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Abstract
Experiments have shown that spatial heterogeneities can arise when the glass transition in polymers as well as in a number
of low molecular weight compounds is approached by lowering the temperature. This formation of “clusters” has been
detected predominantly by small angle light scattering and ultrasmall angle x-ray scattering from the central peak on length
scales up to about 200 nm and by mechanical measurements including, in particular, piezorheometry for length scales up
to several microns. Here we use a macroscopic two-fluid model to study the formation of clusters observed by the various
experimental techniques. As additional macroscopic variables, when compared to simple fluids, we use a transient strain
field to incorporate transient positional order, along with the velocity difference and a relaxing concentration field for the two
subsystems. We show that an external homogeneous shear, as it is applied in piezorheometry, can lead to the onset of spatial
pattern formation. To address the issue of additional spectral weight under the central peak we investigate the coupling to
all macroscopic variables. We find that there are additional static as well as dissipative contributions from both, transient
positional order, as well as from concentration variations due to cluster formation, and additional reversible couplings from
the velocity difference. We also briefly discuss the influence of transient orientational order. Finally, we point out that our
description is more general, and could be applied above continuous or almost continuous transitions

Keywords Macroscopic dynamics · Two-fluid model · Cluster formation · Transient orientational order ·
Transient positional order

Introduction

The appearance of heterogeneities on many length and
time scales as the glass transition is approached from
higher temperatures has been of interest for a number
for years. In parallel it has also become clear that the
formation of spatio-temporal variations is also playing a
role in connection with liquid-liquid transitions in one-
component systems — compare, for example, a recent paper
by Tanaka’s group (Takae and Tanaka 2020). Experiments
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revealing spatio-temporal heterogeneities have come in
several groups. One class are light scattering experiments
for the central peak (Forster 1975; Berne and Pecora 1976)
— also called the Rayleigh line — (Fischer 1993; Kanaya
et al. 1994; 1995; Patkowski et al. 2001a; Patkowski
et al. 2001b; Fischer et al. 2002) including also photon
correlation spectroscopy (Walkenhorst et al. 1998; Fischer
et al. 2002). Closely related are ultrasmall angle x-ray
scattering experiments on the central peak (Patkowski
et al. 2000; Fischer et al. 2002). In all these experiments
one observes spatial heterogeneities (clusters) on length
scales from ∼ 10nm → 200nm. In addition, one finds
additional spectral weight under the central peak compared
to what one would expect from a simple fluid (Forster
1975; Berne and Pecora 1976). We would also like to
refer to the light scattering experiments on the ultraslow
relaxation of hydrogen-bonded dynamic clusters in glass-
forming aqueous glucose solutions (Sidebottom 2007). In
passing we mention that large-scale spatial heterogeneities
have also been observed by light scattering in boron oxide
glasses (Bokov 2016). A second fairly large class of
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observations of clusters of large spatial extent up to about
∼ 15μm) are mechanical experiments, in particular using
piezorheometry (Collin and Martinoty 2003; Pozo et al.
2009). While the former have been done on linear polymer
melts of rather low molecular weight, the latter were done
in the isotropic phase of a liquid crystalline sidechain
polymer. This study (Pozo et al. 2009) also complements
earlier studies in the isotropic phase of sidechain liquid
crystalline polymers above the nematic-isotropic phase
transition (Gallani et al. 1994; Martinoty et al. 1999). In all
cases when piezorheometry was used, a gel-like behavior is
observed below a critical sample thickness of about 20μm

indicating the maximum cluster size to be of that order of
magnitude. Since low frequency ac shear of small strain
amplitudes ∼ 10−4) is applied, it was concluded (Collin and
Martinoty 2003) that density fluctuations of large spatial
extent and long lifetimes are present indicating transient
positional order. Other mechanical experiments in the same
spirit of detecting cluster formation have been done using
low frequency anelastic spectroscopy (Wu and Zhu 2007;
Shang et al. 2009). Another technique that has been used
to investigate cluster formation is dielectric spectroscopy
(Fischer 1993; Fischer et al. 2002; Kaminski et al. 2010).
There is also evidence for the formation of dynamic
heterogeneities from multi-dimensional NMR experiments
indicating length scales of interest for cluster formation of
about 3nm (Tracht et al. 1998). To sum up there is a large
body of experimental evidence indicating cluster formation
on many length and time scales, in particular as the glass
transition is approached from above, mainly in polymers
but also in low molecular weight materials. More recently it
has also become clear in the field of biological physics that
spatial heterogeneities in crowding cellular fluids on length
scales of about 100nm play an important role (Stiehl and
Weiss 2016; Collins et al. 2019; Donth and Weiss 2019) thus
forming a bridge to the nonliving systems discussed above.

In the field of complex fluids two-fluid behavior is quite
frequent in systems such as polymers and microemulsions.
It arises, for example, for multiphase flows (Drew and
Passman 1998), viscoelasticity of concentrated emulsions
(Hebraud et al. 2000) and flow of colloidal suspensions
(Lhuillier 2001). As examples for flows we mention the
rheological behavior of polymer solutions and blends
(Onuki 1989; Saito et al. 2001) and of polymer migration
and phase separation under flow (Sun et al. 1999; Araki and
Tanaka 2001).

We also emphasize that our description is more general,
and could be applied above continuous or almost continuous
transitions for which spatial heterogeneities (clusters) can
grow to a size for which macroscopic dynamics enters the
picture, that is above phase transitions, which are of second
or weakly first order. We do not cover critical fluctuations

in the renormalization group sense and their nonlinear
properties.

The macroscopic description of two-fluid systems of any
type brings along two additional macroscopic variables,
namely the velocity difference between the velocities of the
two subsystems and the concentration of one subsystem, φ,
in addition to the total density ρ, which is always conserved,
and the mean velocity, vi . Whether the concentration density
φ is conserved or a relaxing quantity depends on the system
of interest. For example, for mixtures of immiscible liquids
or for microemulsions it will be a conserved quantity,
while for one-component systems, which have a tendency
towards cluster formation such as smectic clusters in a
nematic liquid crystal (Brand and Pleiner 2021a) or single-
component substances showing a liquid-liquid transition
(Takae and Tanaka 2020), φ will be a relaxing quantity. For
the pioneering papers for the macroscopic dynamics of two-
fluid systems discussing fluid mixtures, two-fluid nematics
and elastomer-fluid mixtures we refer to the publications by
Pleiner and Harden (Pleiner and Harden 2003; 2004). This
work has since been generalized to several other systems
including two-fluid effects in magnetorheological fluids
(MRFs) (Pleiner et al. 2020), to immiscible compound
materials in solids and gels (Pleiner et al. 2021) as well as
to a nematic liquid crystal with smectic clusters to address
the issue of the breakdown of flow alignment (Brand and
Pleiner 2021a). This approach has also been used to describe
bio-inspired materials (Pleiner et al. 2013; 2016b).

There is one important aspect for the macroscopic
dynamics of normal fluid two-fluid systems to be kept
in mind: the velocity difference is always a macroscopic
variable, which relaxes on a long, but finite time scale.
This can be traced back to the fact that in normal fluid
systems there is only the barycentric velocity, which is
associated with a truly conserved variable, the density of
linear momentum. Therefore, all the normal fluid systems
discussed so far must be distinguished from superfluids
for which one has two velocities associated with truly
hydrodynamic variables. The additional truly hydrodynamic
superfluid velocity is associated with a spontaneously
broken continuous symmetry, namely gauge invariance
(Khalatnikov 1965; Hohenberg and Martin 1965; Forster
1975). Hydrodynamic equations for superfluids have been
derived in a number of papers; compare, for example, for
superfluid 4He (Khalatnikov 1965; Hohenberg and Martin
1965; Forster 1975), for the various superfluid phases of
3He in the bulk and in aerogels (Graham 1974; Graham and
Pleiner 1975; Liu 1976; Brand et al. 1979; Liu 1979; Brand
and Pleiner 1982; 2020) and for superfluid neutron star
matter (Brand and Pleiner 1981b).

