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Abstract. We study numerical methods for solving a coupled Stokes–Darcy problem in porous
media flow applications. A two-grid method is proposed for decoupling the mixed model by a coarse
grid approximation to the interface coupling conditions. Error estimates are derived for the proposed
method. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of
the two-grid approach for solving multimodeling problems. Potential extensions and future directions
are discussed.
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1. Introduction. There are many multimodeling problems in real applications
of complex systems. They consist of multiple models in different regions coupled
through interface conditions. The local models may be very varied in type, scale,
control variable, and many other physical and mathematical properties. The corre-
sponding numerical treatments may, of course, also vary significantly in geometric and
PDE discretization, algebraic solution, and so on, in order to cope with local proper-
ties. The mixture of coupled models also leads to various mathematical and numerical
difficulties. For instance, interface coupling conditions involve different control vari-
ables from different local models and may have complex, or even nonlinear, forms.
Coupling different models may lead to very singular and complex structures across the
interface and strong stiffness due to different scales, which would present considerable
numerical difficulties. Examples of coupled multimodel applications include viscous-
inviscid flows [5], compressible-incompressible fluids [17], turbulent-laminar flows [9],
viscous-porous media flows [11, 16, 21, 27], and inertial confinement fusion with high
ratio of density and temperature [31].

In general, there are two types of approaches to solving multimodel problems.
One is to solve coupled problems directly, and the other is to first decouple mixed
models and then apply appropriate local solvers individually. There are many appeal-
ing reasons to use the decoupling approach. First, it allows one to tailor algorithm
components flexibly and conveniently in terms of physical, mathematical, and nu-
merical properties for each local model and solver. Second, it is suitable for today’s
grid computing environment because it can efficiently and effectively exploit the exist-
ing computing resources, including both hardware and software, that are distributed
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1802 MO MU AND JINCHAO XU

over the Internet and that have been developed by different experts for use in vari-
ous application fields [26]. As a by-product, it naturally results in parallelism in the
conventional sense.

There are various decoupling techniques. Many of them are in the spirit of domain
decomposition in general. For instance, Quarteroni and Valli [29] have extensively in-
vestigated heterogeneous domain decomposition methods for various coupled models.
The Lagrange multiplier approach is also widely used [15, 28] for decoupling multi-
model problems. The interface relaxation approach [24, 25] has also been successfully
applied in multimodel simulations. We note that two-grid methods were proposed in
[34, 35] for discretizing nonsymmetric and indefinite PDEs. The approach was also
used for linearizing nonlinear problems [23, 36, 37], for localization and parallelization
[38, 39, 40], as well as for many other applications; see, for instance, Axelssson and
coworkers [2, 3, 4], Girault and Lions [13], Layton and coworkers [18, 19, 20], and
Utnes [32]. In this paper, we demonstrate that the two-grid approach can also be
applied successfully to solve multimodel problems.

The rest of the paper is organized as follows. A coupled Stokes–Darcy model is
described in the next section as our model problem. A two-grid algorithm is proposed
in section 3 for decoupling the mixed model. The basic idea is to first solve a much
smaller problem on a coarse grid. The coarse grid solution is then used to interpolate
the interface condition, which leads to a decoupled problem on the fine grid. Section 4
contains the error analysis for the two-grid method and discusses its computational
aspects as well as potential extensions and future directions. Both theoretical analysis
and numerical experiments confirm that approximation accuracy does not deteriorate
under the proposed two-grid decoupling technique so that the decoupled discrete
problem is of the same accuracy as the couple discrete problem for approximating the
mixed Stokes–Darcy model. Concluding remarks follow in section 5.

2. Coupled Stokes–Darcy model. Let us consider a mixed model of Stokes
equations and Darcy equations for coupling a fluid flow with a porous media flow.
There has been very active research done recently on its applications, mathematical
analysis, finite element approximation, and numerical solution; see, e.g., [1, 11, 16, 21,
27] and references therein. In particular, a subdomain iterative method is proposed
to decouple the Stokes–Darcy problem by applying the preconditioned Richardson–
Franklin method to the interface equation with the Steklov–Poincaré pseudo-PDE
operator [11].

