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Abstract—This paper presents a two-layer distributed cooper-

ative control method for networked microgrid (NMG) systems, 

taking into account the proprietary nature of microgrid (MG) 

owners. The proposed control architecture consists of an 

MG-control layer and an NMG-control layer. In the MG layer, 

the primary and distributed secondary controls realize accurate 

power sharing among distributed generators (DGs) and the fre-

quency/voltage reference following within each MG. In the NMG 

layer, the tertiary control enables regulation of the power flowing 

through the point of common coupling (PCC) of each MG in a 

decentralized manner. Furthermore, distributed quaternary 

control restores the system frequency and critical bus voltage to 

their nominal values and ensures accurate power sharing among 

MGs. A small-signal dynamic model is developed to evaluate the 

dynamic performance of NMG systems with the proposed control 

method. Time-domain simulations and experiments on NMG test 

systems are performed to validate the effectiveness of the pro-

posed method. 

 

Index Terms—networked microgrids, hierarchical control, 

distributed cooperative control, resiliency, small-signal stability. 

 

I. INTRODUCTION 

esiliency against major disasters, such as major hurricanes 

or earthquakes, is considered by the U.S. Department of 

Energy (DOE) as the most essential characteristic of future 

smart distribution systems [1]. Concerning the enhancement of 

system resiliency, interconnecting microgrids (MGs) to form a 

networked microgrid (NMG) system after a major outage has 
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been proved to be an effective option [2]. 

Three types of NMG systems (or multi-microgrid systems) 

have been reported in the literature: low-voltage (LV) MGs 

interconnected through LV tie lines [3], medium-voltage (MV) 

MGs networked via MV feeders [4], and LV MGs intercon-

nected through an MV feeder and distribution transformers [5], 

[6]. Disregarding the way in which MGs are networked, NMG 

systems have some features in common. First, MGs within an 

NMG system may belong to different entities, and limited 

information may be shared with others because of their pro-

prietary nature. Second, multiple control objectives need to be 

realized by effective coordination among DGs and MGs. 

A. Literature Review 

1) Control architectures of NMG systems 

A proper control architecture for NMG systems considering 

the above features is needed. The classic three-level control 

architecture [7] is widely applied to a single MG [8]-[14]. The 

existing control philosophies for NMG systems are usually 

based on this architecture and fall into two categories, i.e., 

one-layer architecture and two-layer architecture. The 

one-layer architecture ignores the boundary of each MG and 

considers the NMG system as a large MG. Thus, the three-level 

control architecture of MGs can be modified to fit the NMG 

system [15]-[17]. The two-layer architecture adds an extra 

NMG-control layer and considers the three-level control of 

MGs as the MG-control layer [18]-[31]. The two-layer archi-

tecture is inspired by the multi-layer and multi-area control 

concept in the bulk power system [30]. The NMG layer regards 

each MG as a control entity and thus avoids directly controlling 

each DG unit. Therefore, the two-layer architecture is preferred 

in this study. 

However, the existing two-layer architectures have the fol-

lowing limitations: i) they cannot realize load sharing among 

MGs automatically and enable the plug-and-play capability of 

each MG, and ii) the NMG-control layer requires too much 

information of DGs within MGs, which may be inaccessible, 

e.g., DG capacity information and load consumption data. 

2) Control methods of NMG systems 

Centralized or distributed methods can both be applied to the 

control of NMG systems. The centralized control methods for 

NMG systems have been reported in [19]-[26]. In [19], the 

NMG layer is responsible for calculating power and voltage 

reference values and then sending them to the MG layer to 

realize power sharing and voltage control objectives. In [20], 
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the frequency control issue is addressed in the NMG layer by 

coordinating each MG. In [21-26], an interface converter is 

assumed to be deployed with each MG to realize power sharing 

among MGs. Thus, the NMG layer is actually responsible for 

the control of the interfaced converter. 

Compared with centralized methods, the distributed control 

methods employing consensus-based cooperative control the-

ory [33] have some advantages, e.g., communication failure 

robustness and good re-configurability due to their neighboring 

communication features. Therefore, they have attracted much 

attention in recent years. 

Among the existing publications with distributed control 

methods [15], [16], [27]-[29], both one-layer architecture [15], 

[16] and two-layer architecture have been adopted [27]-[29]. In 

[15], [16], a distributed communication network including all 

DG units of the NMG system exists under a one-layer archi-

tecture. Thus, there will be a large and complex communication 

network, which may result in a slow convergence speed of the 

distributed control algorithm. In [27], [28], the NMG layer is 

distributed, while the MG layer is still centralized. Thus, the 

DG units cannot flexibly plug in or out because of the central-

ized MG layer. In [29], both the MG and NMG layer use dis-

tributed control methods. However, MG output power sharing 

and critical bus voltage control objectives cannot be realized. 

In sum, the above methods cannot simultaneously realize the 

control objectives of both the NMG layer (frequency/voltage 

regulation and power sharing among MGs) and the MG layer 

(load sharing among DGs), especially under the two-layer 

distributed control architecture. 

3) Stability modeling and analysis of NMG systems 

Compared with a single MG, the dynamic interactions 

among MGs and among multiple control layers in an NMG 

system may introduce new low-damping oscillation modes that 

may even destabilize the system. Therefore, a small-signal 

dynamic model of the NMG system and its corresponding 

stability analysis are of significant importance. However, only 

several publications about the small-signal stability issues of 

NMG systems have been reported [25], [26], [32]. In [25], [26], 

a small-signal dynamic modeling method for the NMG system 

is proposed in which each MG is simplified as a DG unit 

without considering its internal dynamics. This simplification 

will inevitably lead to analysis errors. In [32], a detailed 

small-signal dynamic model of a PV-based NMG is proposed, 

and the analysis results indicate that the coupling among MGs 

will weaken the system stability margin. However, only de-

centralized primary control is employed with each DG in [32], 

which means the impacts of distributed control methods and 

other control layers are not studied in [32]. 

Based on the above analysis, to the best of the authors’ 
knowledge, a detailed small-signal dynamic model and corre-

sponding stability analysis of the NMG system considering 

distributed control methods and multiple control layers have 

not been previously reported. 

B. Contribution 

Compared with the state of the art, the major contributions of 

this paper are threefold: 

1) A two-layer, four-level distributed cooperative control 

architecture is proposed. In this architecture, each MG is 

represented by an agent, and only the total spare power 

capacity information is provided to the NMG layer. Thus, 

proprietary information of the MG entities is well pro-

tected. In addition, an interface level is designed in the 

NMG layer, which can realize load sharing among MGs 

automatically as well as enable the plug-and-play capabil-

ity of each MG. 

2) In the NMG-control layer, a control method for the inter-

face level is proposed, and a distributed cooperative con-

trol strategy based on it is developed. In the MG-control 

layer, the classic MG distributed control is adjusted to 

accommodate the NMG layer. The proposed control 

strategy is capable of simultaneously i) regulating system 

frequency and critical bus voltage to desired values and ii) 

achieving accurate active and reactive power sharing 

among MGs as well as among DGs within each MG. 

3) A unified small-signal dynamic model of the NMG system 

with the proposed control strategy is constructed. The 

model is sufficiently detailed, which means the dynamics 

of every line and load, especially the two-layer distributed 

cooperative controllers, are included. Moreover, the sta-

bility analysis based on the proposed model reveals the 

newly introduced low-damping oscillation modes and their 

impact factors. Then, general guidelines are provided for 

controller parameter tuning based on the stability assess-

ment results. 

C. Paper Organization 

The remainder of this paper is organized as follows. The 

proposed control architecture is introduced in Section II. In 

Section III, the design of controllers and corresponding coor-

dination principles are presented. Section IV develops a unified 

small-signal dynamic model of a test NMG system. Stability 

analysis and numerical simulation results are discussed in Sec-

tion V. Section VI provides the experimental results. Conclu-

sions are summarized in Section VII. 

II. THE HIERARCHICAL CONTROL ARCHITECTURE 

In this section, the control objectives and overall control 

architecture for NMG systems are described. 

A. Control Objectives 

This paper presents a hierarchical architecture to perform 

frequency and voltage regulation and power sharing control of 

the NMG system. The control objectives include the following: 

(i) To maintain the system frequency 𝑓sys at its rated value 𝑓sys∗ . 

(ii) To restore the critical bus voltage 𝑉c to the desired value 𝑉c∗. Note that only one critical bus is assumed, and it can be 

selected according to the operation requirement. 