To derive macroscopic equations for a fluid with clusters
we use the systematic approach of linear irreversible
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thermodynamics (de Groot and Mazur 1962; Martin et al.
1972; Pleiner and Brand 1996). We discuss this subject in
detail in the “Two-fluid model for a fluid with clusters”
section. First, we clarify the macroscopic variables for
such a fluid and then we present the basic hydrodynamic
equations including the macroscopic variables for a two-
fluid description of a fluid with clusters: the relative
velocity wi and the concentration of clusters. Since it
became clear that also transient positional order and
transient orientational order play an important role in
the interpretation of the experiments, these macroscopic
variables are incorporated as well into the basic equations.

In the “Response to an external homogeneous shear”
section we investigate in detail the consequences for
experiments on the mechanical response, in particular for
piezorheometry. From our model it turns out that the ground
state with constant shear S can become unstable via a
stationary or an oscillatory instability.

In the “Influence of two-fluid effects on the central peak”
section the focus is on light scattering experiments, but we
also address the results obtained from photon correlation
spectroscopy and from ultrasmall angle x-ray scattering.
In this section we also discuss the issue of transient
orientational order.

In the “Summary” section we give the conclusions and
a perspective for future investigations in this field, where
spatial heterogeneities on many different length and time
scales play an important role.

In Appendix we list the complete set of dynamic
macroscopic equations for the two-fluid model including
transient positional order: the dynamic equations, and the
dissipative (associated with entropy productions) as well as
the reversible (zero entropy production) currents.

Two-fluidmodel for a fluid with clusters

Variables

The hydrodynamics of a simple fluid is described by the
momentum density gi , the mass density ρ, and the total
energy density ε representing the local conservation laws of
the fluid.

As the fluid is cooled down, the situation frequently
changes as one approaches, for example, the glass transition,
from above: clusters (also denoted as density variations
and/or spatial modulations of the density) arise upon
cooling. In the following we will investigate a new two-fluid
model for a fluid with such clusters.

On the macroscopic level we describe the system as
a homogeneous mixture of a solvent part — the original
simple fluid — with density ρs , and parts composed of
clusters with a different density ρc, due to the different

packing of the molecules. As it is known experimentally
the clusters are in addition associated with a relaxing strain
field, Uij introduced in the spirit of polymer dynamics
(Brand et al. 1990). The nonlinear Eulerian strain tensor
used here has been discussed previously (Temmen et al.
2000; Pleiner et al. 2000; Temmen et al. 2001). It fits
into the GENERIC framework (Grmela 2002), is suitable
to describe general viscoelastic phenomena (Pleiner et al.
2004) and describes polymer rheology to a large extent
(Müller et al. 2016a; 2016b).

Throughout the present paper we consider systems that
are on average spatially isotropic to keep the presentation
as simple as possible. We refer to the recent paper on the
breakdown of flow alignment (Brand and Pleiner 2021a) on
how one can incorporate anisotropy effects as needed.

In contrast to binary mixtures, the mass densities are
not conserved individually but are allowed to exchange
by mutual relaxation — in addition to a diffusive mass
transport according to two different velocities. The solvent
and the cluster mass density, ρs and ρc, respectively, add up
to the total density ρ = ρc+ρs . Similarly, the two velocities
give rise to a cluster momentum density, gc

i = ρcv
c
i , and to

a solvent one, gs
i = ρsv

s
i that add up to the total momentum

density gi = ρsv
s
i + ρcv

c
i , thereby defining the mean

velocity vi = φvs
i + (1 − φ)vc

i = gi/ρ. For details of these
two-fluid aspects we refer to Pleiner and Harden (2003).

As additional variables compared to the one-fluid
description, we therefore take the relative velocity, wi =
vs
i − vc

i , between the cluster and the solvent velocities, the
relaxing strain field Uij as well as the mass concentration of
the solvent, φ = ρs/ρ.

We assume that deviations of the densities relax towards
their ground state values

ρ̇s = · · · − 1

τs

μs and ρ̇c = · · · − 1

τc

μc (1)

according to the appropriate conjugates μs and μc, the two
relative chemical potentials. The dots in Eq. (1) denote all
the other contributions. Since the total density ρ, being a
conserved variable, must not relax, we have to require the
condition μs/τs + μc/τc = 0.

The first law of thermodynamics relates changes of the
variables to changes of the energy density ε by the Gibbs
relation (Martin et al. 1972; Callen 1985; Pleiner and Brand
1996).

dε = T dσ +μdρ +Π dφ +v ·dg+m ·dw+ΦijdUij (2)

The entropy density σ represents the thermal degree of
freedom of the system. The appropriate thermodynamic
conjugates are the temperature T , the chemical potential μ,
the osmotic pressure Π , the mean velocity vi = gi/ρ, the
stress tensor Φij , and mi , the conjugate field to wi . The
chemical potential is the partial derivative of the energy
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density with respect to the density (Martin et al. 1972;
Reichl 1980; Pleiner and Brand 1996). We have split the
strain field and the elastic stress tensor into traces, Ukk ,
Φkk , and traceless parts, Ũij = Uij − (1/3)δijUkk , Φ̃ij =
Φij − (1/3)δijΦkk , which is common in isotropic elasticity.
In that case Φ̃ij dŨij + 1

3ΦkkdUll enters the Gibbs relation.
Rotational invariance of the Gibbs relation (2) leads to

the condition

ŨikΦ̃kj = ŨjkΦ̃ki (3)

From the requirement that the energy of the system is a
first order Eulerian form of all extensive variables, one gets
for the pressure p ≡ −(∂/∂V )

∫
ε dV = −(∂/∂V )E the

Gibbs-Duhem relation

dp = σ dT + ρ dμ − Π dφ + g · dv

−m · dw − ΦijdUij (4)

Basic hydrodynamics

Hydrodynamics allows to describe the statics and the
dynamics of a system in two separate steps. The statics
is given by the relation between the conjugate fields and
the variables, and the dynamics relates the time derivatives
of the variables to the phenomenological currents, which
themselves are expressed by the conjugates or their
gradients.

The static behavior of our macroscopic system is
conveniently described by the energy functional

ε = T

2CV

(δσ)2 + 1

2κφ

(δφ)2 + 1

2ρ2κμ

(δρ)2

+ 1

αφ

(δφ)(δσ ) + 1

ραρ

(δρ)(δσ ) + 1

ρκπ

(δρ)(δφ)

+1

2
ctr Ũij Ũij + 1

2
clUkkUll

+ 1

αu

Ukkδσ + 1

κu

Ukkδφ + 1

ρκρ

Ukkδρ, (5)

from which the conjugate fields follow by taking partial
derivatives according to the Gibbs relation, Eq. (2). The
explicit form of the conjugates is listed below.

The remaining relations between velocities and momenta

vi = gi

ρ
and mi = φ(1 − φ)ρ wi ≡ α wi (6)

are not really static, but nevertheless follow from the energy
density, in particular from the kinetic energy density εkin =
(1/2ρc)[gc]2 + (1/2ρs)[gs]2 = (1/2)g2 + (α/2)w2. The
wi-dependence of the chemical potential and the osmotic
pressure are due to the ρ- and φ-dependence of α.

From the energy functional, Eq. (5), amended by the
kinetic energy, εkin = (1/2)g2 + (α/2)w2, the static
relations are found by partial derivation and read

δT = (∂ε)/(∂σ )

= T

CV

δσ + 1

αφ

δφ + 1

ραρ

δρ + 1

αu

Ukk, (7)

Π = (∂ε)/(∂φ)

= 1

κφ

δφ + 1

ρκπ

δρ + 1

αφ

δσ + 1

ρκu

Ukk

+w · g + ρw2(1 − 2φ), (8)

μ = (∂ε)/(∂ρ)

= 1

ρ2κμ

δρ + 1

ρκπ

δφ + 1

ραρ

δσ + 1

ρκρ

Ukk

+w2φ(1 − φ), (9)

Φkk = (∂ε)/(∂Ukk)

= clUkk + 1

αu

δσ + 1

ρκu

δφ + 1

ρκρ

δρ (10)

Φ̃ij = (∂ε)/(∂Uij ) = ctr Ũij (11)

There is a total of six static susceptibilities from the
binary mixture fluid (CV , αφ , αρ , κφ , κπ , κμ), two elastic
Hooke-like moduli from the two elastic media (longitudinal
cl and transverse ctr ), and three general susceptibilities
describing the cross-coupling between the fluid and the
elastic degrees of freedom (αu, κu, and κρ).