We consider a fluid flow in Ωf coupled with a porous media flow in Ωp; see Fig-
ure 1, where Ωf and Ωp are two- or three-dimensional bounded domains, Ωf

⋂
Ωp = ∅,

and Ωf

⋂
Ωp = Γ. Denote by Ω = Ωf

⋃
Ωp, nf , and np as usual the unit outward

normal directions on ∂Ωf and ∂Ωp.

The fluid motion is governed by the Stokes equations for the velocity Vf and the
pressure pf : ∀t > 0,

⎧⎨
⎩

∂Vf

∂t
− divT(Vf , pf ) = gf ∀x ∈ Ωf (conservation of momentum),

divVf = 0, ∀x ∈ Ωf (conservation of mass),

(1)

where

T(Vf , pf ) = −pfI + 2μD(Vf )
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Fig. 1. A global domain Ω consisting of a fluid region Ωf and a porous media region Ωp

separated by an interface Γ.

is the stress tensor, μ > 0 is the kinematic viscosity, gf is the external force, and

D(Vf ) =
1

2
(∇Vf + ∇TVf )

is the deformation rate tensor.
The porous media flow motion is governed by Darcy’s law for the piezometric

head φ and the discharge vector q that is proportional to the velocity Vp, namely,
q = nVp with n being the volumetric porosity: ∀t > 0,

⎧⎨
⎩S0

∂φ

∂t
+ divq = gp ∀x ∈ Ωp (conservation of mass),

q = −K∇φ ∀x ∈ Ωp (Darcy’s law),

(2)

where S0 is the mass storativity, K is the hydraulic conductivity tensor of the porous
medium, and the source gp satisfies the solvability condition∫

Ωp

gp = 0,

and

φ = z +
pp
ρfg

,

where z is the elevation from a reference level, pp is the pressure in Ωp, ρf is the
density, and g is the gravity acceleration.
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We consider the following boundary conditions. Denote ∂Ωf \Γ = ∂Ωf,D

⋃
∂Ωf,N

and ∂Ωp \ Γ = ∂Ωp,D

⋃
∂Ωp,N , as shown in Figure 1. For the fluid flow, we impose

{
Vf = 0 on ∂Ωf,D with meas(∂Ωf,D) �= 0,

−(T(Vf , pf )) · nf = h on ∂Ωf,N ,

where h is a given vector. For the porous medium, we assume{
φ = φp on ∂Ωp,D,

Vp · np = vp on ∂Ωp,N .

A key part in a mixed model is the interface coupling conditions. The following
interface conditions have been extensively used and studied in the literature [6, 21, 27]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Vf · nf + Vp · np = 0,

−[(T(Vf , pf )) · nf ] · nf = ρfgφ,

−[(T(Vf , pf )) · nf ] · τ i =
α√

τ i · K · τ i

(Vf − Vp) · τ i, i = 1, . . . , d− 1,

(3)

where {τ i}d−1
i=1 are linearly independent unit tangential vectors on Γ, d is the spacial

dimension, and α is a positive parameter depending on the properties of the porous
medium and must be experimentally determined. The first interface condition ensures
mass conservation across Γ. The second one is a balance of normal forces across the
interface. The third one states that the slip velocity along Γ is proportional to the
shear stress along Γ. There have been many discussions in the literature on the slip
condition along the interface. It is even unclear if the third condition in (3) leads to a
well-posed problem. However, it has been observed that in practice the term Vp · τ i

on the right-hand side from the porous media flow is much smaller than the other
terms. The most accepted interface condition, known as the Beavers–Joseph–Saffman
law, is then given by

−[2μD(Vf ) · nf ] · τ i =
α√

τ i · K · τ i

Vf · τ i, i = 1, . . . , d− 1,(4)

which can be justified by a statistical approach and the Brinkman approximation [30].
We note that different interface conditions have been used in numerical studies. For
instance, the Beavers–Joseph–Saffman condition is used in [1, 21], while the free-slip
condition with α = 0 is assumed in [10, 11, 12]. We will assume the Beavers–Joseph–
Saffman condition (4) from now on.