(iii) To share active and reactive power among MGs in 

proportion to the reference values, i.e., 

 
1𝑃PCC1∗ 𝑃PCC1 = 1𝑃PCC2∗ 𝑃PCC2 = ⋯ = 1𝑃PCC𝑚∗ 𝑃PCC𝑚   (1) 
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1𝑄PCC1∗ 𝑄PCC1 = 1𝑄PCC2∗ 𝑄PCC2 = ⋯ = 1𝑄PCC𝑚∗ 𝑄PCC𝑚  (2) 

where 𝑃PCC𝑘∗ , 𝑄PCC𝑘∗ , 𝑃PCC𝑘, and 𝑄PCC𝑘 are the active and reac-

tive power references for the point of common coupling (PCC) 

of MGk and the output active and reactive power of PCCk, 

respectively, with 𝑘 ∈ ℳ , ℳ = {1,2, … , 𝑚} . In this paper, 𝑃PCC𝑘∗  and 𝑄PCC𝑘∗  are equal to the active and reactive capacity of 

MGk, denoted by 𝑃maxMG𝑘  and 𝑄maxMG𝑘 , respectively. Note 

that 𝑃PCC𝑘∗  and 𝑄PCC𝑘∗  can also be determined according to op-

timal power flow results, which makes the control objectives 

flexible. Equations (1) and (2) are denoted as objective (iii)-(1) 

and objective (iii)-(2), respectively. 

(iv) Within each MG, active and reactive power can be 

shared among DGs based on their power capacities, i.e., 

 
1𝑃max𝑘1 𝑃𝑘1 = 1𝑃max𝑘2 𝑃𝑘2 = ⋯ = 1𝑃max𝑘𝑛𝑘 𝑃𝑘𝑛𝑘 (3) 

 
1𝑄max𝑘1 𝑄𝑘1 = 1𝑄max𝑘1 𝑄𝑘2 = ⋯ = 1𝑄max𝑘𝑛𝑘 𝑄𝑘𝑛𝑘 (4) 

where 𝑃max𝑘𝑖 , 𝑄max𝑘𝑖 , 𝑃𝑘𝑖  and 𝑄𝑘𝑖  are active and reactive 

power capacities and active and reactive power outputs of DGi 

in MGk, respectively, with 𝑖 ∈ 𝒩𝑘 , 𝒩𝑘 = {1,2, … , 𝑛𝑘}. Equa-

tions (3) and (4) are denoted as objective (iv)-(1) and objective 

(iv)-(2), respectively. 

In our previous work [6], an NMG power flow model con-

sidering the above objectives is proposed, and only one solution 

exists, which demonstrates that the objectives (i)~(iv) can be 

met simultaneously. 

B. The Proposed Two-Layer Control Architecture 

To realize the aforementioned control objectives, a two-layer 

control architecture is proposed, as shown in Fig. 1. There are 𝑚 MGs in the system, marked as MG1, MG2,…, MGk, …, MGm. 

In the NMG-control layer, each MG is modeled as an agent to 

form the upper distributed communication network �̃� . Each 

MG agent includes a distributed quarternary controller (DQC) 

and a tertiary controller (TC). The DQC exchanges information 

with its neighbors to generate control variables and sends them 

to the corresponding TC to realize NMG layer control objec-

tives. In the MG-control layer, MGk is selected and magnified 

to present the MG-layer control. In MGk, all the DG units are 

assumed to be communication nodes to form a lower commu-

nication network 𝐺𝑘 . Each DG unit deploys a distributed sec-

ondary controller (DSC) and a primary controller (PC). The 

DSC communicates with its neighbors to generate control 

variables and sends them to the corresponding PC to realize 

MG layer control objectives. 

Note that the dotted lines with arrows represent directed 

communication links. Each TC sends commands to a DSC in 

the corresponding MG to realize interactions between upper 

and lower communication networks, as shown by the red dotted 

link. 
 

1) MG-control layer: This layer aims at meeting the fre-

quency, voltage and power sharing control objectives of the 

MG layer as well as supporting the NMG layer control. 

a) The primary controller (PC) level is responsible for 

regulating the output power of DGs via the droop method 

[11]. 

b) The distributed secondary controller (DSC) level is re-

sponsible for regulating the MG frequency and PCC 

voltage according to the reference values received from 

the tertiary controller level. The control actions are taken 

by sending compensation signals to the primary con-

trollers. 

2) NMG-control layer: This layer handles the control of 

system frequency and critical bus voltage as well as power 

sharing among MGs. 

c) The tertiary controller (TC) level is responsible for 

sharing power among MGs by controlling the PCC 

power flow according to the droop characteristics. By 

adjusting the frequency and PCC voltage reference val-

ues, which are sent to the distributed secondary level, the 

PCC power flow is controlled. Note that only the total 

spare capacity information of MGs is needed at this level. 

 
Fig. 1  A schematic diagram of a NMG system with the proposed strategy 
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d) The distributed quaternary controller (DQC) level reg-

ulates the system frequency and critical bus voltage to 

their desired values by coordinating MGs in a distributed 

manner. 

In sum, the proposed architecture has the following ad-

vantages: i) only the spare capacity information of each MG is 

needed by the NMG layer, which well respects the proprietary 

nature of MG entities; ii) the TC level can realize load sharing 

among MGs automatically; iii) the two-layer distributed feature 

enables the plug-and-play of both DG and MG unit. 

III. CONTROLLER DESIGN 

Based on the proposed architecture, the corresponding con-

trollers and coordination strategy are described in this section. 

Fig. 2 shows the control block diagram of an NMG system. To 

simplify the description, MGk and its inside DGki are selected to 

present the control principles. DGki is employed with an LCL 

filter and a local load and then connects with the PCC bus of 

MGk through an LV line. For MGk, the system connects with 

the MV critical bus through the circuit breaker CBk, LV/MV 

distribution transformer and an MV line. 

In Fig. 2, the red and yellow blocks on the right present 

control strategies of DQC and TC in the NMG-control layer for 

MGk. The blue and orange blocks on the left present control 

strategies of DSC and PC in the MG-control layer for DGki. 

Detailed control principles will be described in the following 

subsections. Note that the proposed control is also suitable for 

other types of NMG systems introduced in Section I. 

A. PC Level 

At this level, the droop-based control is adopted, which 

consists of the power controller, inner voltage controller and 

current controller, as shown in Fig. 2. The power controller 

allows DGs to share active and reactive power demand based 

on their power capacities by setting droop coefficients, i.e., 

 𝜔𝑘𝑖 = 𝜔n − 𝐷P𝑘𝑖𝑃𝑘𝑖   (5) 

 𝑉f𝑘𝑖 = 𝑉n − 𝐷Q𝑘𝑖𝑄𝑘𝑖   (6) 

where 𝜔𝑘𝑖  is the angular frequency of DGi in MGk, 𝜔n is the 

rated angular frequency, 𝑉n is the rated voltage of the LV net-

work, and 𝑉f𝑘𝑖 is the inverter AC-side voltage reference pro-

vided to the inner voltage controller. 𝐷P𝑘𝑖  and 𝐷Q𝑘𝑖  are the 

active and reactive power droop coefficients, given by 

 𝐷P𝑘𝑖 = 𝜔max−𝜔min𝑃max𝑘𝑖 ，  𝐷Q𝑘𝑖 = 𝑉max−𝑉min𝑄max𝑘𝑖  (7) 

where 𝜔max  and 𝜔min  are the upper and lower limits of the 

angular frequency, respectively. 𝑉max  and 𝑉min  are the upper 

and lower limits of the DG output voltage, respectively. 

B. DSC Level 

The DSC level is responsible for realizing the power-sharing 

objectives of DGs within each MG as well as tracking the 

voltage and frequency reference values from the tertiary level. 

The consensus-based distributed cooperative control theory [33] 

is used to design the DSC. The term “distributed” means that 

each agent only needs its own information and that of its 

neighbors in a distributed communication network to update its 

state. The term “cooperative” means that all agents work as a 
group to realize a common synchronization goal. Based on the 

continuous consensus algorithm, the states of all the agents will 

synchronize to a common value in the steady state, i.e., they 

reach a “consensus”. 

The communication network in this level contains 𝑚  di-

 
Fig. 2  A block diagram of the proposed two-layer distributed cooperative control method 
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graphs, 𝐺1 , 𝐺2 …𝐺𝑚 , corresponding to 𝑚  MGs, respectively. 

For MGk, the set of neighbors of DG node 𝑖 is denoted as ℒ𝑖𝑘. 