The full nonlinear dynamic equations will be given
and discussed in the Appendix, Eqs. (A.1)–(A.7). In order
to define the phenomenological currents, we list here
simplified dynamic equations, where all nonlinear transport
and convection contributions are omitted

σ̇ + ∇i

(
j

(σ)R
i + j

(σ)D
i

) = 2R/T , (12)

ρ̇ + ∇igi = 0, (13)

φ̇ + φ(1 − φ)∇iwi + IR
φ + ID

φ = 0, (14)

ġi + ∇ip − ∇jΦij + ∇j (σ
R

ij + σ D
ij ) = 0, (15)

ẇi + ρ−1∇iΠ + X R
i + X D

i = 0, (16)
˙̃
Uij − Ãij + Z̃R

ij + Z̃D
ij = 0, (17)

U̇kk − Akk + ZR
kk + ZD

kk = 0, (18)

with 2Aij = ∇ivj + ∇j vi and R the energy dissipation
function. The dynamic equation for ε̇ follows from
Eqs. (12)–18 making use of the Gibbs relation (2). Note that
Eqs. (13) and (14) can equivalently be written as

ρ̇c + ∇i (ρcv
c
i ) − ρ(IR

φ + ID
φ ) = 0 (19)

ρ̇s + ∇i (ρsv
s
i ) + ρ(IR

φ + ID
φ ) = 0 (20)

where ID
φ contains, among others, the relaxations shown in

Eq. (1).
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We have split the phenomenological currents into
reversible and dissipative parts, denoted by superscripts R

and D, respectively. The second law of thermodynamics
requires

R = −j
(σ)∗
i ∇iT +I ∗

φ Π−σ ∗
ij ∇j vi +X ∗

i mi +Z∗
ijΦij

≥ 0 (21)

with the equal sign (> sign) for ∗ = R (∗ = D). We
note that the important role of the behavior of macroscopic
variables under time reversal has been discussed in some
detail before (Brand et al. 2014; 2018).

Explicit expressions for the currents are listed in the
Appendix, Eqs. (A.11)–(A.16) for the dissipative and
Eqs. (A.17)–(A.21) for the reversible ones.

From Eq. (21) it follows that the entropy production
must be positive for dissipative contributions and zero for
reversible contributions. As a result, the diagonal dissipative
parameters are positive and for the non-diagonal ones there
exist upper bounds, while for reversible parameters either
sign is possible and no bounds can be given in general. The
explicit conditions for dissipative parameters are given in
Appendix A.2 after Eq. (A.9) while for the reversible ones
in Eqs. (A.17)–(A.21) no such conditions exist.

Response to an external homogeneous shear

Ground state under external shear flow

To analyze the response of a fluid with clusters under an
external shear flow we assume a linear velocity profile

∇yvz = S (22)

where vz is now the barycentric/mean velocity, because
this is the quantity which is controlled in a classical shear
flow experiment. Deviations of S will be mostly neglected,
and in addition we set vx = 0 and consider a strictly
two-dimensional situation.

Throughout this section we focus on the limit of small
shear rates to address piezorheometry, a technique using
very small shear rates (Collin and Martinoty 2003; Pozo
et al. 2009). We discuss a linear stability analysis in this
limit. Naturally, and in general, in particular for large shear
rates, a linear profile can no longer be expected to apply.

To analyze the piezoelectric experiments of Collin and
Martinoty (2003) we use as macroscopic variables the
concentration variation, δφ, the relative velocity, wi and
the component Uyz of the strain tensor, which is directly
generated by the external shear flow, S. The diagonal
components of the strain tensor, Uyy and Uzz, are directly
generated by the shear flow only in quadratic order and will
be neglected in the following.

Starting with the Eqs. (14), (16) and (17), the linearized
equations of the macroscopic variables considered here take
the form

φ̇ + α

ρ
(∇ywy + ∇zwz) + ζΠ

κφ

δφ = 0 (23)

ẇy + 1

κφρ
∇yφ + αξwy + ctr

ρs

∇zUyz = 0 (24)

ẇz + 1

κφρ
∇zφ + αξwz + Swy + ctr

ρs

∇yUyz = 0 (25)

U̇yz − S + ζtrctrUyz + α

2ρs

(∇ywz + ∇zwy) = 0 (26)

In Eqs. 23–26 ζΠ denotes the relaxation rate of Π , the
thermodynamic conjugate of the concentration φ, ξ the
relaxation rate of mi , the thermodynamic conjugate of wi ,
and ζtr the relaxation rate of the mechanical stress —
compare also Eq. (A.9) for the introduction of these three
relaxation rates in the framework of the dissipation function
R. All the static susceptibilities in Eqs. (23)–(26) have been
introduced in Eqs. (5)–(11).

It is easy to see that there is an exact homogeneous
solution of Eqs. (23)–(26)

δφ0 = w(0)
y = w(0)

z = 0, (27)

while

U̇yz − S + ζtrctrUyz = 0 (28)

leads, for a time-periodic shear rate S = S0 exp(iΩt), to

U0
yz(Ω) = S0

ζtrctr − iΩ

Ω2 + ζ 2
tr c

2
tr

(29)

This result is obtained as a homogeneous solution of the
linearized macroscopic equations for time-periodic shear
and shows that only the product of the relaxation rate of the
mechanical stress and the transverse elastic constant enters.
We also note the intuitive result that the component Uyz is
directly proportional to the amplitude S0 of the shear rate.
In the following we focus on time-independent shear.

Linear instability of the ground state with constant
shear rate S = S0

We will now investigate for which values of the external
driving force, a static shear S0, the solutions Eqs. (27)–
(29) become unstable. The goal of a linear stability analysis
is then to find out for which values of the shear S0 the
spatially homogeneous solution (Eq. (27)–(29)) becomes
unstable to spatially inhomogeneous solutions signaling the
onset of spatially heterogeneous cluster formation. At the
onset of such an instability the concentration variations, δφ,
the relative velocity, wi , and the variations of the strain field,
Ũyz, will start to grow from zero. Frequently one encounters
two possible types of instabilities: stationary instabilities,
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which set-in without an explicit time-dependence, and
oscillatory instabilities, which are associated with a finite
frequency at onset. Below we will discuss both options in
detail.

Along the lines of a linear stability analysis for the onset
of a hydrodynamic instability (Chandrasekhar 1961), we
start with the plane wave ansatz

(φ, wy, wz, Ũyz) =
(Φ, Wy, Wz, Ûyz) exp(χt + [iωt + ikyy + ikzz]) (30)

where Uyz = U0
yz(Ω = 0) + Ũyz with free amplitudes

Φ, Wy, Wz, Ûyz. We look for which values of ω and S we
find a solution with χ ≡ 0, where (δφ, wy, wz, Ûyz) do not
decay to zero anymore. As for the ground state, we do not
consider the longitudinal strains.

Here we will assume that ky is not fixed externally,
while kz has a fixed value to accommodate the boundary
conditions at top and bottom plate of the shear setup, e.g.,
kz = π/L with L the thickness of the layer. The critical
value of ky is chosen such that the threshold value for χ = 0
has its minimum possible value.

Stationary instability

We first consider the case of a stationary instability with
ω ≡ 0. The solvability condition for Eqs. (23)–(26) for the
deviations from the zeroth order solution Eq. (29) reads

K̃ ≡ (k2
z − k2

y)
2 + ζ̄ (2k2ξ − 4kzkyS̄) + 2ζ1ζ2ξ

2 = 0 (31)

with ζ1 = 1
2ρ2ζΠ , ζ2 = ρ2

s ζtr , ζ̄ = ζ1 + ζ2, and S = 2αS̄.
The critical wavevector kcrs

y , for which S becomes
minimum, has to fulfil

(kcrs
y )3 + (ξ ζ̄ − k2

z )k
crs
y − S̄ζ̄ kz = 0. (32)

In Eq. 32 the superscript crs refers to critical and stationary.
What one is looking for in a linear stability analysis is the
value of S for which an instability first arises as a function
of k.

