Gibson and Schwartz (1990) - Schwartz (1997) two factor model. This

empirical comparison is not considered by Nielsen and Schwartz (2004).

The remaining paper is organized as follows. Section 2 develops the two-factor model

and derives the corresponding partial differential equation for futures valuation. Section

3 describes the empirical work, including the state-space formulation of the model, the

data used and the empirical results. Section 4 concludes.

2 Valuation Model

In this section we present the commodity price model and derive the corresponding for-

mulas for pricing futures contracts. This model has two stochastic factors. The first

3Because we are are not dealing with options pricing in this paper but with futures pricing, we are
able to get an analytical solution without the use of characteristic functions.
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factor is the spot price, which follows as a GBM with a time-varying volatility, which is

proportional to the square root of the instantaneous convenience yield level. The second

factor is the convenience yield, which follows a CIR stochastic process as described by

Cox et al. (1985). This process precludes negative convenience yields and implies that the

absolute variance of the convenience yield increases when the convenience yield itself in-

creases. We assume that both stochastic processes have constant correlation. The direct

proportionality of the spot price and the convenience yield volatilities to the square root

of the instantaneous convenience yield reflect the effect of supply, demand and inventory

market conditions on the spot price and the convenience yield volatilities. As Duffie and

Gray (1995) point out, the commodity spot price volatilities are strongly heteroskedas-

tic and closely reflect the supply, demand and inventory conditions in the market. In

particular, price volatilities are increasing with the degree of backwardation (see Ng and

Pirrong (1994) and Litzenberger and Rabinowitz (1995)). That is, the stronger the back-

wardation is the higher the convenience yield is. High convenience yield levels signal

low inventory and the possibility of a stockout. Therefore, the spot price volatility is

positively related with the value of the convenience yield. Similarly, when the market

is in contango, the spot prices volatility should be low. The market conditions and the

commodity spot prices also affect similarly the volatility of the convenience yield itself .

The model we present is very tractable since it allows a closed form solution to futures

prices. Specifically, we obtain a linear relation between the logarithm of futures prices

and the underlying factors. This property is crucial to the empirical work that follows.

We assume that the spot price and the instantaneous convenience yield follow the

joint stochastic process:

dp = (µ(·)− δ)pdt + σ1

√
δpdB1 (1)

dδ = (α(m− δ))dt + σ2

√
δdB2 (2)
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where:

• µ(·) is the total expected return on the spot commodity price;

• σ1 represents the constant of proportionality between the total spot price volatility

and the square root of the instantaneous convenience yield;

• σ2 represents the constant of proportionality between the total instantaneous con-

venience yield volatility and the square root of the instantaneous convenience yield;

• α is the instantaneous convenience yield’s speed of mean reversion;

• m is the convenience yield long-run mean, that is, the level to which δ reverts as t

goes to infinity;

• B1 and B2 are standard Wiener processes and are correlated with dB1dB2 = ρdt, ρ

being constant.

The probability density of the convenience yield at time t conditional on its value at

current time t is a non-central chi-square (see Cox et al. (1985)). The conditional moments

of δ at time t under the objective measure are given by:

E[δt|δt−dt] = m(1− e−αdt) + δt−dte
−αdt, (3)

V ar[δt|δt−dt] = m

(
σ2

2

2α

)
(1− e−αdt)2 + δt−dt

(
σ2

2

α

)
(e−αdt − e−2αdt). (4)

By defining x = ln p and applying Ito’s Lemma, the process for the log price is given by:

dx =

(
µ(·)−

(
1 +

1

2
σ2

1

)
δ

)
dt + σ1

√
δdB1. (5)

Under the risk neutral measure, the stochastic processes that drive the the state variables

becomes:
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dp = (r + c− δ)pdt + σ1

√
δpdB∗

1 , (6)

dδ = (α(m− δ)− λδ)dt + σ2

√
δdB∗

2 , (7)

where:

• r is the risk-free (constant) interest rate;

• c is the (constant) marginal cost of storage, which is a proportion of the spot price;

• λ is the (constant) market price of risk for the convenience yield;

• σ1, σ2, α and m are as before;

• B∗
1 and B∗

2 are standard Wiener processes under the risk-neutral measure and are

correlated with dB∗
1dB∗

2 = ρdt, ρ as before.