Each node requires its own information and that of its neighbor 𝑗 (𝑗 ∈ ℒ𝑖𝑘) on the digraph to update its states. The associated 

adjacency matrix is 𝐀𝑘 = [𝑎𝑖𝑗𝑘 ]. Details of the communication 

network at this level are provided in the Appendix. 

1) Distributed secondary frequency control: With this con-

trol, objectives (iv)-(3) can be achieved. In addition, the fre-

quency reference value 𝜔𝑀𝐺𝑘  from TCk can be tracked. The 

reference value 𝜔𝑀𝐺𝑘 for different MGs can be different during 

transient events to adjust the PCC power flow but will converge 

to the system rated angular frequency 𝜔𝑠𝑦𝑠∗  when the system 

reaches a steady state. The controller design is a combination of 

the regulator synchronization problem [33] and the tracking 

synchronization problem [34], given by 

 𝜔𝑘𝑖 = 𝜔n − 𝐷P𝑘𝑖𝑃𝑘𝑖 + Ω𝑘𝑖  (8) 

 
𝑑Ω𝑘𝑖𝑑𝑡 = −𝑐ω𝑘𝑖 [∑ 𝑎𝑖𝑗𝑘 (𝜔𝑘𝑖 − 𝜔𝑘𝑗) + 𝑔𝑖𝑘(𝜔𝑘𝑖 − 𝜔MG𝑘)𝑗∈ℒ𝑖𝑘 ] − 𝑐p𝑘𝑖 ∑ 𝑎𝑖𝑗𝑘 (𝐷P𝑘𝑖𝑃𝑘𝑖 − 𝐷P𝑘𝑗𝑃𝑘𝑗)𝑗∈ℒ𝑖𝑘  (9) 

where 𝑐ω𝑘𝑖  and  𝑐p𝑘𝑖  are the positive control gains, and the 

pinning gain 𝑔𝑖𝑘 ≥ 0 is the weight of the edge connected to the 

reference. It is non-zero only for a few nodes (at least one node). 

Equation (8) is transformed from (5) with an additional DSC 

variable Ω𝑘𝑖 . 
2) Distributed secondary PCC voltage control: This con-

troller is responsible for controlling each MG’s PCC voltage to 
the reference 𝑉𝑃𝐶𝐶𝑘∗ from TCk. The correction term 𝜆𝑘𝑖  is added 

in the reactive power droop control (6), i.e., 

 𝑉f𝑘𝑖 = 𝑉n − 𝐷Q𝑘𝑖𝑄𝑘𝑖 + 𝜆𝑘𝑖  (10) 

 
𝑑𝜆𝑘𝑖𝑑𝑡 = −𝑐v𝑘𝑖[∑ 𝑎𝑖𝑗𝑘 (𝑉f𝑘𝑖 − 𝑉f𝑘𝑗) + 𝑔𝑖𝑘(𝑉f𝑘𝑖 − 𝑉f𝑘∗ )𝑗∈ℒ𝑖𝑘 ] (11) 

where 𝑐v𝑘𝑖 is a positive control gain. ∑ 𝑎𝑖𝑗𝑘 (𝑉f𝑘𝑖 − 𝑉f𝑘𝑗) +𝑗∈ℒ𝑖𝑘𝑔𝑖𝑘(𝑉f𝑘𝑖 − 𝑉f𝑘∗ )  is the local neighbor tracking error of 𝑉f𝑘𝑖 , 

which enables voltage regulation. 𝑉f𝑘∗  is generated through a PI 

controller such that 𝑉PCC𝑘  recovers to its reference 𝑉PCC𝑘∗ , 

which is received from TCk, i.e., 𝑉f𝑘∗ = 𝑉𝑛 + 𝑘p𝑘(𝑉PCC𝑘∗ − 𝑉PCC𝑘) +𝑘i𝑘 ∫(𝑉PCC𝑘∗ − 𝑉PCC𝑘) 𝑑𝑡        (12) 

where 𝑘p𝑘 and 𝑘i𝑘 are the gains of the PI controller. 

3) Distributed secondary reactive power control: This con-

troller addresses the inaccuracy of the reactive power sharing 

problem due to the unbalanced line impedance [10]. Thus, the 

voltage correction term ℎ𝑘𝑖 is added to the right-hand side of 

(10) to realize accurate reactive power sharing among DGs 

within MGk, namely, objective (iv)- (4), by regulating the 

voltage reference, i.e., 

 

 𝐸od𝑘𝑖 = 𝑉n − 𝐷Q𝑘𝑖𝑄𝑘𝑖 + 𝜆𝑘𝑖 + ℎ𝑘𝑖  (13) 

 𝐸oq𝑘𝑖 = 0 (14) 

where the voltage reference, i.e., 𝑉n − 𝐷Q𝑘𝑖𝑄𝑘𝑖 + 𝜆𝑘𝑖 + ℎ𝑘𝑖, is 

aligned to the d-axis of the DGki local dq-frame, and the q-axis 

reference, i.e., 𝐸oq𝑘𝑖 , is set to zero. Then, 𝐸od𝑘𝑖  and 𝐸oq𝑘𝑖  are 

provided to the inner voltage controller. ℎ𝑘𝑖  is selected such 

that 𝐷Q𝑘𝑖𝑄𝑘𝑖  of each DG in MGk converges to a common value, 

which is a regulator synchronization problem [33] given by 

 
𝑑ℎ𝑘𝑖𝑑𝑡 = −𝑐q𝑘𝑖 ∑ 𝑎𝑖𝑗𝑘 (𝐷Q𝑘𝑖𝑄𝑘𝑖 − 𝐷Q𝑘𝑗𝑄𝑘𝑗)𝑗∈ℒ𝑖𝑘  (15) 

where 𝑐q𝑘𝑖 is a positive control gain, and ∑ 𝑎𝑘𝑖(𝐷Q𝑘𝑖𝑄𝑘𝑖 −𝑗∈ℒ𝑖𝑘𝐷Q𝑘𝑗𝑄𝑘𝑗) is the local neighbor tracking error that enables ac-

curate reactive power sharing. 

C. TC Level 

This level is an interface level that can realize load sharing 

among MGs automatically as well as enable the plug-and-play 

capability of each MG. In addition, the proprietary information 

of each MG can be well protected by introducing this level. The 

droop control is modified to control the output power through 

the PCC of MGs, i.e., 

 𝜔MG𝑘 = 𝜔𝑛 − 𝐷P𝑘𝑃PCC𝑘   (16) 

 𝑉fPCC𝑘 = 𝑉𝑛 − 𝐷Q𝑘𝑄PCC𝑘   (17) 

where 𝐷P𝑘  and 𝐷𝑄𝑘  are the active and reactive droop coeffi-

cients of MGk, respectively, determined by 

 𝐷P𝑘 = 𝜔max−𝜔min𝑃maxMG𝑘 ，  𝐷Q𝑘 = 𝑉max−𝑉min𝑄maxMG𝑘  (18) 

At this level, each MG is considered a droop-controlled node, 

and only the spare power capacity of each MG is needed. 

D. DQC Level 

The DQC level is responsible for regulating system fre-

quency and critical bus voltage to desired values, as well as 

realizing accurate power sharing among MGs. The controller at 

this level is also designed based on consensus-based distributed 

cooperative control. The communication network in this level 

is denoted as �̃� with the associated adjacency matrix 𝐀 = [𝑎𝑘𝑙]. 
For MG node 𝑘, the set of neighbors of node 𝑘 is denoted as ℋ𝑘 . Three controllers are included in this level. Details of the 

communication network at this level are given in the Appendix. 

1) Distributed quaternary frequency control: With this con-

trol, objective (i) and objective (iii)-(1) can be achieved. The 

controller design is as follows. 

 𝜔MG𝑘 = 𝜔n − 𝐷P𝑘𝑃PCC𝑘 + Ω𝑘 (19) 𝑑Ω𝑘𝑑𝑡 = −𝑐ω𝑘[∑ 𝑎𝑘(𝜔MG𝑘 − 𝜔MG𝑙) + 𝑔𝑘(𝜔MG𝑘 − 𝜔sys∗ )𝑙∈ℋ𝑘 ] − 𝑐p𝑘 ∑ 𝑎𝑘(𝐷P𝑘𝑃PCC𝑘 − 𝐷P𝑙𝑃PCC𝑙)𝑙∈ℋ𝑘               (20) 

where 𝑐ω𝑘 and  𝑐p𝑘 are positive control gains. Equation (19) is 

(16) with an additional quaternary control variable Ω𝑘. 𝜔MG𝑘 is 

generated as the frequency reference of (9). 