For simplicity, let us assume n, ρf , and g are constants. We also assume the
homogenous boundary condition on φ, φp = 0, which can be easily handled by a
lifting function in the nonhomogenous case.

Denote

Hf = {v ∈ (H1(Ωf ))d | v = 0 on ∂Ωf,D},

Hp = {φ ∈ H1(Ωp) | φ = 0 on ∂Ωp,D},

W = Hf ×Hp,

Q = L2(Ωf ).
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By integration by parts as in [21], the weak formulation for the above coupled (sta-
tionary) Stokes–Darcy problem reads as follows: For f ∈ W ′, find u = (u, φ) ∈ W ,
p ∈ Q such that {

a(u, v) + b(v, p) = f(v) ∀v = (v, ψ) ∈ W ,

b(u, q) = 0 ∀q ∈ Q,
(5)

where

a(u, v) = aΩ(u, v) + aΓ(u, v),

with

aΩ(u, v) = aΩf
(u,v) + aΩp(φ, ψ),

aΩf
(u,v) =

∫
Ωf

2nμD(u) ·D(v) +

d−1∑
i=1

αn√
τ i · K · τ i

∫
Γ

(u · τ i)(v · τ i),

aΩp(φ, ψ) =

∫
Ωp

ρfg∇ψ · K∇φ,

aΓ(u, v) =

∫
Γ

nρfg[φv − ψu] · nf

and with

b(v, p) ≡ b(v, p) = −
∫

Ωf

np div v.

Similarly to [10], it is easy to verify that (i) a(·, ·) is continuous and coercive on W ,
and that (ii) b(·, ·) is continuous on W×Q and satisfies the well-known Brezzi–Babuska
condition as follows: There exists a positive constant β > 0 such that ∀q ∈ Q,∃w ∈ W
such that

b(w, q) ≥ β||w||W ||q||Q.(6)

The well-posedness of the model problem (5) then follows from Brezzi’s theory for
saddle-point problems [7]. The only difference from [10] is that the extension from
the free-slip interface condition to the case of nonzero α results in the inclusion of
an extra term

∑d−1
i=1

αn√
τ i·K·τ i

∫
Γ
(u · τ i)(v · τ i) in the bilinear form aΩf

(u,v). Note

that this extension does not affect property (i) for the bilinear form a(·, ·). The
continuity is obvious, while the coercivity is still a consequence of the well-known
Poincaré inequality and Korn inequality as in the free-slip case because α is positive
and the corresponding term can thus be ignored in the estimation.

3. A two-grid algorithm. Let Wh = Hf,h × Hp,h ⊂ W and Qh ⊂ Q be two
finite element spaces. The finite element discretization applied to the model problem
(5) leads to a coupled discrete problem as follows: Find uh = (uh, φh) ∈ Wh, ph ∈ Qh

such that {
a(uh, vh) + b(vh, ph) = f(vh) ∀vh = (vh, ψh) ∈ Wh,

b(uh, qh) = 0 ∀qh ∈ Qh.
(7)
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The construction of the finite element spaces Wh and Qh is described more specif-
ically as follows. Let the triangulation of the global domain be regular, as well as
compatible and quasi-uniform on Γ as described in [11]. Furthermore, the finite ele-
ment spaces Hf,h and Qh approximating the velocity and pressure fields in the fluid
region are assumed to satisfy the discrete inf-sup condition as follows: There exists a
positive constant β∗ > 0, independent of h, such that ∀vh ∈ Hf,h, qh ∈ Qh,

b(vh, qh) ≥ β∗||vh||Hf
||qh||Q.(8)

Several families of finite element spaces designed for the Stokes problem are pro-
vided in IV.2 and Chapter VI in [7]. They all satisfy the discrete inf-sup condition
(8) and can thus be applied for Hf,h and Qh. Finally, standard finite element ap-
proximations of Hm(Ωp), such as piecewise linear elements for m = 1, can be applied
for Hp,h in the porous media region. The well-posedness and error analysis of the
coupled discrete model (7) can be found in [11].