Eliminating S̄ from the coupled Eqs. (31) and (32) a
condition for the critical wavevector can be found

−3(kcrs
y )4 + 2f (kz)(k

crs
y )2 + g(kz) = 0 (33)

with the abbreviations f (kz) = k2
z − ξ ζ̄ and g(kz) =

k4
z + 2k2

z ξ ζ̄ + 2ζ1ζ2ξ
2 leading to the critical values

(kcrs
y )2 = 1

3
f (kz) + 1

3

√
f (kz)2 + 3g(kz) (34)

Scrs = 2α

3ζ̄

kcrs
y

kz

(

−2f (kz) +
√

f (kz)2 + 3g(kz)

)

(35)

Equations (34) and (35) contain a number of special
cases. For example, looking at the limit ξ → 0 —
corresponding to long relaxation times of wi — we obtain

kcrs
y → kz, corresponding to circular rolls, and Scrs → 0.

Therefore the picture emerges that small relaxation rates of
the relative velocity, wi leads to a reduction of the threshold
value for the shear rate necessary to trigger a stationary
instability.

A similar analysis can be done for the opposite case,
where the relaxation rates of δφ and Uyz, associated with ζΠ

and ζtr , respectively, are much smaller than the relaxation
rate of w associated with ξ . In the limit ζ1 ∼ ζ2 → 0
we again get circular rolls (kcrs

y → kz), however at a
finite threshold value Scrs → 2αξ . Nevertheless, increasing
ζ1 or ζ2, the threshold Scrs increases (as well as kcrs

y ).
It is also instructive to compare this result with the one
previously obtained for the breakdown of flow alignment
in nematic liquid crystals (Brand and Pleiner 2021a). In
this case one has the same macroscopic variables except for
the strain Uyz. Inspecting Eqs. (67) and (68) of Brand and
Pleiner (2021a), we find that the two results (kcrs

y → kz

and Scrs → 2αξ ) coincide provided phase diffusion is
neglected.

These are important special cases, since they show that
there are larger thresholds for larger relaxation rates. As
an intuitive picture we thus find small stationary thresholds
for small values of the relaxation rates, i.e., for slow
temporal changes (or large lifetimes), as one expects for
large clusters. The opposite case, large relaxation rates
corresponding to fast dynamics (short lifetimes) lead to high
threshold values for small clusters.

The picture just outlined can be compared qualitatively
with the data presented for the correlation time and the
correlation length experimentally for various polymers
and low molecular weight compounds (Fischer 1993;
Kanaya et al. 1994; 1995; Walkenhorst et al. 1998;
Patkowski et al. 2000; Patkowski et al. 2001a; Patkowski
et al. 2001b; Fischer et al. 2002). Typically either the
correlation length or the correlation time were measured
as a function of temperature. And the data found compare
well with the intuitive picture in the sense that the
correlation length/average size of the clusters increases as
the temperature decreases and the correlation time/ lifetime
of the clusters associated with the ultraslow mode also
increases as the temperature decreases. What does not seem
to be available in the literature so far is a plot of the
correlation time versus the correlation length for one chosen
material. In this case a more quantitative comparison with
the analysis presented here would be possible.

For the intuitive picture outlined there are a number
of similarities to the situation near the onset of stationary
thermal convection in a simple fluid, where the threshold
for convective onset, the critical temperature difference,
�Tc, scales with the product of the viscous contributions,
the kinematic viscosity, ν, and the thermal diffusivity, κ

(Chandrasekhar 1961).
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This is also quite intuitive: for small viscosities one needs
a smaller temperature difference to get thermal convection
started. This is the case for water and liquid metals. For large
viscosities as for silicon oil, glycerol or for honey etc. the
required temperature difference to start thermal convection
is much higher.

Oscillatory instability

Next we investigate the conditions for an oscillatory instability
ω �= 0. Now the solvability condition for Eqs. (23)–(26) for
the deviations from the zeroth order solution Eq. (29) takes
the form of a fourth order polynomial in ω

ω4 − iAω3 − Bω2 + iCω + D = 0 (36)

where

A = r1 + r2 + 2r3 (37)

B = k2(v2
1 + v2

2) + r1r2 + 2r3(r1 + r2) + r2
3 (38)

C = −Skykz(v
2
1 + v2

2) + k2v2
2(r1 + r3)

+k2v2
1(r2 + r3) + 2r1r2r3 + r2

3 (r1 + r2) (39)

D = −Skykz(v
2
2r1 + v2

1r2) + (k2
z − k2

y)
2v2

1v2
2

+k2r3(v
2
2r1 + v2

1r2) + r1r2r
2
3 (40)

where we use as abbreviations the inverse relaxation times
of, respectively, the concentration φ, the transverse strain
Uyz and the relative velocity components, r1 = ζΠ/κφ ,
r2 = ζtrctr , and r3 = αξ , as well as the wave velocities
(squared) related to concentration and strain, v2

1 = α/ρ2κφ

and v2
2 = αctr/2ρ2

s .
Note that D is related to K̃ defined in Eq. (31) by D =

v2
1v2

2K̃ making sure that in the static limit, ω = 0, Eq. (36)
reduces to Eq. (31).

Separating the real and imaginary part of Eq. (36)

ω4 − Bω2 + D = 0 (41)

Aω2 − C = 0 (42)

one can eliminate ω2 from Eqs. (41) and (42) resulting in
the condition

C2 − ABC + DA2 = 0 (43)

To evaluate kcro
y we have to take the derivative of Eq. (43)

with respect to ky and equate it to zero

2CC′ − ABC′ − AB ′C + D′A2 = 0 (44)

with

A′ = 0 (45)

B ′ = 2ky(v
2
1 + v2

2) (46)

C′ = −Skz(v
2
1 + v2

2)

+2ky(v
2
2[r1 + r3] + v2

1[r2 + r3]) (47)

D′ = (2kyr3 − Skz)(v
2
2r1 + v2

1r2)

−4(k2
z − k2

y)kyv
2
1v2

2 (48)

Multiplying Eq. (44) with −ky and adding it to Eq. (43)
one can eliminate the terms ∼ S2 giving rise to an equation
linear in S. The resulting expression for S can then be
inserted into Eqs. (43) or (44) to obtain a closed fourth
order polynomial equation for (kcro

y )2. However this is a
very complicated expression that is difficult to interpret.
Therefore, we will employ some approximations.

First, we assume that fluctuations of the solvent
concentration φ relax on a very long time scale and that the
appropriate wave velocity is small

r1 → 0 and v2
1 → 0, (49)

which is obtained for a small static susceptibility 1/κφ .
In that case D ≡ 0, and Eqs. (43) and (44) for the critical

quantities reduce to C = AB and C′ = AB ′, which are
easily solved by

Scro = −2
kcro
y

kz

(r2 + r3) (50)

(kcro
y )2 = k2

z + 2r3
(r2 + r3)

v2
2

(51)

ω2
cro = 2k2

z v
2
2 + 3r2

3 + 4r2r3 (52)

where the last relation follows from Eq. (42), reading here
ω2 = B. For D = 0 there is a second solution of Eq. (43),
C = 0, which however leads to ω2 = 0 and is therefore
a stationary solution already discussed in the “Stationary
instability” section.

Similarly, assuming that the elastic modulus ctr (instead
of 1/κφ) is small, meaning r2 → 0 and v2

2 → 0, one gets the
solutions Eqs. (51) and (50) with the subscripts 2 replaced
by 1

Second, we choose a weaker approximation, r1 = r2 ≡
R �= r3 and v2

1 = v2
2 ≡ v2 that preserves most of the general

structures of the full solution, but reduces the number of
possible different combinations of r1,2,3 and v1,2. Using the
general procedure described above we find

Scro = −4Z

kcro
y kzv2(R − r3)

(53)

ω2
cro = (kcro

y )2v2 + Z

(R + r3)2
+ 4Z

R2 − r2
3

(54)

with Z = (R + r3)
2(k2

z v
2 + Rr3) (55)
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We note that the critical quantities diverge for R = r3 or
r1 = r2 = r3, meaning there is no oscillatory instability in
that case. This remains true, even if v2

1 �= v2
2. Also in the

special case v2
1 = v2

2, there is no singularity, if the three
relaxation rates are not equal.