2) Distributed quaternary critical bus voltage control: This 

controller is responsible for achieving objective (ii). The term 𝜆𝑘  is added in MG’s reactive power droop controller (17), i.e., 

 𝑉fPCC𝑘 = 𝑉n − 𝐷Q𝑘𝑄PCC𝑘 + 𝜆𝑘 (21) 𝑑𝜆𝑘𝑑𝑡 = −𝑐v𝑘[∑ 𝑎𝑘𝑙(𝑉fPCC𝑘 − 𝑉fPCC𝑙) + 𝑔𝑘(𝑉fPCC𝑘 − 𝑉f∗)𝑙∈ℋ𝑘 ]   
                                                                                           (22) 

where 𝑐v𝑘  is a positive control gain, and 𝑉f∗  is generated 

through a PI controller such that 𝑉c recovers to its reference 𝑉c∗, 

i.e., 

 𝑉f∗ = 𝑉n + 𝑘p(𝑉c∗ − 𝑉c) + 𝑘i ∫(𝑉c∗ − 𝑉c) 𝑑𝑡 (23) 

where 𝑘p and 𝑘i are the gains of the PI controller. 

 𝑉f𝑘𝑖 
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3) Distributed quaternary reactive power control: The in-

accurate reactive power sharing among MGs is managed by this 

controller. The voltage correction term ℎ𝑘 is added to the right 

side of (21) to achieve accurate reactive power sharing by reg-

ulating the voltage reference, i.e., 

 

 𝑉PCC𝑘∗ = 𝑉𝑛 − 𝐷Q𝑘𝑄PCC𝑘 + 𝜆𝑘 + ℎ𝑘 (24) 

where the voltage reference 𝑉PCC𝑘∗  is generated as the reference 

of (12). ℎ𝑘  is selected such that 𝑛𝑘𝑄PCC𝑘  of each MG con-

verges to a common value given by 

 
𝑑ℎ𝑘𝑑𝑡 = −𝑐q𝑘 ∑ 𝑎𝑘𝑙(𝐷Q𝑘𝑄PCC𝑘 − 𝐷Q𝑙𝑄PCC𝑙)𝑙∈ℒ𝑘  (25) 

where 𝑐q𝑘  is a positive control gain. Thus, objective (iii)-(2) 

can be realized. 

E. Flow chart and implementation steps of the proposed method 

 

Fig. 3 Flow chart of the proposed control method 

To illustrate the execution process of the proposed method. 

A flow chart diagram is shown in Fig. 3. In addition, the cor-

responding implementation steps are given as follows: 

Step 1 (DQC level): The rated system frequency 𝜔sys∗  and 

desired critical bus voltage 𝑉c∗ are transmitted to agent MG1 in 

the upper communication network �̃�. Through the distributed 

consensus algorithm (20), (22), (23) and (25), the control var-

iables Ω𝑘, 𝜆𝑘 and ℎ𝑘 are obtained and sent to TC level; 

Step 2 (TC level): The TC is a droop-based controller that is 

used to adjust the PCC power flow of each MG. Ω𝑘 is applied 

to shift the frequency-active power droop curve to realize ob-

jective (i) and objective (iii)-(1). 𝜆𝑘 and ℎ𝑘 are applied to shift 

the voltage-reactive power droop curve to realize objective (ii) 

and objective (iii)-(2). The output variables 𝜔MG𝑘  and 𝑉PCC𝑘∗  

are sent to DSC level; 

Step 3 (DSC level): 𝜔MG𝑘 and 𝑉PCC𝑘∗  are received by DGk1 in 

the lower communication network 𝐺𝑘. Through the distributed 

consensus algorithms (9), (11), (12) and (15), the control var-

iables Ω𝑘𝑖 , 𝜆𝑘𝑖 and ℎ𝑘𝑖 are obtained and sent to PC level; 

Step 4 (PC level): PC is droop-based for each DG unit. Ω𝑘𝑖  
regulates the angular frequency of DGki to 𝜔MG𝑘 and realizes 

objective (iv)-(1) by shifting the frequency-active power droop 

curve of PC. 𝜆𝑘𝑖 and ℎ𝑘𝑖 regulate the output voltage of DGki to 𝑉f𝑘∗  and realize objective (iv)-(2). The output frequency refer-

ence 𝜔𝑘𝑖  and voltage reference 𝐸od𝑘𝑖  are sent to the voltage and 

current controller, and the switching signals through the PWM 

module are finally generated to control the inverter of DGki. 

In sum, with the proposed two-layer distributed cooperative 

control method, the multiple control objectives summarized in 

section II-A can be coordinated and simultaneously realized. 

IV. SMALL-SIGNAL DYNAMIC MODEL OF NMG SYSTEMS 

The existing works on small-signal dynamic modeling of 

NMG systems have the limitations of i) oversimplification of 

MG’s internal dynamics [25], [26] and ii) omission of multiple 

control levels and distributed controllers in modeling [32]. 

Thus, the stability analysis based on these models will inevita-

bly introduce errors. To accurately reveal the dynamic interac-

tion mechanism and evaluate the dynamic performance of the 

proposed method, this section develops a detailed small-signal 

dynamic model of the NMG system in Fig. 2. 

A. MG Layer Modeling 

The MG layer model represents the dynamics of the PC and 

DSC controllers as well as the lines and loads within MGs. 

Note that each MG is modeled separately and will be combined 

in Section IV-C. 

1) DG unit model: In this paper, the local dq-frame of DG11, 

namely, DG1 in MG1, is selected as the common DQ-frame. 

The symbol 𝜔𝑔  denotes the rotating frequency of DQ-frame 

and 𝜔𝑔 = 𝜔11. 𝛿𝑘𝑖 is the angle between the local dq-frame of 

DGki and the common DQ-frame, and then 

 �̇�𝑘𝑖 = 𝜔𝑘𝑖 − 𝜔g (26) 

This paper focuses on the dynamics of the power controller. 

Therefore, the relatively fast dynamics of voltage and current 

controllers can be neglected by assuming 

 𝑣od𝑘𝑖 = 𝐸od𝑘𝑖 , 𝑣oq𝑘𝑖 = 𝐸oq𝑘𝑖 (27) 

where 𝑣od𝑘𝑖 and 𝑣oq𝑘𝑖  are the d-axis and q-axis component of 

DG output voltage 𝑣o𝑘𝑖 , respectively, as shown in Fig. 2. 

By linearizing (8)-(11), (13)-(15) and (26) around an oper-

ating point, the model of DGki can be derived as [∆�̇�DG𝑘𝑖] = 𝐴DG𝑘𝑖[∆𝑋DG𝑘𝑖] + 𝐵DG𝑘𝑖[∆𝑣bDQ𝑘𝑖] + 𝐶DG𝑘𝑖∆𝜔g  +                       ∑ 𝐹DG𝑘𝑖𝑗∈ℒ𝑖𝑘 [∆𝑋DG𝑘𝑗] + 𝐻DG𝑘𝑖∆𝑉f𝑘∗  (28) 

where ∆𝑣bDQ𝑘𝑖  is the deviation of 𝑣b𝑘𝑖  (bus voltage as shown in 

Fig. 2) in the common DQ-frame, and 𝐴DG𝑘𝑖 , 𝐵DG𝑘𝑖 , 𝐶DG𝑘𝑖 , 𝐹DG𝑘𝑖  and 𝐻DG𝑘𝑖  are parameter matrices. Note that 𝐹DG𝑘𝑖  re-

flects the correlation between DGki and its neighbors DGkj, 𝑗 ∈ℒ𝑖𝑘. The state variables of each DG unit are [∆𝑋DG𝑘𝑖] = [∆𝛿𝑘𝑖, ∆𝑃𝑘𝑖 , ∆𝑄𝑘𝑖 , ∆Ω𝑘𝑖 , ∆𝜆𝑘𝑖 , ∆ℎ𝑘𝑖 , ∆𝑖od𝑘𝑖 , ∆𝑖oq𝑘𝑖]𝑇
                                                                                             (29) 
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2) PCC voltage controller model: Introduce 𝜓𝑘 as the state 

variable to describe the dynamics of (12), i.e., 

 �̇�𝑘 = 𝑉PCC𝑘∗ − 𝑉PCC𝑘 (30) 

where 𝑉PCC𝑘 = √𝑉PCCD𝑘2 + 𝑉PCCQ𝑘2 . Then, the small-signal 

dynamic model of the PCC voltage controller is obtained by 

linearizing (30) and (12), i.e., 

 Δ�̇�𝑘 = −𝐴PCC𝑘[Δ𝑉PCCDQ𝑘]+Δ𝑉PCC𝑘∗  (31) 

 Δ𝑉f𝑘∗ = −𝑘p𝑘𝐴PCC𝑘[Δ𝑉PCCDQ𝑘] + 𝑘p𝑘Δ𝑉PCC𝑘∗ + 𝑘i𝑘Δ𝜓𝑘 (32) 

where Δ𝑉PCCDQ𝑘 = [Δ𝑉PCCD𝑘, Δ𝑉PCCQ𝑘]𝑇
, and 𝐴PCC𝑘  is the 

parameter matrix. 