We now propose a two-grid algorithm consisting of the following two steps.
Algorithm.

1. Solve a coarse grid problem (7) with spacing H as follows: Find uH =
(uH, φH) ∈ WH ⊂ Wh, pH ∈ QH ⊂ Qh such that{

a(uH , vH) + b(vH , pH) = f(vH) ∀vH = (vH, ψH) ∈ WH ,

b(uH , qH) = 0 ∀qH ∈ QH .
(9)

2. Solve a modified fine grid problem as follows: Find uh = (uh, φh) ∈ Wh,
ph ∈ Qh such that{

aΩ(uh, vh) + b(vh, p
h) = f(vh) − aΓ(uH , vh) ∀vh ∈ Wh,

b(uh, qh) = 0 ∀qh ∈ Qh.
(10)

It is easy to see that the modified fine grid problem (10) is also well-posed. More
important, the discrete model (10) is in fact equivalent to two decoupled problems that
correspond to the Stokes problem on Ωf and the Darcy problem on Ωp, respectively,
with the boundary conditions defined by uH on Γ. More specifically, the discrete
Stokes problem on the fluid region reads as follows: Find uh ∈ Hf,h, ph ∈ Qh such
that ⎧⎪⎨

⎪⎩
aΩf

(uh,vh) + b(vh, p
h) = (ngf ,vh) −

∫
Γ

nρfgφHvh · nf ∀vh ∈ Hf,h,

b(uh, qh) = 0 ∀qh ∈ Qh.

(11)

Similarly, the discrete Darcy problem on the porous media region reads as follows:
Find φh ∈ Hp,h such that

aΩp(φ
h, ψh) = (ρfggp, ψh) +

∫
Γ

nρfgψhuH · nf ∀ψh ∈ Hp,h.(12)

4. Error analysis. For convenience, from now on we will use x � y to denote
that there exists a constant C, such that x ≤ Cy. Let Wh and Qh be any finite
element spaces as described in the previous section. In addition, for illustration assume
the regularity u ∈ (H2(Ωf ))d × H2(Ωp) and p ∈ H1(Ωf ), and thus finite element
spaces as described above of first order approximation O(h) are used for the fluid and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A TWO-GRID METHOD OF A MIXED STOKES–DARCY MODEL 1807

porous media regions. Then the error analysis for the coupled model in [11] yields the
estimates {

||u− uh||W � h,

||p− ph||Q � h.
(13)

Note that estimates (13) apply to the coupled problem (7) but not to the decoupled
problem (10). Furthermore, the extended framework of the Aubin–Nitsche duality
technique [7] gives the following L2-norm estimate.

Lemma 1. Let W− = (L2(Ωf ))d ×L2(Ωp). Then under the same assumptions as
above, we have

||u− uh||W− � h2.(14)

Proof. As in the Aubin–Nitsche duality technique for the general framework of
mixed problems in [7], consider the dual problem defined by the error pair (u −
uh, p − ph) to be (2.90) and (2.93) from [7]. For the solution (w, s) of the dual
problem, from the regularity of the dual problem we have (w, s) ∈ W++ × Q++ =
((H2(Ωf ))d × H2(Ωp)) × H1(Ωf ) in the particular setting of our problem. Then,
Theorem 2.2 (in particular the estimate of (2.100)) in [7] gives

||u− uh||W− � m(h)(‖u− uh‖W + ‖p− ph‖Q) + n(h)‖u− uh‖W ,

where

inf
wh∈Wh

‖w − wh‖W ≤ m(h)‖w‖W++ ,

and

inf
qh∈Qh

‖s− qh‖Q ≤ n(h)‖s‖Q++ .

Note that both m(h) and n(h) are of the order of O(h) as shown in [7]. Estimate (14)
then follows immediately from (13), which completes the proof.

