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Abstract: To improve data availability and reduce user access latency, geo-cloud based data replication is widely used in large global
Web sites, such as Facebook. However, as the popularity of data is different and will change as time goes by, simple static replica
creation strategies that assign the same number of replicas to all data, never changing thereafter, are not suitable. To this issue, we
propose a two-layer geo-cloud based dynamic replica creation strategycalled TGstag. TGstag addresses the issue with twofold: policy
constraint heuristic inter-datacenter replication and load aware adaptiveintra-datacenter replication. TGstag aims to minimize both
cross-datacenter bandwidth consumption and average access time with constraints of policy and commodity node capacity. To evaluate
the effectiveness of our strategy, we’ve conducted comprehensive experiments to compare TGstag with other approaches. The results
show TGstag significantly reduces cross-datacenter bandwidth and average read access time.
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1 Introduction

As cloud computing is becoming increasingly popular
[20], many cloud service providers use tens of
geographically dispersed datacenters [1,2]. To increase
the availability and improve the performance of
applications that are deployed over the geo-cloud, cross
datacenter data replication was introduced and has been
widely used.

Obviously, with more replicas, higher availability can
be achieved and more loads can be served. However, due
to constraints on storage capacity, cost and replica
consistency, it is unrealistic to assign replicas to all
datacenters. Thus, in many cloud-based applications [2,
3], all data have a fixed number of replicas; each replica is
assigned to specific datacenters according to the
corresponding replica placement algorithms, which we
call static replication strategy. In these static approaches,
the number of replicas is predefined and the locations of
those replicas will never change once they are
determined.

However, static replica creation strategy is not
suitable in some scenarios. First, every piece of data is
unique. Some data may be more important than others
and require higher availability or other QoS requirements;

some data are more popular than others. Thus it is not
suitable to assign the same number of replicas among
them. Second, user access patterns will change over time.
For example, some data that were important or popular in
the past may no longer be, or vice versa. In such
situations, increasing or reducing the replica number
dynamically will be a good way. In addition, access
locations often change from one place to another, which
means data replicas need to be reallocated accordingly.
Because of the above-mentioned issues, dynamic
replication algorithms are widely studied [12,13,14].

When dealing with data replication, compliance in
accordance with policy constraints is not unusual.
Frequently, in order to achieve certain levels of
availability, we need to assign at leastn replicas for each
data in different datacenters. Additionally, sometimes itis
forbidden to place certain data in certain areas or it is
necessary for some data to be placed in specific areas.

The current geo-cloud infrastructure usually has two
layers: many datacenters are located in different regions or
even on different continents; within one datacenter there
are thousands of commodity machine nodes. In each node,
both storage and load capacity are limited.

With the observation and the consideration of above
constraints and scenarios, we propose a two-layer
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geo-cloud based dynamic replica creation strategy called
TGstag. As far as we know, we are the first team that has
given consideration to both policy and node capacity
constraint and has utilized the two-layer datacenter
infrastructure when designing a dynamic replica creation
algorithm. As regards worldwide systems, cross
datacenter bandwidth is a scarce resource and
user-perceived access latency is one of the most important
factors to be considered. Therefore, TGstag is aiming to
minimize cross datacenter bandwidth consumption and
average user access latency. Our contribution includes: 1.
Proposal of a novel dynamic replica creation strategy
composed of two parts: policy constraint heuristic
inter-datacenter (Inter-DC) replication and load aware
adaptive intra-datacenter (Intra-DC) replication. 2.
Extensive experiments have been conducted which prove
our strategy quite effective.

The remainder of the paper is organized as follows:
Section 2 surveys the related work. Section 3 introduces
the background. Section 4 presents TGstag and how the
access be served. Section 5 describes our simulation
experiment and the obtained result. Finally, the
conclusion is provided in section 6.

2 Related Work

Data replica creation strategy has been investigated
extensively in the literature. In Windows Azure Storage
[2], data is stored durably using local intra-stamp
replication, while the geographic inter-stamp replication
is used to facilitate disaster recovery. Intra-stamp
replication is synchronous replication that is focused on
making sure all the data written into a stamp is kept
durable within that stamp. It is used to balance a read
load. Inter-stamp replication is asynchronous replication
used for both keeping a copy of accounts’ data in other
locations for disaster recovery and migrating accounts’
data between stamps.