3) Network and load models within MGk: The network and 

load models [9] are developed based on the lumped, series RL 

feeder lines and the RL-type constant-impedance loads, re-

spectively, i.e., Δ𝑖̇̇lineDQ𝑘 = 𝐴net𝑘[Δ𝑖lineDQ𝑘] + 𝐵net𝑘[∆𝑣bDQ𝑘] +𝐶net𝑘∆𝜔g (33) Δ𝑖̇̇loadDQ𝑘 = 𝐴load𝑘[Δ𝑖loadDQ𝑘] + 𝐵load𝑘[∆𝑣bDQ𝑘] +𝐶load𝑘∆𝜔g (34) 

where Δ𝑖lineDQ𝑘 , Δ𝑖loadDQ𝑘  and ∆𝑣bDQ𝑘  are variables of all 

lines, loads and bus voltages within MGk, respectively. The 

deviation of 𝑖o𝑘𝑖  of all the DG units and 𝑖PCC𝑘 of MGk, shown 

in Fig. 2, is denoted as ∆𝑖oDQ𝑘 and ∆𝑖PCCDQ𝑘 in the common 

DQ-frame, respectively. Then, ∆𝑣bDQ𝑘 is represented as [9] ∆𝑣bDQ𝑘 = 𝑅𝑁(𝑀DG𝑘[∆𝑖oDQ𝑘] + 𝑀net𝑘[Δ𝑖lineDQ𝑘] +𝑀load𝑘[Δ𝑖loadDQ𝑘]+𝑀PCC𝑘[∆𝑖PCCDQ𝑘]) (35) 

Since PCCk is also a bus within MGk, Δ𝑉PCCDQ𝑘 can be ex-

pressed in terms of ∆𝑖oDQ𝑘 , Δ𝑖lineDQ𝑘, Δ𝑖loadDQ𝑘, ∆𝑖PCCDQ𝑘 and 

named ∆𝑉PCCDQ𝑘 expression. 

4) The complete model of MGk: Use the state variables of all 

DG units within MGk as ∆𝑋𝐷𝐺𝑘, then combine (28), (31), (33), 

(34) and replace ∆𝑉𝑓𝑘∗ ,  ∆𝑣𝑏𝐷𝑄𝑘 ,  𝛥𝑉𝑃𝐶𝐶𝐷𝑄𝑘  with (32), (35) 

and  𝛥𝑉𝑃𝐶𝐶𝐷𝑄𝑘  expression, respectively. The small-signal dy-

namic model of MGk is obtained, i.e.,  

 [∆�̇�MG𝑘] = 𝐴MG𝑘[∆𝑆MG𝑘] + 𝐵MG𝑘Δ𝑉PCC𝑘∗ +𝐶MG𝑘[∆𝑖PCCDQ𝑘]  
                                                                                              (36) 

where ∆𝑆MG𝑘 = [∆𝑋DG𝑘 , Δ𝑖lineDQ𝑘 , Δ𝑖loadDQ𝑘 , Δ𝜓𝑘]𝑇 , 𝐴MG𝑘, 𝐵MG𝑘 and 𝐶MG𝑘 are parameter matrices. 

B. NMG Layer Modeling 

The NMG layer modeling covers the dynamics of TC and 

DQC controllers as well as MV lines and loads. Note that each 

MG will be viewed as a black box and referred to as an MG 

unit. 

1) MG unit model: By linearizing (19)-(22), (24)-(25) around 

an operating point, the model of MGk becomes [∆�̇�MG𝑘] = 𝐴MG𝑘[∆𝑋MG𝑘] + 𝐵MG𝑘[∆𝑣bDQ𝑘] + 𝐶MG𝑘∆𝜔g +     ∑ 𝐹MG𝑘𝑙∈ℋ𝑘 [∆𝑋MG𝑙] +  𝐻MG𝑘∆𝑉f∗ + 𝐼MG𝑘[Δ𝑉PCCDQ𝑘] (37) 

where ∆𝑣bDQ𝑘 is the deviation of MV bus voltage 𝑣b𝑘  in the 

common DQ-frame, and 𝐴MG𝑘 , 𝐵MG𝑘  𝐶MG𝑘 , 𝐹MG𝑘  and 𝐻MG𝑘  

are parameter matrices. Note that 𝐹MG𝑘 reflects the correlation 

between unit MGk and its neighbors MGl, 𝑙 ∈ ℋ𝑘 . The state 

variables of each MG unit are [∆𝑋MG𝑘] = [∆𝛿𝑘, ∆𝑃PCC𝑘 , ∆𝑄PCC𝑘 , ∆Ω𝑘 , ∆𝜆𝑘 , ∆ℎ𝑘, ∆𝑖PCCd𝑘 , ∆𝑖PCCq𝑘]𝑇
 (38) 

2) Critical bus voltage controller model: Denote 𝜓 as the 

state of (23), i.e., 

 �̇� = 𝑉c∗ − 𝑉c  (39) 

where 𝑉c = √𝑉cD2 + 𝑉cQ2 . By linearizing (23) and (39), the 

model of the critical bus voltage controller can be obtained: 

 Δ�̇� = −𝐴c[Δ𝑉cDQ] (40) 

 Δ𝑉f∗ = −𝑘p𝐴c[Δ𝑉cDQ] + 𝑘iΔ𝜓 (41) 

where Δ𝑉cDQ = [Δ𝑉cD, Δ𝑉cQ]𝑇
, and 𝐴c is the parameter matrix. 

3) MV network and load models: The modeling of the MV 

network and load is the same as that in MG layer modeling and 

can be expressed as Δ𝑖̇l̇ineDQ = 𝐴net[Δ𝑖lineDQ] + 𝐵net[∆𝑣bDQ] +𝐶net∆𝜔g (42) Δ𝑖̇̇loadDQ = 𝐴load[Δ𝑖loadDQ] + 𝐵load[∆𝑣bDQ] +𝐶load∆𝜔g (43) 

where Δ𝑖lineDQ, Δ𝑖loadDQ and ∆𝑣bDQ are variables of MV lines, 

loads and buses, respectively. ∆𝑖PCCDQ denotes ∆𝑖PCCDQ𝑘 of all 

the MG units. Then, ∆𝑣DQ is represented as ∆𝑣bDQ = 𝑅𝑁(𝑀MG[∆𝑖PCCDQ] + 𝑀net[Δ𝑖lineDQ] +𝑀load[Δ𝑖loadDQ]) (44) 

Since the critical bus is also an MV bus, Δ𝑉cDQ can be ex-

pressed in terms of ∆𝑖PCCDQ, Δ𝑖lineDQ and Δ𝑖loadDQ and named ∆𝑉cDQ expression. 

4) Complete the NMG layer model: Denote the state varia-

bles of all MG units in the NMG system as ∆𝑋𝑀𝐺 . Combine 

(37), (40), (42), (43) and replace ∆𝑉𝑓∗, ∆𝑣𝑏𝐷𝑄 , 𝛥𝑉𝑐𝐷𝑄 with (41), 

(44) and   𝛥𝑉𝑐𝐷𝑄  expression. Then, the small-signal dynamic 

model of the NMG layer is obtained. That is, 

 [∆�̇�NMG] = 𝐴NMG[∆𝑆NMG] + 𝐵NMGΔ𝑉PCCDQ𝑘 (45) 

where ∆𝑆NMG = [∆𝑋MG, Δ𝑖lineDQ, Δ𝑖loadDQ, ∆𝜓]𝑇 , 𝐴NMG 

and 𝐵NMG are parameter matrices. 