As a consequence, the following estimates, which will be used in the proof of the
next theorem, follow immediately from (13) and (14):{

||uh − uH ||Hf
� H, ||uh − uH ||(L2(Ωf ))d � H2,

‖φh − φH‖Hp � H, ‖φh − φH‖L2(Ωp) � H2.
(15)

Theorem 2. Let uh, ph and uh, ph be defined by the two discrete models (7) and
(10) on the fine grid. The following error estimates hold:

||φh − φh||Hp � H2,(16)

||uh − uh||Hf
� H3/2,(17)

||ph − ph||Q � H3/2.(18)

Proof. Note that by comparing the two discrete models (7) and (10) on the fine
grid, we have{

aΩ(uh − uh, vh) + aΓ(uh − uH , vh) + b(vh, ph − ph) = 0 ∀vh ∈ Wh,

b(uh − uh, qh) = 0 ∀qh ∈ Qh.
(19)
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First, taking vh = (0, ψh) ∈ Wh in (19), we obtain

aΩp(φh − φh, ψh) + aΓ(uh − uH , vh) = 0.

In particular, when ψh = φh − φh, it is further reduced to

aΩp(φh − φh, φh − φh) =

∫
Γ

nρfg(φh − φh)(uh − uH) · nf .

Let θ ∈ H1(Ωf ) be a harmonic extension of φh − φh to the fluid flow region,
satisfying ⎧⎪⎨

⎪⎩
−Δθ = 0 in Ωf ,

θ = φh − φh on Γ,

θ = 0 on ∂Ωf/Γ.

Let H
1/2
00 (Γ) denote the interpolation space [22]

H
1/2
00 (Γ) = [L2(Γ), H1

0 (Γ)]1/2.

Apparently,

||θ||H1(Ωf ) � ||φh − φh||
H

1/2
00 (Γ)

� ||φh − φh||Hp
.

Note that ∀qH ∈ QH ,∫
Γ

nρfg(φh − φh)(uh − uH) · nf

=

∫
∂Ωf

nρfgθ(uh − uH) · nf

=

∫
Ωf

div(uh − uH)(nρfgθ) +

∫
Ωf

(uh − uH) · ∇(nρfgθ)

= nρfg

(∫
Ωf

(θ − qH)div(uh − uH) +

∫
Ωf

(uh − uH) · ∇θ

)
,

where in the last equality we use the discrete divergence-free property for uh and uH ,

b(uh − uH , qH) =

∫
Ωf

nqHdiv(uh − uH) = 0 ∀qH ∈ QH .

Therefore, we have

||φh − φh||2Hp

� aΩp(φh − φh, φh − φh)

� inf
∀qH∈QH

∣∣∣∣∣
∫

Ωf

(θ − qH)div(uh − uH)

∣∣∣∣∣ +

∣∣∣∣∣
∫

Ωf

(uh − uH) · ∇θ

∣∣∣∣∣
� ||uh − uH ||Hf

inf
∀qH∈QH

||θ − qH ||L2(Ωf ) + ||uh − uH ||(L2(Ωf ))d ||θ||H1(Ωf )

� (H||uh − uH ||Hf
+ ||uh − uH ||(L2(Ωf ))d)||θ||H1(Ωf )

� H2||φh − φh||
H

1/2
00 (Γ)

� H2||φh − φh||Hp ,
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which leads to estimate (16).
To show (17), taking vh = (vh, 0) ∈ Wh in (19), we obtain

aΩf
(uh − uh,vh) + aΓ(uh − uH , vh) + b(vh, ph − ph) = 0.

In particular, when vh = uh − uh, due to the discrete divergence-free property of uh

and uh so that b(uh − uh, ph − ph) = 0, we further have

aΩf
(uh − uh,uh − uh) =

∫
Γ

nρfg(φh − φH)(uh − uh) · nf .

Hence,

||uh − uh||2Hf
� aΩf

(uh − uh,uh − uh)

=

∫
Γ

nρfg(φh − φH)(uh − uh) · nf

� ‖φh − φH‖L2(Γ)‖uh − uh‖(L2(Γ))d

� ‖φh − φH‖L2(Γ)‖uh − uh‖Hf
.