The positivity of ω2
cro requires either R > r3 or, for

r3 > R, an implicit condition r3 > rc
3 with rc

3 large enough
to reduce the negative contribution in Eq. (54) sufficiently.
Thus, there is no oscillatory instability for R < r3 < rc

3 .
The critical shear rate diverges, Scro → +∞ for R − r3 →
0+, while it is always negative and finite for rc

3 − R ≥ 0.
We emphasize, however, that the fact that in a linear

stability analysis the threshold for an instability diverges or
that a line of instabilities ends, is well known from pattern
forming instabilities. As examples we refer to the onset
of thermal convection in miscible binary fluid mixtures
(Hurle and Jakeman 1971) and in nematic liquid crystals
(Lekkerkerker 1977).

The critical wave vector is obtained from

(kcro
y )2v2 = Z

4k2
z v

2 + (R + r3)2

( 16Z

(R2 − r2
3 )2

+ 3
)

(56)

showing explicitly that (kcro
y )2 is always positive. It also

contains the singularity at R = r3. We observe that for the
approximate case discussed here the equation to determine
the critical wavevector is linear in (kcro

y )2, while in the
general case combining Eq. (43) with Eq. (44) results in
a quartic polynomial for (kcro

y )2 — as already pointed out
above.

Influence of two-fluid effects on the central
peak

One-fluid description

As already discussed in the introduction, extensive light and
ultrasmall angle x-ray scattering studies have shown that
the spectral weight under the central peak is larger than
expected on the basis of the hydrodynamics of simple fluids
(Fischer 1993; Kanaya et al. 1994; 1995; Walkenhorst
et al. 1998; Patkowski et al. 2000; Patkowski et al.
2001a; Patkowski et al. 2001b; Fischer et al. 2002). These
experiments stimulated work on the macroscopic dynamics
of cluster formation above the glass transition (Brand and
Kawasaki 2003).

Although the scattering amplitude S(k, Ω) reflects
density fluctuations, the thermal degree of freedom is
involved due to the thermal expansion effect. Being a
diffusive, non-propagating excitation, heat conduction gives

rise to the central peak. In a simple fluid it is related to the
dispersion relation

ω = ik2 K

ρ0C p

≡ iωp (57)

where K is the thermal conductivity, ρ0 the total density in
equilibrium and Cp the specific heat at constant pressure in
the general case (Forster 1975; Berne and Pecora 1976). In
our notation it follows from the entropy diffusion

ω = ik2 κ T

ρ0CV

≡ iωV (58)

where κ = K/T0 with the thermal conductivity K from
Eq. (57) and taking into account the static coupling between
entropy and density described by the thermal expansion
coefficient αρ , Eq. (7), resulting in ωp = ωV CV /Cp. The
frequency ωp describes the width of the central peak and
governs its height (Forster 1975; Reichl 1980)

S(k, Ω) ∼ ωp(ω2
p + Ω2)−1 (59)

It was shown (Brand and Kawasaki 2003) that transient
positional order (as well as transient orientational order)
associated with the formation of clusters contribute to
macroscopic dynamics and give rise to additional weight
under the central peak. Furthermore, it was pointed out
(Brand and Kawasaki 2003) that so-called isotropic biaxial
nematic order (Mermin 1979) of the cubic or icosahedral
type (Liu 1981) also contributes to the central peak.

Two-fluid description

In the present section we evaluate how two-fluid effects
of the nature studied in the “Two-fluid model for a fluid
with clusters” section and in the appendices can contribute
additional spectral weight under the central peak. When
compared to previous work (Brand and Kawasaki 2003) we
have as additional macroscopic variables the concentration
φ and the relative velocity wi . First, we evaluate how
static and dissipative contributions associated with two-fluid
effects can affect the central peak.

As for the static contributions related to concentration
variations δφ we have in the energy

εφ = 1

2κφ

(δφ)2 + 1

αφ

(δφ)(δσ ) + 1

ρκπ

(δρ)(δφ)

+ 1

ρκu

Ukkδφ. (60)

In addition to the diagonal susceptibility associated with
concentration variations, 1/κφ , we have cross-coupling
terms to the scalar variables of a simple fluid, density
variations, δρ, and entropy variations, δσ . Furthermore there
is a static cross-coupling term to the diagonal strains of the
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transient network. Due to the static cross-coupling terms all
terms in Eq. (60) contribute to the central peak.

For the dissipation we obtain from the dissipation
function given in Eq. (A.9) the contributions

2R = ζΠ Π2 + D(∇iΠ)(∇iΠ) + 2ζφ Π Φkk

+2D(T )(∇iT )(∇iΠ) + 2ξ
(Π)
ijkl (∇lΠ)(∇kΦij ) (61)

where Π is the thermodynamic conjugate of φ. In
Eq. (61) the contribution ∼ ζΠ is associated with the
relaxation of the concentration and the contribution ∼ D

with diffusion. They will typically both be of interest here
since the clusters observed via light scattering go in size
up to ∼ 2000 Å and are of large, but finite spatial extent.
This effect can also be seen immediately from the fourier
transform being ∼ (ζΠ + Dk2) for these two diagonal
contributions. We see from Eq. (61) that concentration
gradients couple dissipatively to temperature gradients and
thus to the central peak via heat diffusion as well as to both,
diagonal strains and strain gradients.

As for the second macroscopic variable associated with
two-fluid effects, the velocity difference wi , the coupling to
the central peak is a bit more subtle in nature.

From Eqs. (8) and (9) we obtain for the two relevant
thermodynamic conjugate fields Π and the chemical
potential μ

Π = 1

κφ

δφ + 1

ρκπ

δρ + 1

αφ

δσ + 1

ρκu

Ukk

+w · g + ρw2(1 − 2φ), (62)

μ = 1

ρ2κμ

δρ + 1

ρκπ

δφ + 1

ραρ

δσ + 1

ρκρ

Ukk

+w2φ(1 − φ), (63)

From inspection of Eqs. (62) and (63) we see that both, Π
and μ, pick up contributions quadratic in the velocity fields.
These in turn will give rise only to corrections to the central
peak, which are of higher order than those studied for δφ in
this section so far.

For the dissipative contributions involving the relative
velocity we have from Eq. (A.9)

2R = +ξmimi + ν
(w)
ijkl(∇jmi)(∇lmk)

+νijkl(∇j vi)(∇lvk) + 2ν
(c)
ijkl(∇j vi)(∇lmk) (64)

with mi the thermodynamic conjugate of the relative
velocity wi . The only cross-coupling of wi is to Aij =
1
2 (∇ivj + ∇j vi). This will lead for the central peak to
contributions from the relative velocity wi , which are again
of higher order compared to those of the concentration
variations.

Therefore, neither in the statics nor in the dissipative
dynamics, does the velocity difference wi couple to the
variables relevant for the central peak in lowest order.
However, there is a reversible dynamic coupling to the

concentration variable and therefore indirectly to the
entropy, Eqs. (A.4), (A.6), (A.13) and (A.14),

φ̇ + α

ρ0
∇iwi + ζΠΠ − D∇2

i Π = 0 (65)

∇i ẇi + 1

ρ0κφ

∇2
i φ + αξ∇iwi = 0 (66)

Taking the strong damping limit, ω � αξ , Eq. (66)
simply leads to a replacement D → D+1/(ρ2

0ξ) in Eq. (65)
thus adding to the spectral weight under the central peak.

In the scattering amplitude there are, apart from the
central peak, also the two Brillouin peaks, centered at
finite frequencies, that reflect propagating sound modes.
Amending the one-fluid description by a Maxwell-type
relaxation of the viscosity, the Brillouin peaks are changed
(Boon and Yip 1980). Since in our two-fluid description
the relaxing strain as well as the relative velocity couple
dynamically to the momentum density, the Brillouin peaks
will be affected as well. This is, however, beyond the scope
of the present paper.

Orientational order

So far we have concentrated throughout this manuscript
on two-fluid effects for the strain field as an additional
macroscopic variable. In parallel to previous work (Brand
and Kawasaki 2003) we briefly outline possible effects on
the central peak associated with transient orientational order
and with truly biaxial nematic order of optically isotropic
symmetry.