C. Complete NMG System Model 

In (36) and (45), the coupling states Δ𝑉PCC𝑘∗ , ∆𝑖PCCDQ𝑘 and Δ𝑉PCCDQ𝑘 can be dealt with as follows: i) linearize (24), and 

then Δ𝑉PCC𝑘∗  in (36) can be represented by ∆𝑋MG𝑘  in (38), 

which is part of ∆𝑆NMG ; ii) represent ∆𝑖PCCDQ𝑘  by ∆𝑋MG𝑘 , 

which is part of  ∆𝑆NMG , and iii) replace Δ𝑉PCCDQ𝑘  by ∆𝑉PCCDQ𝑘 expression, which is then represented by ∆𝑆MG. By 

combining m MG layer models (36) and the NMG layer model 

(45), the complete NMG system model can be obtained as 
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 [∆�̇�sys] = 𝐴sys[∆𝑆sys] (46) 

where ∆𝑆sys = [∆𝑆MG1, … , ∆𝑆MG𝑚, ∆𝑆NMG]𝑇 . 𝐴sys  is the state 

matrix of the NMG system. 

V.  NUMERICAL STUDY 

To validate the effectiveness of the proposed two-layer dis-

tributed control method, stability analyses and time-domain 

simulation studies in the PSCAD/EMTDC platform are carried 

out in this section based on a test NMG system. 

A. Test System 

The test NMG system consisting of 3 MGs is shown in Fig. 4. 

The circuit breakers (CB) 1, 2 and 3 are closed. The rated 

voltages of the MV and LV networks are 10 kV and 0.38 kV, 

respectively. MG1 and MG3 include 3 DGs, 3 LV lines and 3 

loads. MG2 includes 3 DGs, 3 LV lines and 2 loads. 𝐿c is the 

coupling inductance. Each MG connects with the MV feeder 

through a 10 kV/0.38 kV ∆/Yg transformer. The MV feeder is 

regarded as the critical bus. Tables I, II and III provide the 

system and controller parameters. 

TABLE I. ELECTRICAL PARAMETERS OF THE NMG SYSTEM 

Line 

Line 1: 0.08 + j0.12 Ω. Line 2: 0.05 + j0.07 Ω, Line 3: 0.07 + j0.11 Ω, Lines 4,8,10,11: 0.15 + j0.05 Ω, Lines 6,7,12: 0.11 + j0.07 Ω, Lines 5,9: 0.11 + j0.11 Ω, 
Load 

Load 9 = 100 kw + 30 kvar, Load 10 = 20 kw + 5 kvar, 

Loads 1,5,8 = 15 kw + 7.5 kvar, Loads 3,6 = 12 kw + 5 

kvar, Load 2 = 40 kw + 15 kvar, Loads 4,7 = 50 kw + 20 

kvar 

Transformer 
T1/T2/T3: 1MVA, 𝑢𝑘 = 4%, 𝑟𝑘 = 1%, 10/0.38 KV(∆/𝑌𝑔) 

TABLE II. PARAMETERS OF PCS AND TCS 

Parameters 
DG11 DG12 DG13 

DG31 DG32 DG33 

DG21DG22 

DG23 

MG1 

MG3 
MG2 𝑫𝐏𝒌𝒊/ 𝑫𝐏𝒌 

(Hz/kW ∙ 𝟏𝟎−𝟑) 
16.67 20 5.56 6.67 𝑫𝐐𝒌𝒊/ 𝑫𝐐𝒌 

(kV/kvar ∙ 𝟏𝟎−𝟑) 
0.78 0.52 0.26 0.173 𝑷𝐦𝐚𝐱/𝑷𝐬𝐌𝐆  

(kW) 
60 50 180 150 𝑸𝐦𝐚𝐱/𝑸𝐬𝐌𝐆 

(kvar) 
20 30 60 90 

TABLE III. PARAMETERS OF DSCS AND DQCS 

Parameters DSC level DQC level 𝑐𝜔𝑘𝑖/𝑐𝜔𝑘 490 1252 𝑐p𝑘𝑖/𝑐p𝑘 65 3242 𝑐v𝑘𝑖/ 𝑐v𝑘 98 43 𝑐q𝑘𝑖/𝑐q𝑘 40 26 𝑘p𝑘/𝑘p 30 5 𝑘i𝑘/𝑘i 0.05 20 

Reference values of the system frequency and critical bus 

voltage are given as 𝑓sys∗ = 50 Hz and 𝑉c∗ = 1 p.u., respectively. 

The communication networks �̃� for the NMG layer and 𝐺𝑘 for 

the MG layer are assumed to have the same topology as shown 

in Fig. 5. From Fig. 5, MG agents and DG agents can com-

municate with their neighbors through communication links 

(arrowed and dotted lines). In �̃�, MG1 receives the reference 

value (𝜔sys∗ /𝑉f∗) with pinning gain 𝑔1 = 1. Each MG agent 

sends a reference value (𝜔MG𝑘/𝑉f𝑘∗ ) with pinning gain 𝑔𝑘1 = 1 

to DGk1 in the communication network 𝐺𝑘 of MGk. 

 
Fig. 5 Topology of two-layer distributed communication network 

B. Eigen-Analysis Results 

The system dynamics and stability analysis results with the 
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Fig. 4  A schematic diagram of the test NMG system 
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proposed control method are presented in this subsection. 

1) Participation factors: Fig. 6 compares the low-frequency 

eigenvalue spectra of single MG1, MG2, MG3 and the NMG 

system. Note that a single MG only employs the MG layer 

controllers in Section III, with 𝜔𝑀𝐺𝑘 and 𝑉𝑃𝐶𝐶𝑘∗  set as desired 

values. The typical dominant modes of the NMG system are 

labeled as mode 𝑖 (𝑖 = 1,2, … ,8). 

Fig. 6 indicates that interconnecting MGs i) significantly 

change the shaping of the eigenvalues on the complex plane, ii) 

retain the single MG modes, i.e., MG modes 1-3, and iii) in-

troduce four pairs of low-damping modes (modes 4-7), leading 

to many more oscillatory system responses compared with 

single MGs. 

 
Fig. 6 Low-frequency eigenvalue spectra of three single MGs and NMG system 

To identify the correlation between system states and dom-

inant oscillatory modes, a participation factor analysis is con-

ducted. The participation factor is calculated by multiplying 

corresponding elements in the right and left eigenvectors of the 

state matrix 𝐴sys . This analysis can be used to measure the 

association between the state variables and the modes. 

Fig. 7 illustrates the participation factors of MG layer states 

( ∆𝛿𝑘𝑖 , ∆𝑃𝑘𝑖 , ∆𝑄𝑘𝑖 , ∆𝛺𝑘𝑖 , ∆𝜆𝑘𝑖 , ∆ℎ𝑘𝑖 ), NMG layer states 

( ∆𝛿𝑘, ∆𝑃𝑘 , ∆𝑄𝑘 , ∆𝛺𝑘 , ∆𝜆𝑘, ∆ℎ𝑘 ) and the critical bus voltage 

controller state (∆𝜓). As indicated by Fig. 7, mode 1 is a typical 

MG inner mode that is almost solely affected by states of 

DG11~DG13 units within MG1. Modes 5 and 7 are intercoupling 

modes mainly affected by states of both MG and NMG layers. 

For simplicity, the participation factors of modes 2 and 3 (MG 

inner modes of MG2 and MG3) and modes 4 and 6 (intercou-

pling modes) are not presented. In addition, mode 8 is mainly 

affected by the critical bus voltage controller. The strongly 

associated states, controllers and parameters with modes 1-8 

are summarized in Table IV.  Table IV indicates that the most 

dominant modes 4-7 (with damping less than 10%) are affected 

by the control parameters of DSCs and DQCs. Therefore, the 

impact of these parameters on system stability should be care-

fully analyzed. 

 
Fig. 7 Participation factors of modes 1, 5, 7 and 8 

2) Sensitivity analysis of DSC and DQC parameters: Fig. 8 

shows the traces of modes 4-7 as a function of 𝑐𝑝𝑘𝑖  and 𝑐𝑞𝑘. The 

impacts of other DSC and DQC parameters are summarized in 

Table IV. Fig. 8 shows that the variation of parameters may 

bring instability risk to the system. The summary in Table IV 

indicates that a dominant mode may be affected by multiple 

controllers and their parameters. In addition, a control param-

eter may affect different modes. 

 
Fig. 8 Traces of the most dominant modes 4-7. 

3) Summary: The above results reveal that i) interconnecting 

MGs introduces new low-frequency oscillatory modes and 

therefore complicates the system dynamic behavior; ii) the new 

low-damping modes (modes 4-7) reduce the stability margin 

due to the coupling among neighboring MGs and between the 
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two control layers; and iii) the dominant oscillatory modes are 

affected by multiple controllers. Note that the parameters in 

Table III are carefully tuned based on the guidelines in Table 

IV. 