The expected growth of the commodity price in a risk-neutral world is µ − λpσ1, where

λp is the market price of risk of commodity price. Since the commodity behaves like a

traded security that provides a dividend rate equal to δ, the expected growth rate of the

commodity price under the risk-neutral measure is also given by r + c − δ. Therefore

r + c − δ = µ(·) − λpσ1

√
δ. Accordingly, the drift of the spot price process, µ(·) in the

real measure is replaced by (r + c − δ) under the risk neutral measure. Equation (6) is

an extension of a standard process for the commodity process allowing for a stochastic

convenience yield and a time varying volatility. This volatility is proportional to the

square root of the time-varying stochastic convenience yield. On the other hand, since

the convenience yield is non-traded, the convenience yield risk cannot be hedged and will

have a market price of risk, λδ associated with it. Therefore, the drift of the convenience

yield under the risk neutral measure becomes [α(m−δ)−λδ]. Although λδ is a function of

α(m−δ) and σ2

√
δ, we assume that the convenience yield market price of risk is constant.

This assumption is standard and is also followed by Schwartz (1997). The process for the

log price then becomes:
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dx =

(
r + c−

(
1 +

1

2
σ2

1

)
δ

)
dt + σ1

√
δdB∗

1 . (8)

By assuming that the instantaneous convenience yield follows a CIR process we ensure

that our model is arbitrage-free because it precludes negative values. This assumption

ensures that the discounted futures prices net of carrying costs cannot be greater than the

discounted contemporaneous spot prices, which is derived by arbitrage-free arguments.

Considering that τ = T − t represents time to maturity the arbitrage-free condition can

be written as:

F (τ) ≤ pt exp{(r + c)(τ)}, (9)

where

• F (τ) is the forward price at time t, for delivery of a commodity at time T > t;

• pt is the spot price of the commodity at time t;

• c is the (constant) proportion of the spot price which defines the marginal cost of

storage;

• r is risk-free (constant) interest rate.

If the instantaneous convenience yield is always non-negative the arbitrage-free condition

in equation (9) is satisfied4.

The futures prices must satisfy the partial differential equation (PDE):

1

2
σ2

1δp
2Fpp +

1

2
σ2

2δFδδ + ρσ1σ2δpFpδ + ((r + c)− δ)pFp + (10)

(α(m− δ)− λ) Fδ − Fτ = 0 (11)

4Note that Gibson and Schwartz (1990) - Schwartz (1997) does ensure non-negative convenience yield
given that the stochastic convenience yield in his two-factor model follows an Ornstein-Uhlenbeck. This
may generate arbitrage possibilities in his model.
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subject to the boundary condition F (p, δ, 0) = p. This PDE suggests an exponential

affine form solution:

F (p, δ, τ) = peA(τ)−B(τ)δ, (12)

with

A(0) = 0; B(0) = 0. (13)

Equivalently, the logarithm of the futures prices is given by:

ln F (p, δ, τ) = ln p + A(τ)−B(τ)δ. (14)

The futures prices as given by equation (12) satisfy the PDE (10) and the boundary

condition when

1

2
σ2

2B
2 + (α− ρσ1σ2)B − 1 + Bτ = 0, (15)

and

(r + c) + (λ− αm)B − Aτ = 0, (16)

with initial conditions

A(0) = 0; B(0) = 0. (17)

It follows that if (15) and (16) are solved subject to the boundary conditions in (17),

equation (12) provides the price of a futures contract maturing at time T . In appendix

we provide the derivation of the solution to the ODEs above, which is given by:

B(τ) =
2(1− e−k1τ )

k1 + k2 + (k1 − k2)e−k1τ
(18)
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and

A(τ) = (r + c)τ + (λ− αm)

∫ T

t

B(q)dq, (19)

where:

∫ T

t

B(q)dq =
2

k1(k1 + k2)
ln

[
(k1 + k2)e

k1τ + k1 − k2

2k1

]
+ (20)

2

k1(k1 − k2)
ln

[
k1 + k2 + (k1 − k2)e

−k1τ

2k1

]
, (21)

with:

k1 =
√

k2
2 + 2σ2

2 (22)

k2 = (α− ρσ1σ2) (23)

The solution to equation (10) with initial boundary condition F (p, δ, 0) = p is given by

(12) with A(τ) and B(τ) given by (18) and (19).