(20)

Using a refined trace result (see [33, p. 27], with ε = H1/2), we get

‖φh − φH‖L2(Γ) � H−1/2‖φh − φH‖L2(Ωp) + H1/2‖φh − φH‖H1(Ωp) � H3/2.(21)

Applying (21) to (20) then yields estimate (17).
Finally, let us show (18). From the discrete Brezzi–Babuska condition on Ωf , for

qh = ph − ph ∈ Qh,∃vh ∈ Hf,h such that

||ph − ph||L2(Ωf ) �
−
∫
Ωf

n(ph − ph)divvh

||vh||Hf

.

Recall that for vh = (vh, 0) ∈ Wh in (19), we have

aΩf
(uh − uh,vh) + aΓ(uh − uH , vh) + b(vh, ph − ph) = 0.

The first term above is easy to handle by

|aΩf
(uh − uh,vh)| � ||uh − uh||Hf

||vh||Hf
.

For the second term, we have

|aΓ(uh − uH , vh)| =

∣∣∣∣
∫

Γ

nρfg(φh − φH)vh · nf

∣∣∣∣
� ‖φh − φH‖L2(Γ)‖vh‖(L2(Γ))d

� ‖φh − φH‖L2(Γ)‖vh‖Hf
.

Using (21) and (17), we have

||ph − ph||L2(Ωf ) �
|aΩf

(uh − uh,vh)| + |aΓ(uh − uH , vh)|
||vh||Hf

� ||uh − uh||Hf
+ ‖φh − φH‖L2(Γ)

� H3/2,
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which leads to estimate (18). This completes the proof.
Corollary 3. Let (uh, ph) ∈ Wh ×Qh be the solution of the two-grid algorithm

with H =
√
h. We have

||φ− φh||Hp
� h(22)

and

||u − uh||Hf
+ ||p− ph||Q � h3/4.(23)

If H = h2/3, estimate (23) is further improved to the optimal order as follows:

||u − uh||Hf
+ ||p− ph||Q � h.(24)

We remark that error estimates (17) and (18) for uh−uh and ph−ph may not be
optimal due to technical reasons. These two estimates might be further improved to
O(H2) by a finer analysis, as suggested by numerical experiments in [8], which could
then lead to an improvement of (23) to an optimal estimate of the order of O(h) for
u − uh and p − ph, yet still with H =

√
h. Furthermore, the error analysis may be

extended to finite element spaces with higher order approximation O(hm), provided
that the solution is locally smooth enough within each subdomain. Specifically, if
Wh ⊂ W and Qh ⊂ Q are finite element spaces with the approximation order O(hm),
and the solution (u, p) is locally smooth enough within each subdomain, we expect
the following estimates to hold:

||φh − φh||Hp
� Hm+1(25)

and

||uh − uh||Hf
+ ||ph − ph||Q � Hm+1,(26)

which implies the optimal error estimates if we take H = h
m

m+1 :

||φ− φh||Hp � hm(27)

and

||u − uh||Hf
+ ||p− ph||Q � hm.(28)

We refer readers to [8] for more details on this extension.
Comprehensive numerical experiments on various aspects of the proposed theoret-

ical framework are under investigation and will be reported in [8]. For instance, if the
well-known Taylor–Hood elements [7], also known as the P2-P1 elements, are applied
to the Stokes model, and the P2 elements are applied to the Darcy model, and for
convenience we simply take H =

√
h, the numerical approximations of the two-grid

algorithm to a locally very smooth solution clearly demonstrate an optimal conver-
gence rate of O(h2), which confirms our theoretical expectation. For more details,
see [8].

Most important, the presented theory suggests that one can effectively and effi-
ciently decouple a coupled multimodel problem by proper multigrid techniques. This
allows for different submodel problems to be solved independently by applying the
most appropriate numerical techniques individually. In addition, these decoupled lo-
cal problems can be solved by different processors on a parallel multiprocessor or
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by different computing nodes on a traditional cluster or even a remotely distributed
computational grid. Furthermore, in a grid computing environment, powerful and
efficient local solvers are usually available which were developed at different sites by
different experts for various single models. Therefore, substantial coding tasks can
also be reduced thanks to resource sharing in grid computing.