Kadambi et al. [4] presents mechanisms for
selectively replicating a large-scale web database on a
record-by-record basis. Its goal is to minimize replication
costs while respecting policy constraints. It designs a fine
coarse data level policy language that describes which
kind of policy constraints the data should obey. Then it
proposes a minimal bookkeeping dynamic replication
algorithm to migrate replicas dynamically from their
original locations to the location with a higher read rate.
However, it does not utilize any past access pattern, nor
does it consider the constraints on node capacity, thus the
prediction is not as accurate as ours.

ecStore [5] is an elastic cloud storage system that
provides effective load balancing schema using
self-tuning replication technology that is specially
designed for large-scale data. ecStore adopts two-tier
partial replication to provide high availability and to
balance the load. In the first tier, it replicates a small
number of replicas for all data objects. In the second

layer, ecStore provides additional slave replicas for those
hot data. To avoid inefficiency in maintaining access
statistics on the data, it uses bucket-based technology to
record a suitable range of data statistics, and then uses
this record to perform the self-tuning slave replica
creation and clearance. In ecStore, the number of
secondary replicas is the same for all data. Additionally, it
does not consider any policy constraints.

DHR [9] is a dynamic hierarchical replication
algorithm that aims to reduce the file access time due to
limited storage space in the data grid environment. In
DHR, a three-tier hierarchical network topology is
presented: different regions, the LANs within each
region, and nodes within the same LAN. When the replica
is not stored in local nodes, DHR selects the best site with
the most number of accesses and then replicates the file
remotely into this site. If there is not enough storage,
DHR removes the least recently used data replicas that
are available both in the current site as well as the local
LAN, repeating this process until enough storage is made
available. It selects the site that has the fewest number of
requests if there is more than one replica in the same
level.

In PRCR [10], data are divided into types based on
their importance and the storage duration request. One
type of data is critical and would be reused over the long
term, while another type of data is only used for a short
time and has no long-term value. For the first type of data,
PRCR stores two replicas in the Cloud where the
management of two replicas is based on a proactive
checking methodology. For the second type of data, only
one replica is stored in the cloud.

DPRSKP [11] is a periodic replication strategy that
aims to select the best candidate files for replication,
placing them in the best locations, assuming limited
storage for replicas. For each site, the DPRSKP strategy
selects replicas to be created or deleted based on the
knapsack algorithm.

3 Background

In this paper, we considered a scenario that there are
several datacenters distanced from each other (in different
regions or even on different continents) and each data
center contains many commodity nodes. Each node has
constraints on both storage and load capacity. Once the
storage or load exceeds its capacity, it replicates data and
forwards a request to other nodes within the same
datacenter. Figure1 presents this geo-cloud network
topology.

The data replicas are divided into two categories from
the view at the datacenter level: the primary replica and
the secondary replica. All write requests to a data object
are first sent to the primary replica and then propagate to
the secondary replicas. These propagation processes are
all asynchronous. In this paper we do not consider replica
consistency issue. However, read requests can be served
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Fig. 1: Geo-cloud topology

by any replica. In this situation, write request latency is
determined only by the datacenter to which the primary
replica is assigned. However, our main concern in this
paper is when to create secondary replicas (and slave
replicas, which we will introduce in section 4.2) and how
many replicas we need to create, which only affect read
access latency. Thus we have chosen to optimize read
access latency as one of our goals. As we can see in the
formula (1), total cross datacenter bandwidth is the sum
of update propagation bandwidth and remote read access
bandwidth. Update propagation bandwidth is the
bandwidth produced when the primary replica replicates
data to secondary replicas. Remote read access bandwidth
is yielded when the local datacenter cannot serve the read
request and needs to retrieve data from remote
datacenters.

BWtotal = BWupdate +BWread (1)

Our work is based on the observation that most
applications have temporal and geographical locality [7].
In the theory of temporal locality, the data accessed most
recently will likely be accessed again in the near future.
The geographical locality states that once a client requests
the data, it is possible that clients nearby will also request
it. By taking into account these two localities, we can
utilize past access statistics to predict the near future
users’ access patterns.

4 TGstag

TGstag is comprised of two parts: policy constraint
heuristic Inter-DC replication and load aware adaptive
Intra-DC replication. We will introduce these parts more
in detail in 4.1 and 4.2. We will also present in section 4.3
how users’ write and read access being handled.