3 Empirical Estimation of the Joint Stochastic Pro-

cess

In this section we estimate and empirically test both our model and the Gibson and

Schwartz (1990) - Schwartz (1997) two-factor model. Data for most of the spot commodity

prices are extremely difficult to obtain price for most of the commodities. On the other

hand, we are able to observe daily several futures prices at different maturities. This non-

observability and the linear relationship between futures prices and the state variables

in the model clearly suggest that the Kalman filter is the most appropriate technique to

estimate the model’s parameters. The principle of Kalman filter is to use a time series of

observable variables and to infer the value of the non-observable variables. This technique
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is suitable whenever there is a linear dependency of the observable variables upon the

state variables and when the later are Markovian processes. Kalman filter is a technique

which has become increasingly popular in Finance and has been applied to both Gaussian

and CIR type interest rate models and in commodity futures valuation in (e.g. Schwartz

(1997), Schwartz and Smith (2000) and Manoliu and Tompaidis (2002)). Affine models

are particularly suited for estimating using Kalman filter because of their linear structure.

In the context of interest rate models Gaussian examples can be found in Babbs and

Nowman (1999) and Lund (1997), who estimate a two-factor generalized Vasicek model.

In the CIR case, there are examples due to Ball and Tourous (1996), Duan and Simonato

(1999) and Lund (1997). The Gibson and Schwartz (1990) - Schwartz (1997) two-factor

model belongs to the Gaussian class while our model fits in the CIR class.

The state form is applied to a multivariate time series of observable variables, which

in our case are a futures prices time series at several different maturities. These observed

variables are related to the state vector which consist of the state variables, which in our

model are the spot price and the instantaneous convenience yield via the measurement

equation. The measurement equation is then given by equation (14) by adding serially

and cross sectionally uncorrelated disturbances with mean zero and variance to take

into account for the irregularities of the observations. In the Kalman filter, the non-

observable state variables are generated by first-order Markov processes which correspond

to the discrete time form of equations (1) and (2). The latter are arranged in a vector,

which forms the transition equation. See Harvey (1989) for a detailed description of this

method. We calibrate Gibson and Schwartz (1990) - Schwartz (1997) two-factor5 model

using exactly the same methodology as described in the latter article. To calibrate our

model we follow the same steps but we need to take into account an important difference

between the two empirical models. The state-space form of the Gibson and Schwartz

5According to Gibson and Schwartz (1990) - Schwartz (1997)) two-factor model, the commodity spot
price and the convenience yield follow a joint stochastic process with constant correlation given by:

dp = (µ(·)− δ)pdt + σ1pdB1,

dδ = (α(m− δ))dt + σ2dB2,

where dB1dB2 = ρdt.
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model is Gaussian while the state-space form of our model is non-Gaussian, given that

we do not have constant volatility.

For a Gaussian state-space model, the Kalman filter provides an optimal solution to

prediction, updating and evaluating the likelihood function. The Kalman filter recursion

is a set of equations which allows an estimator to be updated once a new observation

becomes available. The Kalman filter first forms an optimal predictor of the unobserved

state variable vector given its previously estimated value. This prediction is obtained

using the distribution of unobserved state variables, conditional on the previous estimated

values. These estimates for the unobserved state variables are then updated using the

information provided by the observed variables. Prediction errors, obtained as a by-

product of the Kalman filter, can then be used to evaluate the likelihood function.

When the state-space model is non-Gaussian, the Kalman filter can still be applied

and the resulting filter is quasi optimal. This filter is then used to obtain a quasi-

likelihood function and the estimates obtained is linearly optimal. This approximation

is needed because of the non-Gaussian nature of the problem, which can be compared to

linearizing a non-linear function in the typical Kalman filtering applications. Duan and

Simonato (1999) and Geyer and Pichler (1998) apply Kalman filter to estimate and test

exponential-affine term structure models for both the Gaussian and non-Gaussian cases.

For a detailed discussion see Duan and Simonato (1999) and Harvey (1989).

It is also important to mention that the CIR process also differs from standard Kalman

filter application because of the non-negative constraint on the convenience yield. Fol-

lowing Duan and Simonato (1999) and Geyer and Pichler (1998) we modify the standard

Kalman filter by simply replacing any negative element of the convenience yield estimate

with zero.