C. Time-Domain Simulation Results in PSCAD/EMTDC 

Three cases are designed for the simulation. Case 1 demon-

strates the steady-state performance of the proposed control 

strategy, namely, the capability to meet control objectives 

(i)-(iv) simultaneously under normal conditions. Case 2 verifies 

the system dynamic performance under communication failures 

as well as sudden load changes. Case 3 verifies the 

plug-and-plug functionality of DG and MG units. 

1) Case 1 – steady-state performance: The PCs are initially 

engaged, the DSCs and TCs are activated at t=1.5 s, and DQCs 

are employed at t=3 s. 

 
Fig. 9 Steady-state performance of the proposed method. 

Fig. 9 (a) indicates that a 0.25 Hz frequency deviation is in-

troduced by the TCs, while the DQCs restore the system fre-

quency to 50 Hz (objective i). Fig. 9 (b) indicates that the crit-

ical bus voltage is restored to 1 p.u. by the DQC (objective ii). 

Fig. 9 (d) indicates that after t=3 s, the DQCs achieve accurate 

reactive power sharing among MGs with ratios of 𝑄1  to 𝑄3 

being 2:3:2 (objective iii). Fig. 9 (f) indicates that after t=1.5 s, 

the DSCs realize accurate reactive power sharing among DGs 

within each MG, with ratios of 𝑄𝑘1 to 𝑄𝑘3 being 1:1:1 (objec-

tive iv). Fig. 9 (c) and (e) indicate that the output active powers 

of MGs and DGs are always accurately shared. Note that the 

power sharing ratios are presented in Table II. 

2) Case 2 – communication link failures: In this case, all the 

controllers are activated at t=0.8 s, and then the system reaches 

a steady state. It is worth noting that, based on the proof in [34], 

for the tracking synchronization problem and regulator syn-

chronization problem, if a spanning tree exists in the corre-

sponding distributed communication network and 𝑔𝑘≠0 for at 

least one root node, the proposed controllers can reach a steady 

state, and objectives (i)~(iv) can still be realized. 

 
Fig. 10 System behaviors when communication failures occur in �̃� and 𝐺3. 

Stage 1 (1.5–3 s): in the upper communication network �̃�, 
the communication link between MG2 and MG3, as shown in 

Fig. 5, fails at t = 2 s. Subsequently, 25% of load 9 is switched 
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TABLE IV.  RESULTS OF PARTICIPATION FACTORS ANALYSIS 

Modes 
Strongly associated 

control layer 

Strongly  

associated states 

Associated  

controllers 

Parameters of the  

associated controller 
Impact of parameters on mode damping (MD) 

1-3 MG layer-DSClevel ∆𝑄𝑘𝑖, ∆𝜆𝑘𝑖 , ∆ℎ𝑘𝑖 (15),(25) 𝑐v𝑘𝑖 ,𝑐q𝑘𝑖 𝑐v𝑘𝑖 , 𝑐q𝑘𝑖↑( MD↓) 

4-5 
MG layer-DSClevel ∆𝑄𝑘𝑖, ∆𝜆𝑘𝑖 , ∆ℎ𝑘𝑖 (11),(15) 𝑐v𝑘𝑖 ,𝑐q𝑘𝑖 Mode 4: 𝑐v𝑘𝑖 , 𝑐q𝑘𝑖 , 𝑐v𝑘 , 𝑐q𝑘↑(MD↓); 

Mode 5: 𝑐v𝑘𝑖, 𝑐v𝑘↑(MD↓);   𝑐q𝑘𝑖 , 𝑐q𝑘↑( MD↑) NMG layer-DQClevel ∆𝑄𝑘 , ∆𝜆𝑘 , ∆ℎ𝑘 (22),(25)  𝑐v𝑘 ,𝑐q𝑘 

6-7 
MG layer-DSClevel ∆𝛿𝑘𝑖, ∆𝑃𝑘𝑖, ∆𝛺𝑘𝑖 (9) 𝑐ω𝑘𝑖,𝑐p𝑘𝑖 Mode 6: 𝑐p𝑘𝑖↑(MD↓);      𝑐ω𝑘𝑖, 𝑐q𝑘↑(MD↑) 

Mode 7:  𝑐q𝑘↑(MD↓);      𝑐ω𝑘𝑖 , 𝑐p𝑘𝑖↑(MD↑) NMG layer-DQClevel  ∆ℎ𝑘 (25) 𝑐q𝑘 

8 NMG layer-DQClevel ∆𝜓 (23) 𝑘p, 𝑘i 𝑘p, 𝑘i↑(MD↓);        𝑘p, 𝑘i↓(MD↑) 
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off at t=2.5 s. The results in Fig. 10 show that the steady-state 

objectives (i)-(iv) can still be achieved after the communication 

link failure since the remaining communication network still 

contains a spanning tree. 

Stage 2 (3–4 s): During this stage, a worse scenario, which 

refers to communication failures occurring in both upper net-

work �̃� and lower network 𝐺𝑘, is set up. After one communi-

cation link fails at t=2 s in upper communication network �̃�, for 

lower communication network 𝐺3 in MG3, the communication 

link between DG32 and DG33, as shown in Fig. 10, fails at t=3s 

Subsequently, at t=3.5 s, 80% of load 6, which is the internal 

load of MG3, is switched on. The results in Fig. 10 show that the 

steady-state objectives (i)-(iv) can be realized since both the 

network �̃� and 𝐺3 still contain a spanning tree after commu-

nication failure at this stage. In addition, Fig. 10 also indicates 

that the NMG system reaches a steady state within 0.5 s after a 

disturbance, and no significant overshoot is observed, even 

under communication failure events. 

3) Case 3 – plug-and-plug operation: In this study, all the 

controllers are activated at t=0.8 s, and then the system reaches 

a steady state. 

 
Fig. 11 System behaviors under plug-and-play operation of MG3 and DG33. 

Stage 1 (2–4s): MG3 is disconnected at t=2 s and reconnected 

at t=4 s to evaluate the plug-and-play capability of MGs. Note 

that (i) the MG will lose all the communication links with its 

neighboring units when it disconnects with the NMG system, 

then these links will recover after its reconnection; (ii) the 

synchronization process is necessary for MG3 before its re-

connection (specifically, in this study, the synchronization of 

MG3 starts at t=3 s during its islanded state); (iii) the MGs will 

transfer to the islanded operation state with only MG layer 

controllers employed after the disconnection event at t=2 s, and 

the reference angular frequency 𝜔MG𝑘  and reference PCC 

voltage 𝑉PCC𝑘∗  will be set as the rated value 2 ∗ pi ∗ 50 rad/s 

and 1.0 p.u, respectively, to maintain a stable operation of the 

islanded MG3. The active and reactive power through PCC of 

each MG are presented in Fig. 11 (a) and (b), respectively. 

Stage 2 (5–6 s): DG33 in MG3 disconnects at t=5 s and re-

connects at t=6 s to evaluate the plug-and-play capability of the 

DGs. Similarly, DG33 will lose all the communication links 

with its neighboring units when it disconnects, and the com-

munication links will recover after its reconnection. The syn-

chronization process of DG33 starts immediately after it dis-

connects at t=5 s. The active and reactive power of DG units in 

MG3 are presented in Fig. 11 (c) and (d), respectively. 

The above results show that after the disconnection of MG3 

in the NMG layer and DG33 in the MG layer, objectives (i)~(iv) 

can still be realized (for the sake of simplicity, only the results 

of active and reactive power are given). This is because the 

remaining communication network �̃�  of the NMG-control 

layer and 𝐺3 of the MG-control layer still contain a spanning 

tree. After MG3 and DG33 reconnect, their power sharing ob-

jectives can be realized. In addition, during plug-and-play op-

eration, no significant overshoots are observed, and the time of 

recovering to a steady state is within 0.4 s. 

VI. EXPERIMENTAL VALIDATION 

This section provides experimental results to validate the 

practical implementation feasibility of the proposed methods. 

A. Experimental setup 

Fig. 12 shows the experimental NMG system setup, which 

includes a real-time dSPACE 1006 platform, four Danfoss 

inverters, resistive loads, inductive loads, line impedances, 

switches and a control desk. The control strategy is pro-

grammed and executed in the dSPACE 1006 platform to switch 

the inverters. The switching frequency is 10 kHz. 

 
Fig. 12 Experimental setup in the laboratory 

The physical configuration of the experimental NMG system 

is shown in Fig. 13. There are two microgrids in the system, and 

each microgrid consists of two DG units. The circuit breakers 

CB1 and CB2 are closed. MG1 and MG2 are connected to the 

critical bus through line impedances. The system rated fre-

quency is 50 Hz, and the rated rms voltage is 200 V. 