We also remark that the proposed two-grid algorithm still requires a coarse grid
solver for the coupling purpose. The coarse grid problem usually has a much smaller
size, say H =

√
h, and can thus be solved on a front end machine or a client machine.

It is also numerically easier to solve than a fine grid problem in various aspects such
as approximation accuracy, stiffness, and so on.

In addition, iterative strategies such as preconditioned error correction can be
applied for the coarse grid solver by restricting the computed fine grid approximation
to the coarse grid so that the coarse grid problem is also similarly decoupled. This
then leads to a fully decoupled iterative two-grid algorithm. Finally, we remark that
the same strategy can be applied recursively to the coarse grid problem, if necessary,
which then leads to a multigrid algorithm.

5. Conclusions. We have proposed a two-grid method for solving the coupled
Stokes–Darcy problem. Error estimates are obtained, which suggests that multigrid
can provide a general framework for solving multimodeling problems. It is promising
to extend this approach to more general settings, such as other boundary and interface
conditions, Navier–Stokes/Darcy coupling, time-dependent problems, as well as other
coupling applications. It is also possible to generalize the framework to other versions,
including iterative two-grid methods and multilevel methods.
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thank the referees very much for helpful comments and suggestions, which led to
substantial improvements in the presentation.

REFERENCES

[1] T. Arbogast and D. S. Brunson, A computational method for approximating a Darcy–Stokes
system governing a vuggy porous medium, Comput. Geosci., to appear.

[2] O. Axelsson and I. E. Kaporin, Minimum residual adaptive multilevel finite element proce-
dure for the solution of nonlinear stationary problems, SIAM J. Numer. Anal., 35 (1998),
pp. 1213–1229.

[3] O. Axelsson and W. Layton, A two-level method for the discretization of nonlinear boundary
value problems, SIAM J. Numer. Anal., 33 (1996), pp. 2359–2374.

[4] O. Axelsson and A. Padiy, On a two level Newton type procedure applied for solving nonlinear
elasticity problems, Internat. J. Numer. Methods Engrg., 49 (2000), pp. 1479–1493.

[5] D. Barberis and P. Molton, Shock Wave/Turbulent Boundary Layer Interaction in a Three-
Dimensional Flow, AIAA paper 1995-227, American Institute of Aeronautics and Astro-
nautics, Inc., Reston, VA, 1995.

[6] G. Beavers and D. Josephn, Boundary conditions at a naturally permeable wall, J. Fluid
Mech., 30 (1967), pp. 197–207.

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New
York, 1991.

[8] M. C. Cai, M. Mu, and J. C. Xu, Numerical Study on Two-Level and Multilevel Methods for
Mixed Stokes/Darcy Model, in preparation.

[9] B. Chanetz, R. Benay, J. Bousquet, R. Bur, T. Pot, F. Grasso, and J. Moss, Experi-
mental and numerical study of the laminar separation in hypersonic flow, Aerospace Sci.
Technol., 3 (1998), pp. 205–218.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1812 MO MU AND JINCHAO XU

[10] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the
coupling of Stokes and Darcy equations, in Proceedings of the 3rd European Conference
on Numerical Mathematics and Advanced Applications (ENUMATH 2001), F. Brezzi,
A. Buffa, S. Corsaro, and A. Murli, eds., Springer, Milan, 2003, pp. 3–20.

[11] M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for
the finite element approximation of the coupling of Stokes and Darcy equations, Comput.
Vis. Sci., 6 (2005), pp. 1001–1026.

[12] M. Discacciati, E. Miglio, and A. Quarteroni, Mathematical and numerical models for
coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57–74.

[13] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes
problem. Mathematical modelling and numerical analysis, M2AN Math. Model. Numer.
Anal., 35 (2001), pp. 945–980.

[14] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory
and Algorithms, Springer-Verlag, Berlin, 1986.