3.1 State Space Formulation

From the valuation formula given by equations (14), (18) and (19), the measurement

equation can be written as:
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Yt = dt + Zt[xt, δt]
′ + εt, t = 1, ..., N (24)

where:

• Yt = [ln F (τi)], for i = 1, ..., n is a n × 1 vector of observations where F (τi) is the

observed futures price at time t for maturity τi. At each time t we observe n futures

prices which correspond to n different maturities;

• dt = [A(τi)] for i = 1, ..., n is a n× 1 where A(·) is given by equation (19).

• Zt = [1,−B(τi)], for i = 1, ..., n is a n×2 matrix where B(·) is calculated according

to equation (18);

• εt is a n × 1 is n × 1vector of serially uncorrelated disturbances with E[εt] = 0,

V ar[εt] = Ht. This vector is introduced to account for possible errors in the data.

The covariance matrix Ht is taken to be diagonal for computational simplicity;

The transition equation is given by:

[xt, δt]
′ = ct + Qt[xt, δt]

′ + Rtηt, t = 1, ..., NT (25)

where:

•

ct =




µ∆t

m(1− e−α∆t)


 (26)

•

Qt =




1 −(1 + 1
2
σ2

1)∆t

0 e−α∆t


 (27)

• Rt is a 2× 2 identity matrix;

• ηt is a 2×1 vector of serially uncorrelated disturbances with E[ηt] = 0 and V ar[ηt] =

Vt.
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The covariance matrix of ηt is given by:

Vt =




σ2
1∆tδt−dt ρσ1

√
∆t

√
δt−dt

√
V ar[δt|δt−1]

ρσ1

√
∆t

√
δt−dt

√
V ar[δt|δt−1] V ar[δt|δt−1]


 (28)

where:

V ar[δt|δt−1] = m

(
σ2

2

2α

)
(1− e−α∆t)2 + δt−1

(
σ2

2

α

)
(e−α∆t − e−2α∆t) (29)

The observation and state equation matrices Zt, dt, Ht, Qt, ct and Vt depend on the

unknown parameters of the model. One of the main purposes of the Kalman filter im-

plementation is to find estimates for these parameters. This can be done by maximizing

the quasi likelihood function with respect to the unknown parameters through an opti-

mization procedure.

For notational simplicity, consider θ the vector of unknown parameters and Yt =

{yt, yt−∆t, . . . , yt, yt0} the information vector at time t, which are not independent. We

assume that the distribution of Yt conditional on Yt−∆t under the objective measure

is normal with mean Ŷt|t−∆t = E[Yt|Yt−∆t] and covariance matrix Ft. The vector of

prediction errors is given by vt = Yt−Ŷt|t−∆t The logarithm of the quasi-likelihood function

is given by:

logL(Y ; θ) = −1

2

n(tfinal − t0)

∆t
log 2π − 1

2

∑
t

log |Ft| − 1

2

∑
t

vtF
−1
t vt (30)

Since both Ft and vt depend upon θ, θt is chosen to maximize the quasi-likelihood func-

tion6. This estimation procedure is recursive and it is calculated at each time t as part

of the Kalman filter.

6To maximize the quasi-likelihood function we used the Matlab routine ”maxlik.m”. This func-
tion is part of the Econometrics Toolbox by James P. LeSage and can be downloaded for free at:
www.spatial-econometrics.com.
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To calibrate the Gibson and Schwartz (1990) - Schwartz (1997) two-factor model we

use the state-space formulation as described in the later article.

3.2 Empirical Results

The data set used in this study consists of weekly observations of New York Mercantile

Exchange (NYMEX) light crude oil futures which covers the period from 17th of March

1999 to 24th of December 2003 (243 observations)7. At each observation we consider 7

contracts (n = 7) corresponding to 7 different maturities. Naturally, the time to maturity

changes as we evolve in time and to force the time to maturity to stay within a narrow

range we roll over the contracts during the period of observations. Table 1 describes the

data used. We denote by F0 the contract closest maturity, F1 the second contract closest

to maturity and so on. We assume that the interest rate, r, is equal to 0.04 and the

marginal storage cost of storage is equal to 0.20.