For transient orientational order in an isotropic phase the
analysis proceeds in parallel to that of transient positional
order by replacing the strain as variable with Qij , the
traceless symmetric order parameter characterizing nematic
orientational order (de Gennes 1971; 1975; Pleiner et al.
2002). There is one linear static coupling term to δφ,
manifest in the free energy as

εQc = ζφ(∇iφ)(∇jQij ) (67)

For the thermodynamic force �ij associated with Qij that
gives rise to

�ij = · · · − ζφ∇i∇jφ (68)

where . . . indicate the expression previously derived in
(Brand and Kawasaki 2003).

There are two diagonal terms in the energy complement-
ing the cross-coupling given in Eq. (67). One is the analog of
Frank’s free energy for Qij , which reads (de Gennes 1971;
1975)

εQ = K1(∇iQjk)(∇iQjk) + K1(∇iQik)(∇jQjk) (69)
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and the other one takes the form Kφφ(∇φ)2. Thermo-
static stability then requires for ζφ in the one constant
approximation for εQ the inequality

(ζ φ)2 ≤ KKφφ (70)

This inequality shows that ζφ is bounded from above by the
two diagonal coefficients, but its sign is not fixed: it can
be positive or negative. The static coupling term given in
Eq. (67) is a higher order gradient term of the type discussed
in Pleiner and Brand (1980). In this reference we discussed
— in addition to other effects — static cross-coupling terms
between gradients of the nematic director field on the one
hand and gradients of the density and the entropy density on
the other. We should also point out that, of course, the term
1
2κφ(δφ)2 exists in the energy density (compare Eq. (5)),
which is of lowest order in k.

In contrast to the case of transient positional order, cf.
the contribution ∼ 1/κu in Eq. (5), the static coupling in
Eq. (68), is not gradient-free. Nevertheless, it can contribute
significantly to the central peak, since from light scattering
we know that length scales of ∼ 10 → 100 nm play an
important role.

In addition, there are dissipative linear cross-couplings,
which read in the dissipation function

RQc = ξ
(T )
Q (∇iT )(∇j�ij ) + ξ

(Π)
Q (∇iΠ)(∇j�ij ), (71)

which can also contribute to the spectral weight under the
central peak as a higher gradient effect.

We will briefly comment on the influence of more
general types of orientational order on the central peak.
First, for permanent biaxial nematic order of lower
symmetry, such as tetragonal or orthorhombic, optical
anisotropy will arise, which is not compatible with the light
scattering observations of the central peak. On the other
hand, there is the so-called isotropic biaxial nematic order
(Mermin 1979) of cubic or icosahedral type (Liu 1981). As
has been shown in simulations (Tomida and Egami 1995),
the latter case can occur above the glass transition, at least
locally. The order parameter for cubic biaxial nematics
is a fourth rank tensor (Nelson and Toner 1981), while
for icosahedral biaxial nematics it is a sixth rank tensor
Steinhardt et al. (1981a, b).

As variables for those biaxial nematic phases one can
use three Eulerian angles, Θi (Brand and Pleiner 1981a;
Liu 1981). Then, the coupling to concentration variations
proceeds via the density or entropy density dependence of
the Frank elastic constants (Brand and Kawasaki 2003).

In closing this section we point out that there is another
class of systems for which transient positional order as well
as transient orientational order play an important role for

the understanding of the macroscopic properties, namely the
sponge or L3 phase in lyotropic liquid crystals close to the
phase transition to the isotropic liquid phase (Pleiner and
Brand 1991; Brand and Pleiner 2002).

Summary

Using the macroscopic dynamics approach we have studied
in this paper a two-fluid model for cluster formation. We
have focused predominantly on the description of experi-
mental results above the glass transition. The experimental
results analyzed cover cluster sizes between ∼ 10nm and
∼ 20μm. They have been mainly obtained by optical tech-
niques such as light scattering from the central (Rayleigh)
peak and photon correlation spectroscopy as well as ultra-
small angle x-ray scattering for length scales up to ∼ 2000
Å. The second large group of experiments used two types
of mechanical experiments, namely piezorheometry and
anelastic mechanical measurements. Length scales for clus-
ters of up to ∼ 20μm are covered with frequencies in
the range from 10−2Hz to 103Hz. For the light scattering
experiments we find that the additional macroscopic vari-
able, concentration, adds additional weight to the central
peak due to all its cross-coupling terms to total density, tem-
perature fluctuations and strains. We also obtain the result
that the relative velocity contributes to light scattering from
the central peak mainly to higher (quadratic) order. As for
light scattering we find that both, transient positional order
as well as transient orientational order, contribute additional
extra weight to the central peak. To describe the results
of the mechanical experiments we have studied the influ-
ence of a constant shear. We find that both, a stationary
instability and oscillatory instability, for the onset of cluster
formation are possible. So far the experimental results, in
particular on piezorheometry, suggest so far the onset as a
stationary instability in the low frequency limit. It might be
worthwhile, however, to check experimentally whether low
frequency oscillations can be found as well.

In the main body of the paper we have also pointed
out in the “Stationary instability” section some similarities
between our analysis of the influence of clusters with the
breakdown of flow alignment. As a perspective we mention
that it appears worthwhile to investigate in the future the
analog of stress-oscillations in shear start-up and of back-
flow upon cessation of shear for a two-fluid system of the
type considered here. This could be done along the lines of
Müller et al. (2016a, b), where these processes have been
studied in the framework of nonlinear transient elasticity
for the one-fluid case. Such an extensive study is, however,
beyond the scope of the present paper.
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As already mentioned in the introduction, the issue of
fluid-fluid transitions (Takae and Tanaka 2020) is clearly
also an interesting subject for the macroscopic two-fluid
description presented in the present paper. It will therefore
be most interesting to see whether some of the predictions
made here re. additional spectral weight under the central
peak and the formation of large clusters as monitored by
piezorheometry can be verified. So far we are not aware of
such experimental investigations for these systems. Another
class of systems of high interest in the present context of
two-fluid macroscopic dynamics is of the nature studied
recently by the group of Carsten Tschierske (Reppe et al.
2020). These systems, showing various isotropic phases as
well as cubic liquid crystalline phases of several types,
could provide a handle to study the influence of chirality on
macroscopic two-fluid effects.

For the two-fluid effects associated with optically
isotropic orientational order we have concentrated here
on the influence of long range biaxial nematic order and
quadrupolar transient orientational order to address this
issue. We note, however, that tetrahedral or octupolar order
of short or long range might also be of interest in the
context of two-fluid effects. That tetrahedral order could
arise for liquid crystals has been pointed out first by Fel
(Fel 1995). Tetrahedral order is especially interesting since
it breaks parity symmetry. In the following phase transitions
(Radzihovsky and Lubensky 2001) as well the macroscopic
dynamics of isotropic single-component tetrahedral liquid
crystals have been investigated (Brand et al. 2002; Brand
and Pleiner 2010; 2017), for a recent review we refer to
Pleiner and Brand (2016a). As for the question whether two-
fluid effects related to tetrahedral phases are important, we
are not aware of any experimental literature, neither above
the glass transition nor for tetrahedral systems not showing
a glass transition. We note, however, that simulations on
densely packed tetrahedra by Sharon Glotzer’s group (Haji-
Akbari et al. 2009) indicate that there can be ordered
tetrahedral regions embedded into disordered tetrahedra.
Therefore we have addressed the issue of two-fluid effects
for tetrahedral/octupolar phases with different types of order
quite recently (Brand and Pleiner 2021b).

Finally we mention an open problem re. the glass
transition for systems with clusters. While the mode
coupling theory for the glass transition of spatially
homogeneous phases composed of small molecules has
been worked out in detail — compare the review by Goetze
and Sjögren (1992), it will be interesting to see whether
mode coupling calculations in the same spirit can be carried
out for spatially heterogeneous phases with clusters on
many different length scales.