[15] R. Glowinski, T. Pan, and J. Periaux, A Lagrange multiplier/fictitious domain method for
the numerical simulation of incompressible viscous flow around moving grid bodies: I. Case
where the rigid body motions are known a priori, C. R. Acad. Sci. Paris Sér. I Math., 324
(1997), pp. 361–369.

[16] W. Jager and A. Mikelic, On the boundary conditions at the contact interface between a
porous medium and a free fluid, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996),
pp. 403–465.

[17] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl.
Math., 35 (1982), pp. 629–651.

[18] W. Layton and W. Lenferink, Two-level Picard and modified Picard methods for the Navier-
Stokes equations, Appl. Math. Comput., 69 (1995), pp. 263–274.

[19] W. Layton, A. Meir, and P. Schmidt, A two-level discretization method for the stationary
MHD equations, Electron. Trans. Numer. Anal., 6 (1997), pp. 198–210.

[20] W. Layton and L. Tobiska, A two-level method with backtracking for the Navier–Stokes
equations, SIAM J. Numer. Anal., 35 (1998), pp. 2035–2054.

[21] W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous media flow,
SIAM J. Numer. Anal., 40 (2003), pp. 2195–2218.

[22] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,
Vol. 1, Springer-Verlag, New York, Heidelberg, 1972.

[23] M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid
finite elements, SIAM J. Numer. Anal., 32 (1995), pp. 1170–1184.

[24] S. Markus, E. Houstis, A. Catlin, J. Rice, P. Tsompanopoulou, E. Vavalis, D. Got-

tfried, K. Su, and G. Balakrishnan, An agent-based netcentric framework for multi-
disciplinary problem solving environments (MPSE), Internat. J. Comput. Engrg. Sci., 1
(2000), pp. 33–60.

[25] M. Mu, Solving composite problems with interface relaxation, SIAM J. Sci. Comput., 20 (1999),
pp. 1394–1416.

[26] M. Mu, PDE.Mart: A network-based problem-solving environment for PDEs, ACM Trans.
Math. Software, 31 (2005), pp. 508–531.

[27] L. Payne and B. Straughan, Analysis of the boundary condition at the interface between a
viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl.,
77 (1998), pp. 317–354.

[28] M. Peszynska, M. Wheeler, and I. Yotov, Mortar upscaling for multiphase flow in porous
media, Comput. Geosci., 6 (2002), pp. 73–100.

[29] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equa-
tions, Oxford University Press, Oxford, UK, 1999.

[30] P. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math.,
50 (1971), pp. 93–101.

[31] A. Shestakov, M. Prasad, J. Milovich, N. Gentile, J. Painter, and G. Furnish, The
radiation-hydrodynamic ICF3D code, Comput. Methods Appl. Mech. Engrg., 187 (2000),
pp. 181–200.

[32] T. Utnes, Two-grid finite element formulations of the incompressible Navier-Stokes equations,
Comm. Numer. Methods Engrg., 13 (1997), pp. 675–684.

[33] J. Xu, Theory of Multilevel Methods, Ph.D. dissertation, Cornell University, Ithaca, NY, 1989.
[34] J. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J.

Numer. Anal., 29 (1992), pp. 303–319.
[35] J. Xu, Iterative methods by SPD and small subspace solvers for nonsymmetric or indefinite

problems, in Proceedings of the Fifth International Symposium on Domain Decomposition
Methods for Partial Differential Equations, SIAM, Philadelphia, 1992, pp. 106–118.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A TWO-GRID METHOD OF A MIXED STOKES–DARCY MODEL 1813

[36] J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15
(1994), pp. 231–237.

[37] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer.
Anal., 33 (1996), pp. 1759–1777.

[38] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretiza-
tions, Math. Comp., 69 (2000), pp. 881–909.

[39] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretiza-
tions for nonlinear problems, Adv. Comput. Math., 14 (2001), pp. 293–327.

[40] J. Xu and A. Zhou, Local and parallel finite element algorithms for eigenvalue problems, Acta
Math. Appl. Sin. Engl. Ser., 18 (2002), pp. 185–200.