Table 2 reports the estimation results for both our model and Gibson and Schwartz

(1990) - Schwartz (1997) two-factor model. The values obtained for the parameters are

comparable for both cases. The most noticeable difference lies in the value of the long-run

mean for the convenience yield, m. However, this difference is approximately 0.2 which

is consistent with the storage cost value of 0.2 that we assume in our model.

The speed of mean reversion in the convenience yield equation, α, and the coefficient

of correlation between the spot price and convenience yield, ρ, are high and significant for

both cases. The total expected return on the spot commodity, µ, and the market price of

convenience yield, λ, are also positive and high. In particular, it is worth mentioning the

high value of average convenience yield. This indicates that during this period the market

is predominantly in backwardation. Additionally, both spot price and convenience yield

volatilities are also high. This behavior in the crude oil market can be explained by the

world events which took place after September 2001 and, in particular, the recent Golf

7The data was retrieved from the Internet on the 31st of October 2003 and on the 17th of February
2004 from Futures Guide TM , http://www.futuresguide.com/index.php.. The original data set consists
of daily observations. Weekly data was obtained by using every Wednesday (to avoid weekend effects)
observation.
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war. These events lead to increasingly uncertainty in the world markets in general and

in particular in the oil supply. This uncertainty naturally rises the value of having crude

oil in storage, which implies a high convenience and a market in strong backwardation.

As mentioned before, we assume a diagonal covariance structure for the measurement

errors. These are denoted by v0, v1, v2, v4, v4 and v5 and v6 and correspond to each of

the futures contracts used, namely F0, F1, F2, F3, F4, F5 and F6 respectively. These

values are also displayed in Table II. The magnitude of this errors is the same for both

our model and Gibson and Schwartz (1990) - Schwartz (1997) two-factor model.

Table 1: Light Crude Oil Futures weekly data from 17th of
March 1999 to 24th of December 2003.

Futures Mean Maturity Mean Price Volatility
Contract (Std) (Std) of Returns

F0 0.044 (0.024) 27.058 (4.711) 0.377
F1 0.127 (0.025) 26.724 (4.435) 0.346
F2 0.348 (0.024) 25.712 (3.884) 0.273
F3 0.598 (0.024) 24.735 (3.514) 0.231
F4 0.931 (0.024) 23.759 (3.173) 0.191
F5 1.181 (0.024) 23.189 (2.974) 0.176
F6 1.931 (0.024) 21.963 (2.599) 0.158
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Table 2: Estimation results and standard errors (in parentheses)
for both our model and the Gibson and Schwartz (1990) - Schwartz
(1997) two-factor model using all the futures contracts F0, F1, F2,
F3, F4, F5 and F6 from 17th of March 1999 to 24th of December
2003.

Schwartz (1997)
Parameters Our model two-factor model

m 0.526 (0.011) 0.356 (0.011)
λ 1.617 (0.008) 1.869 (0.002)
α 6.301 (0.019) 6.273 (0.002)
σ1 0.434 (0.005) 0.441 (0.001)
σ2 0.725 (0.004) 0.720 (0.000)
ρ 0.899 (0.003) 0.800 (0.001)
µ 0.514 (0.006) 0.500 (0.000)
v0 0.051 (0.001) 0.050 (0.002)
v1 0.048 (0.001) 0.052 (0.003)
v2 0.041 (0.001) 0.036 (0.001)
v3 0.034 (0.001) 0.028 (0.001)
v4 0.033 (0.001) 0.026 (0.001)
v5 0.041 (0.002) 0.031 (0.002)
v6 0.056 (0.003) 0.040 (0.002)

Log-likelihood function 3718 3597

Figure 1: This figure illustrates the weekly evolution of the state vari-
ables implied by this model for the whole sample period. The spot price
is measured in U.S. Dollar per barrel. The convenience yield is multi-
plied by 10 to facilitate the comparison between the state variables.
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Figure 2: This figure illustrates the weekly evolution of the state vari-
ables implied by the Gibson and Schwartz (1990) - Schwartz (1997)
two-factor model for the whole sample period. The spot price is mea-
sured in U.S. Dollar per barrel. The convenience yield is multiplied by
10 to facilitate the comparison between the state variables.
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Figures 1 and 2 show the weekly evolution of the two state variables over the whole

sample period for both this model and the Gibson and Schwartz model. In both cases,

we can observe a strong correlation between the two state variables. There are two main

differences between the behaviour of the state variables displayed in figures 1 and 2. The

first is that the convenience yield is always non-negative for this model whereas we observe

negative values for the convenience yield implied by Schwartz model. The second differ-

ence is that both state variables implied by this model present heteroskedasticity whereas

the respective volatilities implied by Schwartz model are constant. Both differences are

consistent with the definition of each models.