Appendix. The full hydrodynamic equations

A.1 Dynamic equations

The full dynamical equations for the strain, the concen-
tration φ and the other macroscopic degrees of freedom
are

ε̇ + ∇i (ε + p)vi + ∇i

(
j

(ε)R
i + j

(ε)D
i

) = 0, (A.1)

σ̇ + ∇i

(
σvi + j

(σ)R
i + j

(σ)D
i

) = 2R

T
, (A.2)

ρ̇ + ∇i (ρvi) = 0, (A.3)

φ̇ + vj∇jφ + 1

ρ
∇imi + IR

φ + ID
φ = 0, (A.4)

ġi + ∇j (givj ) + ∇ip − ∇jΦij

+∇j

(
ΦjkUik + ΦikUjk + σ R

ij + σ D
ij

) = 0, (A.5)

ẇi + vj∇jwi + ∇i (ρ
−1Π) + X R

i + X D
i = 0, (A.6)

U̇ij + vk∇kUij + Ukj∇ivk + Uki∇j vk

−Aij + ZR
ij + ZD

ij = 0, (A.7)

with 2Aij = ∇ivj + ∇j vi , and R the energy dissipation
function.

These equations follow from Pleiner and Harden (2003),
Pleiner and Harden (2004), and Pleiner et al. (2020) and
contain, apart from the reversible (superscript R) and irre-
versible, dissipative (superscript D) phenomenological cur-
rents, also transport and convection whenever appropriate.
The latter are reversible and, indeed, all transport contri-
butions (including the isotropic pressure) add up to zero
entropy production, R = 0. This is automatically achieved
by using the mean velocity for all those transport contri-
butions (as in a one-fluid description) in Eqs. (A.1)–(A.7).
In a two-fluid description; however, there exist (for most of
the dynamic equations) reversible currents, cf. Section A.3,
that modify the transport and convection contributions. The
resulting actual transport terms lead to zero entropy pro-
duction, since the contributions from the reversible currents
individually fulfil R = 0 due to suitable counter terms.
The contributions from the reversible currents are non-
universal, but come with phenomenological (reversible)
transport parameters reflecting the fact that in a two-fluid
description there is no general law that fixes the trans-
port velocities (Pleiner and Harden 2003). On the other
hand, the procedure described above gives the possibility, by
choosing the reversible transport parameters appropriately,
to adjust the general result to some desired simplified mod-
els, guaranteeing zero entropy production of transport and
convection terms. At the end of Section A.3 we show how
this procedure works for the present case.
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Here is also a good location to discuss the symmetry
properties of the stress tensor and the closely related
question of the conservation law for angular momentum.
These issues have been of interest for a long time.
Fields of interest ranged from field theory (Belinfante
1939) over fluids, solids and liquid crystals (Martin et al.
1972) to the superfluid A-phase of 3He (Pleiner 1977). In
these references, in particular in Appendix A of Martin
et al. (1972), it has been shown that angular momentum
conservation for intrinsic as well as extrinsic angular
momenta can be obtained by a stress tensor, which is the
sum of a symmetric part and the total divergence of an
antisymmetric tensor of third rank.

The concentrations of the clusters (and the solvent) are
treated as relaxing quantities, rather than as conserved ones,
which is manifest by the form of the current ID

φ in Eq. (A.4).
The energy conservation law, Eq. (A.1), is redundant due to
the Gibbs relation, Eq. (2).

In the whole set of dynamic equations the mean velocity
vi has been chosen as the convective velocity for all
variables. This ensures zero entropy production of the
convective derivatives. Due to various material dependent
contributions in the reversible currents (see below), the
actual convective velocities can be different from vi and can
be specific for the different variables.

For the phenomenological parts of the currents the
second law of thermodynamics requires

R = −j
(σ)∗
i ∇iT + I ∗

φ Π − σ ∗
ij ∇j vi + X ∗

i mi + Z∗
ijΦij

≥ 0 (A.8)

with the equal sign (> sign) for ∗ = R (∗ = D).

A.2 Dissipative currents

The dissipative parts of the currents introduced above can
be deduced from a potential, the dissipation function R, that
reads in bilinear approximation

2R = ζΠ Π2 + ζijklΦijΦkl + ξmimi + 2ζφ Π Φkk

+κ(∇iT )(∇iT ) + D(∇iΠ)(∇iΠ)

+2D(T )(∇iT )(∇iΠ) + ξijkl(∇qΦij )(∇qΦkl)

+2ξ
(Π)
ijkl (∇lΠ)(∇kΦij ) + 2ξ

(T )
ijkl(∇lT )(∇kΦij )

+νijkl(∇j vi)(∇lvk) + ν
(w)
ijkl(∇jmi)(∇lmk)

+2ν
(c)
ijkl(∇j vi)(∇lmk) (A.9)

where the rank-4 tensors have the same form as the elastic
tensor, e.g., ζijkl = ζlδij δkl + 1

2ζtr (δikδjl +δilδjk − 2
3δij δkl),

containing two independent terms denoting transverse and
longitudinal contributions. The requirement of positivity
of the entropy production associated with the second
law of thermodynamics leads to a number of positivity
requirements and bounds for the dissipative coefficients

entering Eq. (A.9). All the diagonal coefficients must be
positive leading to ζΠ, ζl, ζtr , ξ, κ, D, ξl, ξtr , νl, νtr , ν

(w)
l

and ν
(w)
tr all being positive. In addition, all cross-coupling

terms associated with the non-diagonal coefficients are
bounded from above by products of diagonal coefficients
to guarantee positivity of the entropy production leading
to the inequalities (D(T ))2 < κD, ζ 2

φ < ζΠζl ,

(ν
(c)
l )2 < νlν

(w)
l , (ν

(c)
tr )2 < νtrν

(w)
tr , (ξ

(Π)
l )2 < Dξl ,

(ξ
(T )
l )2 < κξl . The general expression for strain diffusion

is ξijklmn(∇mΦij )(∇nΦkl), containing five coefficients
(Mason 1958):

2Rξ = ξ1(∇kΦpp)(∇kΦqq)

+ξ2(∇kΦij )(∇kΦij )

+2ξ3(∇kΦik)(∇iΦpp)

+1

2
ξ4

(
(∇kΦjk)(∇lΦjl) + (∇lΦjk)(∇kΦjl)

)

+ξ5εkjmεnil(∇kΦij )(∇nΦml) (A.10)

We have approximated this by using ξijkl = δmnξijklmn in
order to simplify the currents. This approximation seems to
be justified, since there is already strain relaxation (∼ ζijkl).

From Eq. (A.9) the following dissipative currents are
obtained,

j
(σ)D
i = −(∂R)/(∂∇iT )

= −κ∇iT − D(T )∇iΠ

−ξ
(T )
tr ∇j Φ̃ij − ξ

(T )
l ∇iΦjj , (A.11)

σ D
ij = −(∂R)/(∂∇j vi)

= −νijkl ∇lvk − ν
(c)
ijkl ∇lmk, (A.12)

X D
i = (δR)/(δmi)

= ξ mi − ∇j

(
ν

(w)
ijkl ∇lmk + ν

(c)
klij ∇lvk

)
, (A.13)

ID
φ = (δR)/(δΠ)

= ζΠΠ + ζφΦkk − D∇2
i Π − D(T )∇2

i T

−ξ
(Π)
tr

̂∇i∇j Φ̃ij − ξ
(Π)
l ∇2

k Φjj (A.14)

ZD
ij = (δR)/(δΦij )

leading to

Z̃D
ij = ζtr Φ̃ij − ξ

(T )
tr

̂∇i∇j T − ξ
(Π)
tr

̂∇i∇jΠ

−ξtr∇2
k Φ̃ij (A.15)

ZD
kk = ζlΦkk + ζφΠ − ξ

(T )
l ∇2

k T − ξ
(Π)
l ∇2

k Π

−ξl∇2
k Φll (A.16)

with ̂∇i∇j = ∇i∇j − 1
3δij∇2

k .
Diffusion and thermodiffusion is written in the usual way

with D = ρ d and D(T ) = α d(T ). For the relaxation of φ we
can similarly write ζΠ = α/(ρτφ) where τφ = ρ2(τc + τs).
The relative velocity, wi , always relaxes, since it is not
related to any broken symmetry, nor to a conservation law.
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The same reasoning applies to the variables φ and Uij . All
other variables are conserved and show diffusional behavior.