Table V provides the electrical parameters of the experi-

mental NMG system. The parameters of the four level con-

trollers are shown in Tables VI and VII. From Table VI, it can 

be seen that (i) the active and reactive power capacities between 

MG1 and MG2 are equal, i.e., 𝑃sMG1 = 𝑃sMG2  and 𝑄sMG1 =𝑄sMG2, and (ii) the ratios of the active and reactive power ca-

pacities between DGk1 and DGk2 are both 4:3, i.e., 𝑃max𝑘1: 𝑃max𝑘2 = 4: 3 and 𝑄max𝑘1: 𝑄max𝑘2 = 4: 3, k = 1, 2. 
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Fig. 14 shows the topology of two-layer distributed com-

munication networks for the experimental NMG system. In the 

upper network �̃�, MG1 receives reference values 𝜔sys∗  and 𝑉c∗. 

In the lower network 𝐺1and  𝐺2 , DG11 and DG21 receive the 

references from �̃�. 

Critical bus
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Load3

Load1
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5
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Line6

Line2
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7

PCC1

MG1 CB2
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3 4
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Line3 Line4

PCC2

MG2

DG12 DG21 DG22
 

Fig. 13 Physical configuration of the experimental NMG system 

 
Fig. 14  Topology of the two-layer distributed communication network for the 

experimental NMG system 

TABLE V. ELECTRICAL PARAMETERS OF EXPERIMENTAL NMG SYSTEM 

Inverter 
Filter inductance: 1.8 mH 

Filter capacitance: 27 𝜇F 

Line 

Line 1 = 1.8 mH, Line 2 = 1.8 mH, 

Line 3 = 1.8 mH, Line 4 = 1.8 mH, 

Line 5 = 1.9 Ω + 2.5 mH, Line 6 = 1.6 Ω + 2.1 mH 

Load 
Load 1 = 92 Ω, Load 2 = 153.3 Ω, 

Load 3 = 38.1 + j32.9 Ω 

TABLE VI. PARAMETERS OF PCS AND TCS FOR THE EXPERIMENTAL SYSTEM 

Parameters DG11 DG12 DG21 DG22 MG1 MG2 𝑫𝐏𝒌𝒊/ 𝑫𝐏𝒌 
(Hz/W ∙ 𝟏𝟎−𝟑) 

0.625 0.833 0.625 0.833 0.357 0.357 𝑫𝐐𝒌𝒊/ 𝑫𝐐𝒌 
(V/Var ∙ 𝟏𝟎−𝟑) 

6.479 8.639 6.479 8.639 3.702 3.702 𝑷𝐦𝐚𝐱/𝑷𝐬𝐌𝐆  
(kW) 

1.8 1.35 1.8 1.35 3.15 3.15 𝑸𝐦𝐚𝐱/𝑸𝐬𝐌𝐆 
(kvar) 

1.2 0.9 1.2 0.9 2.1 2.1 

TABLE IV. PARAMETERS OF DSCS AND DQCS FOR EXPERIMENTAL SYSTEM 

Parameters DSC level DQC level 𝑐𝜔𝑘𝑖/𝑐𝜔𝑘 400 80 𝑐p𝑘𝑖/𝑐p𝑘 400 80 𝑐v𝑘𝑖/ 𝑐v𝑘 150 30 𝑐q𝑘𝑖/𝑐q𝑘 20 2 𝑘p𝑘/𝑘p 1.2 0.3 𝑘i𝑘/𝑘i 42 10 

B. Experimental results 

The system is initially operated with PC. At t=6.9 s, the DSC 

and TC are activated, and at t=8.55 s, the DQC is activated. Fig. 

15 shows the corresponding experimental results. Fig. 15(a) 

and (b) indicate that after t=8.55 s, the DQC can restore the 

system frequency and critical bus voltage to their rated values 

of 50 Hz and 1 p.u., i.e., objectives (i) and (ii) are realized. Fig. 

15(c) indicates that the active powers through the PCC of each 

MG are equal after applying TC at t=6.9 s (objective (iii)-(1)). 

Fig. 15(d) indicates that the reactive powers through PCC of 

each MG are equal after applying DQC at t=8.55 s (objective 

(iii)-(2)). Fig. 15(e) and (f) indicate that after applying DSC at 

t=6.9 s, the output active power and reactive power of DG units 

in each MG can realize accurate sharing with 𝑃𝑘1: 𝑃𝑘2  and 𝑄𝑘1: 𝑄𝑘2 both being 4:3 (objective (iv)). 
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(e) DG output active power 
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(f) DG output reactive power 

Fig. 15 Experimental results (DSC and TC are activated at t=6.9 s, and DQC is 

activated at t=8.55 s) 

VII. CONCLUSION 

This paper presents a hierarchical and distributed coopera-

tive control architecture and method for islanded NMG systems. 

The proposed two-layer and four-level control architecture is 

capable of protecting the proprietary information and enabling 

the plug-and-play capability of each MG. Based on this archi-

tecture, the proposed two-layer distributed cooperative control 

method can simultaneously meet multiple objectives, including 

the regulation of frequency and critical bus voltage, as well as 

accurate power sharing in both the MG and NMG layers. In 

addition, this paper also develops a detailed small-signal dy-

namic model of the NMG system considering the distributed 

control method and multiple control layers. The corresponding 

small-signal stability analysis reveals that i) interconnecting 

MGs results in low-damping and intercoupling modes, which 

may lead to system instability, and ii) the system dominant 

modes are strongly affected by controller parameters, espe-

cially those in the DSC and DQC levels. Finally, time-domain 

simulation as well as experimental results on an NMG test 

system validate the effectiveness of the proposed methods. 

 

APPENDIX 

The communication networks of the NMG system can be 

modeled by several directed graphs (digraphs), where the DG 

units (or MG units) are considered as the nodes of the com-

munication digraphs. 

The lower communication networks are deployed with the 

MG layer, which contains 𝑚  digraphs, 𝐺1 ,  𝐺2 …𝐺𝑚 , corre-

sponding to 𝑚 MGs. The digraph for the kth MG is expressed as 𝐺𝑘 = (𝒱𝑘, ℰ𝑘 , 𝒜𝑘) , with a non-empty finite set of 𝑛𝑘  DG 

nodes 𝒱𝑘 = {𝒱1𝑘, 𝒱2𝑘, … , 𝒱𝑆𝑘𝑘 }, a set of edges ℰ𝑘 ∈ 𝒱𝑘 × 𝒱𝑘 , 

and the associated adjacency matrix 𝒜𝑘 = [𝑎𝑖𝑗]. Note that the 

DG units are considered nodes of the communication digraph. 

An edge from node 𝑗 to node 𝑖 is denoted by (𝒱𝑗𝑘, 𝒱𝑖𝑘), which 

indicates that node 𝑖 receives information from node 𝑗. 𝑎𝑖𝑗  is 

the weight of edge (𝒱𝑗𝑘, 𝒱𝑖𝑘) , and 𝑎𝑖𝑗 > 0 if (𝒱𝑗𝑘, 𝒱𝑖𝑘) ∈ ℰ𝑘 ; 

otherwise, 𝑎𝑖𝑗 = 0 . Node 𝑗  is a neighbor of node 𝑖  if (𝒱𝑗𝑘, 𝒱𝑖𝑘) ∈ ℰ𝑘 . The set of neighbors of node 𝑖 is denoted as ℒ𝑖𝑘 = {𝑗 | (𝒱𝑗𝑘, 𝒱𝑖𝑘) ∈ ℰ𝑘}. 

The upper communication network is deployed with the 

NMG layer, which has only one digraph �̃�. Each MG unit is 

considered a node of this digraph. Similarly, this digraph is 

expressed as �̃� = (�̃�, ℰ̃, �̃�)  with nodes set �̃� ={�̃�1, �̃�2, … , �̃�𝑀} , edges ℰ̃ ∈ �̃� × �̃� , and the associated adja-

cency matrix is �̃� = [�̃�𝑘𝑙]. Node 𝑙 is a neighbor of node 𝑘 if (�̃�𝑙 , �̃�𝑘) ∈ ℰ̃ . The set of neighbors of node 𝑘  is denoted as ℋ𝑘 = {𝑙 | (�̃�𝑙 , �̃�𝑘) ∈ ℰ̃}. 

A directed path from node 𝑖(𝑘) to node 𝑗(𝑙) is a sequence of 

edges. A digraph has a spanning tree if there is a node 𝑖𝑟  (called 

the root node), such that there is a directed path from the root 

node to every other node in the graph. 
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