Table 3 displays the mean pricing errors (MPE) and the root mean squared er-

rors (RMSE) for all the observations. Both error measures are small and of the same

order of magnitude for both our model and Schwartz model. The values of the log-

likelihood function and the pricing errors indicate that our model fits better the data but

by only marginally. These results are consistent with the results presented by Nielsen

and Schwartz (2004). These authors also find that both Gibson and Schwartz (1990) -

Schwartz (1997) two factor model and the CIR stochastic volatility model perform almost

as well. In the present paper, we also note that the performance of both models decreases
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as maturity of the futures contract increases. This highlights the fact that both models

become less efficient as we increase the maturity of the futures contracts.

Figures 3 and 4 illustrate examples of the evolution of the forward curve of the market

prices and both models.

Table 4 and Figure 5 display the volatilities implied by the market, by the present

model and by the Gibson and Schwartz (1990) - Schwartz (1997) two-factor model. For

short maturities both models underestimate the market volatilities and for longer matu-

rities, these models increasingly overestimate them. This indicates that neither model is

able to fit accurately the market volatility term structure. This certainly has implications

in the valuation of financial or real asset contingent on a commodity price.

Table 3: Summary statistics for both our model and Gibson
and Schwartz (1990) - Schwartz (1997) two-factor model pricing
errors in valuing futures contracts during the whole period 17th

of March 1999 to 24th of December 2003.

Schwartz (1997)
Our Model Two-factor Model

Futures Contract RMSE MPE RMSE MPE

F0 0.023 0.017 0.021 -0.001
F1 0.022 -0.017 0.034 -0.020
F2 0.044 -0.036 0.034 -0.023
F3 0.027 -0.019 0.014 -0.007
F4 0.020 0.000 0.038 0.013
F5 0.033 0.015 0.034 0.024
F6 0.059 0.029 0.060 0.020

Total 0.033 -0.002 0.034 0.002
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Figure 3: This figure illustrates the evolution of the forward curve
for the market of futures prices and both our model and the Gibson
and Schwartz (1990) - Schwartz (1997) two-factor model on the 5th of
November 2002.
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Figure 4: This figure illustrates the evolution of the forward curve for
the market of futures prices and both our model and the Gibson and
Schwartz (1990) - Schwartz (1997) two-factor model on the 18th of July
2001.
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Table 4: Market, our model and the Gibson and Schwartz
(1990) - Schwartz (1997) Two-Factor Model implied volatilities
of annualized log-returns of futures prices.

Futures Market Our Model Schwartz’s Model
Contract Volatility Volatility Volatility

F0 0.377 0.386 0.330
F1 0.346 0.306 0.274
F2 0.273 0.234 0.219
F3 0.231 0.219 0.209
F4 0.191 0.216 0.207
F5 0.176 0.216 0.207
F6 0.158 0.216 0.207

Figure 5: This figure illustrates the annualized volatility of futures
returns implied by our model, Gibson and Schwartz (1990) - Schwartz
(1997) and the market data.
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4 Conclusion

In this paper we presented a two-factor model for commodity prices and the corresponding

futures valuation. This model extends Gibson and Schwartz (1990) - Schwartz (1997)

two factor model by adding two important features. First, the O-U process for the

convenience yield is replaced by a CIR process. This allows us to maintain the mean-

reverting property of the convenience yield and to additionally ensure that our model is

arbitrage-free. Second, we consider that both the spot price and the convenience yield

volatilities are proportional to the square root of the instantaneous convenience yield

level. This specification establishes a dependency between the commodity price volatility

and the inventory levels. As explained before, this property is predicted by the theory of

storage and by the structural models in the literature.