A.3 Reversible currents

For the reversible parts of the currents in Eqs. (A.1)–(A.7)
we find, requiring zero entropy production

j
(σ)R
i = β1 mi, (A.17)

σ R
ij = 2β2 mi wj + β8δijΠ (A.18)

X R
i = β1∇iT + γ∇iΠ + β2 wj(∇ivj + ∇j vi)

+β3wj(∇jmi − ∇imj ) + β4wj(∇j vi − ∇ivj )

−β6Φkj∇iUkj + ∇j (β5Φij + 2β7ΦkjUik) (A.19)

ZR
ij = 1

2
β5(∇imj + ∇jmi) + β6mk∇kUij

+β7(Ukj∇imk + Uki∇jmk) (A.20)

IR
φ = γ∇imi + β8Akk (A.21)

where we have kept nonlinear contributions when they
contribute to the transport and convection of variables. For
the reversible coefficients in Eqs. (A.17)–(A.21) either sign
is possible and no bounds can be given in general from
the thermodynamic requirements associated with the second
law of thermodynamics.

These reversible currents can be used to tune the trans-
port and convective velocities of the different variables,
compare Pleiner and Harden (2003, Sec. 6). In particular,
the β1 term adds to the transport of the entropy density,
Eq. (A.2), but since we assume that the mean velocity, vi ,
is the appropriate transport velocity, we put β1 = 0. In
our model the transport velocity of ρ̇c and ġc

i is vc
i , while

for ρ̇s and ġs
i it is vs

i . To achieve this we have to take
γ = 0 = β8, cf. Eqs. (19) and (20), and β2 = β4 = 1/2 and
β3 = 1/ρs − 1/ρc Pleiner and Harden (2003). Similarly,
we assume that translation, transport, and convection of
Φij , Eq. (A.7), is done by the velocity vc

i , which requires
β5 = −β6 = −β7 = ρ−1φ−1.

List of symbols

Symbol Quantity

ctr / cl transverse/longitudinal elastic
constant

d scaled diffusion coefficient
d(T ) scaled thermo-diffusion coefficient
gi momentum density
gc

i /gs
i cluster/solvent momentum density

j
(ε)R
i /j (ε)D

i reversible/dissipative part of energy
current density

j
(σ)R
i /j (σ)D

i reversible/dissipative part of entropy
current density

Symbol Quantity

k/ky /kz magnitude and components of wave
vector of perturbations

kcrs
y /kcro

y critical value of wavevector for
stationary/oscillatory instability

mi thermodynamic conjugate of
relative velocity

p pressure
r1,r2,r3 relative velocity components
vi mean velocity
vc
i /vs

i cluster/solvent velocity
v2

1,v2
2 squares of wave velocities for

oscillatory instability
wi relative velocity
Aij symmetrized velocity gradient
Akk , Ãij trace and traceless part of

symmetrized velocity gradient
CV , Cp specific heat at constant volume

and at constant pressure
D diffusion coefficient
D(T ) thermo-diffusion coefficient
E energy
IR
φ /ID

φ reversible/dissipative part of
concentration current

K thermal conductivity
L thickness of layer
Qij traceless symmetric order parameter

for orientational order
R entropy production
S, S0 shear rate, temporally constant

shear rate
Scrs , Scro critical shear rate for stationary,

oscillatory instability
S̄ = 1

2α
S rescaled shear rate

S(k, ω) spectral density
T temperature
Uij strain field
Ukk/Ũij trace and traceless part of strain field
Ûij amplitude of strain field perturbation
U0

ij strain field at zero frequency
Wy, Wz amplitude of perturbations of

relative velocity
XR

i /XD
i reversible/dissipative part of

quasi-current for relative velocity
ZR

ij /ZD
ij reversible/dissipative part of

quasi-current for strain field
Z̃R

ij /Z̃D
ij reversible/dissipative part of

quasi-current for traceless strain
field

ZR
kk/ZD

kk reversible/dissipative part of
quasi-current for trace of strain field
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Symbol Quantity

V volume
αφ cross-susceptibility between

δφ and δσ

αρ , αu cross-susceptibilities between
(δσ, δρ) and (δσ, Ukk)

α coupling constant between
wi and mi

β1 . . . β8 coefficients for reversible parts of
currents involving wi and/or vi

γ coefficient of reversible current
coupling wi and φ

δ variation of variable
δij Kronecker delta
εijk fully antisymmetric tensor
ε/εkin energy density/kinetic energy

density
εQc energy density coupling Qij and φ

ζφ static coupling coefficient of
gradients of φ to gradients of Qij

ζ�, ζtr relaxation rates of �, transverse
mechanical stress

ζ1, ζ2, ζ̄ scaled ζ�, scaled ζtr , sum of ζ1

and ζ2

ζijkl tensor of relaxation rates for strain
field

κ thermal diffusivity
κφ, κμ static susceptibilities associated

with changes in φ, ρ

κπ , κρ , κu cross susceptibilities between
(δρ, δφ), (δρ, Ukk) and (δφ, Ukk)

μ chemical potential
μc, μs thermodynamic conjugate of cluster

density and solvent density
ν kinematic viscosity

νijkl, ν
(w)
ijkl, ν

(c)
ijkl viscosity tensors associated with

Aij , ∇iwj , and their coupling
ξ relaxation rate of mi

ξ
(�)
ijkl , ξ

(T )
ijkl dissipative crosscoupling of ∇i�kj

with (∇l�,∇lT )

ξ
(�)
l , ξ

(�)
tr , ξ

(T )
l , ξ

(T )
tr coefficients of ξ

(�)
ijkl and ξ

(T )
ijkl

ξijklmn sixth rank tensor for strain diffusion
ξ1,2,3,4,5 components of strain diffusion

ξ
(T )
Q , ξ

(�)
Q dissipative crosscouplings of ∇j�ij

with (∇iT , ∇i�)
ρ / ρ0 density / equilibrium density
ρc/ρs cluster/solvent density
σ entropy density
σR

ij /σD
ij reversible/irreversible part of stress

tensor
τc/τs relaxation time of clusters/solvent

Symbol Quantity

φ concentration
χ inverse relaxation time in plane

wave ansatz
ωV / ωp frequency of entropy diffusion /

scaled by (Cp/CV )

ω frequency of perturbation
ωcro critical frequency at onset of

oscillatory instability
�Tc critical temperature difference
� osmotic pressure
� amplitude of concentration

perturbation
�ij stress tensor
�kk/�̃ij trace and traceless part of stress

tensor
�ij thermodynamic force associated

with Qij

� frequency of shear rate
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skalenübergreifende Modellierung und Anwendung magnetischer
Hybridmaterialien’.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Araki T, Tanaka H (2001) Three-dimensional numerical simulations
of viscoelastic phase separation: morphological characteristics.
Macromolecules 34:1953–1963

Belinfante FJ (1939) On the spin angular momentum of mesons.
Physica VI :887–898

Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York
Bokov NA (2016) Peculiarities of light scattering by boron oxide glass.

Glass Phys Chem 42:386–392
Boon J-P, Yip S (1980) Molecular hydrodynamics. McGraw-Hill, New

York
Brand H, Dörfle M, Graham R (1979) Hydrodynamic parameters

and correlation functions of superfluid 3He. Ann Phys (N.Y.)
119:434–479

688 Rheol Acta (2021) 60:675–690

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Brand H, Pleiner H (1981a) Hydrodynamics of biaxial discotics. Phys
Rev A 24:2477–2488

Brand H, Pleiner H (1981b) Broken symmetries and hydrodynamics
of superfluid 3P2 neutron star matter. Phys Rev D 24:3048–3057

Brand H, Pleiner H (1982) Linearized hydrodynamics of superfluid
3He-A1: correlation functions and hydrodynamic parameters. J
Phys (Paris) 43:369–380

Brand HR, Pleiner H, Renz W (1990) Linear macroscopic properties
of polymeric liquids and melts- a new approach. J Phys France
51:1065–1076

Brand HR, Pleiner H (2002) Transient orientational order and transient
positional order in the sponge (L-3) phase. Physica A 312:79–85

Brand HR, Pleiner H, Cladis PE (2002) Flow properties of the optically
isotropic tetrahedratic phase. Eur Phys J E 7:163–166

Brand HR, Kawasaki K (2003) Are transient positional and
orientational order important approaching the glass transition?
Physica A 324:484–494

Brand HR, Pleiner H (2010) Macroscopic behavior of non-polar
tetrahedratic nematic liquid crystals . Eur Phys J E 31:37–50
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