We derived the analytical solution for the futures partial differential equation. By

guessing a solution of the exponential affine form, we transformed the initial PDE into a

system two ODEs with analytical solution. This solution also satisfies the original PDE

with the appropriate boundary conditions. This method has been also applied in the

interest models literature such as Hull and White (1990), Brown and Schaefer (1994) and

Duffie and Kan (1993, 1996).

We implemented empirically both our model and Gibson and Schwartz (1990) -

Schwartz (1997) two factor model for purposes of comparison using crude oil futures

prices applying the Kalman filter. We found that the parameters estimates are analogous

for both models and indicate a strong mean reversion in the convenience yield and strong

backwardation. Both the 11th of September event and the recent war crisis might explain

such behavior in the oil prices.

Although our model adds valuable characteristics to the existing reduced form models

in the literature, it only outperforms Gibson and Schwartz (1990) - Schwartz (1997)

model marginally, in terms of both the pricing errors and the value of the log-likelihood

function. Both models achieve very good results when valuating short-term maturity

data but their efficiency decreases when the futures maturity increases. Neither can they
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reproduce the empirical volatility structure accurately. Both models underestimate short-

term volatilities and over estimate longer term ones. This certainly has implications on

contingent claims pricing for which the volatility is a fundamental element. Therefore,

this study suggests that both our model and the Gibson and Schwartz (1990) - Schwartz

(1997) models should be extended in order to reproduce accurately the volatility structure

of the commodity forward curves. This is particularly relevant to evaluate long-term

investments on commodities.

It is important to point out that although the present model only outperforms the

Gibson and Schwartz (1990) - Schwartz (1997) model marginally, we believe that the

empirical comparison is affected by the peculiarity of the data set used. Specifically, a

close analysis of our data revealed that we do not observed contango for a significant

period of time in this data set available to us. In fact, one of the advantages of our

model in relation to the Gibson and Schwartz (1990) - Schwartz (1997) model is the

exclusion of arbitrage possibilities when the forward curve is in contango. Therefore, the

empirical analysis of this particular data set did not allow us to illustrate this advantage.

Accordingly, one of the directions of further work is to test both models for a different

commodity or for different time period. Another direction for future work is the extension

of this analysis to price commodity options in order to study the implications of this model

in option pricing.
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A Derivation of the Solution to the Futures Partial

Differential Equation

Because the solution to equation (16) depends on the solution to equation (15) we start

by solving the latter.

Write a1 = 1
2
σ2

2 and a2 = α− ρσ1σ2, then equation (15) becomes:

a1B
2 + a2B − 1 + Bτ = 0, with B(0) = 0. (31)

We can write this equation in the format:

d

dτ
Φ(τ, B) = 0 ⇔ M(τ, B) + N(τ, B)

dB

dτ
= 0 (32)

if and only if there exists a function Φ(τ, B) such that:

M(τ, B) =
∂Φ

∂τ
and N(τ, B) =

∂Φ

∂B
(33)

In this case we have:

M(τ, B) = a1B
2 + a2B − 1, and (34)

N(τ, B) = 1. (35)

The equation

M(τ, B) + N(τ, B)
dB

dτ
= 0 (36)

is exact if and only if:

∂M

∂B
=

∂N

∂τ
. (37)

Given that we have a non-exact equation, we need to multiply both sides of the equation

by the following integrating factor:
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µ(B) = exp

∫
Q(B)dB =

a1

a1B2 + a2B − 1
(38)

where:

Q(B) = − 2a1B + a2

a1B2 + a2B − 1
. (39)

Equation (31) then becomes:

a1 +
a1

a1B2 + a2B − 1
Bτ = 0, with B(0) = 0. (40)

The solution to this equation is

B(τ) =
2(1− e−k1τ )

k1 + k2 + (k1 − k2)e−k1τ
, (41)

where

k1 =
√

k2
2 + 2σ2

2 (42)

k2 = (α− ρσ1σ2). (43)

Accordingly, the solution to equation (16) is:

A(τ) = rτ + (λ− αm)

∫ τ

0

B(q)dq (44)

where:

∫ T

t

B(q)dq =
2

k1(k1 + k2)
ln

[
(k1 + k2)e

k1τ + k1 − k2

2k1

]
+ (45)

2

k1(k1 − k2)
ln

[
k1 + k2 + (k1 − k2)e

−k1τ

2k1

]
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where k1 and k2 are as before.
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