4.1 Policy constraint heuristic Inter-DC
replication

The first portion of TGstag is to create data replicas
between different datacenters, aiming to increase both

availability and read access speed. When replicating data
into different datacenters, we also need to obey
predefined policies.

In this paper, we consider three types of policies: 1. A
policy regarding the minimal number of replicas to ensure
availability and cross datacenter latency. The more
important data will have the greater number of replicas; 2.
An include list policy that defines where in the
datacenters the data replicas must be placed; 3. An
exclude list policy that forbids placing data replicas into
specific datacenters. Our policy solutions are flexible thus
can support more policies with very little extra effort if
necessary.

There were no access statistics at the time we created
the data object, thus we used a simple heuristic algorithm
to assign the replicas of this object into different
datacenters initially.

Algorithm 1 shows the detail procedure to create
initial replicas. For each data objecto, first check if any
policies related too conflict with each other. E.g., if the
value of the required minimal replicas ofo is larger than
the total number of datacenters, or if the include list and
the exclude list have any datacenters in common. If there
are conflicted policies, we have two options: 1. Tell user
to modify the policies in the configuration file to solve
these conflicts; 2. Set priority to each policy and the
higher priority policy will override the lower one when
they are in conflict. If there is no conflict, create a primary
replica in the local datacenter ofo and select a node with
enough storage that has the lowest load to store this
primary replica. Then we findn − 1 number of
datacenters nearest to this datacenter and obey the
policies, wheren is the minimal number of replicas ofo.
Finally, we propagateo into thosen−1 datacenters.

Algorithm 1 Initialize replicas
1: result←policyValidation(o)
2: if result is truethen
3: createPrimaryReplica(o)
4: n←getMinReplicasNumber(o)
5: selectedDCs←

f indNearestDCs(n−1, policies,dcs,currentDC)
6: propagateReplica(o,selectedDCs)
7: end if

Once objecto has been created, the number and
locations of its replicas will be re-determined every
specific time α, by running the Inter-DC replication
process. Access statistics regardingo will be sent to the
node that contains the primary replica ofo. Then this
node will run the Inter-DC replication.

Algorithm 2 describes the Inter-DC replication
procedure. Firstly, the datacenters that exist on the
include list will be added intoR′o, which are the
datacenters where objecto will be replicated after the
procedure. It then checks the remaining datacenters that
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are also not on the exclude list. Two factors will be used
to consider whether a replica will be created in datacenter
dc. The first is the read request numberreadNumberdc,o,
and the other is the latency betweendc and the datacenter
where the primary replica ofo exists, calledldc,dco . The
larger readNumberdc,o is, the greater the chance it will
get a replica. Forldc,dco , the larger value means if there is
no replica indc, it will cost more to retrieve the data from
dco, so we need to give it a greater chance to be
replicated. The algorithm addsdc to R′o only if
readNumberdc,o* log(ldc,dco) is larger than
writeNumbero*remoteReadRatioo*c, where
writeNumbero is the number of write requests againsto
within the specific α time, remoteReadRatioo is the
remote read ratio among all read access,c is the
adjustable Inter-DC replication threshold factor. If after
that, the number ofR′o is still lower than its minimal
requirement, the remaining ones will be selected from the
nearest datacenters. After we get thisR′o, we then
compare it with the original datacenters whereo has been
replicated before. Finally, replicas ofo will be propagated
to the newly selected datacenters and removed from
datacenters that have not been chosen.

Algorithm 2 Inter-DC replication
1: R′o←getIncludeList(o)
2: for eachdc∈datacenters do
3: if dc/∈getIncludeList(o) anddc/∈getExcludeList(o) then
4: if readNumberdc,o ∗ log(ldc,dco) larger than

writeNumbero ∗ remoteReadRatioo ∗ c then
5: R′o←R′o

⋃
dc

6: end if
7: end if
8: end for
9: if (number ofR′o) less thanminReplicasNumbero then

10: R′o←minRep(R′o)
11: end if
12: for eachdc∈R′o anddc/∈Ro do
13: propagateReplica(o,dc)
14: end for
15: for eachdc∈Ro anddc/∈R′o do
16: removeReplica(o,dc)
17: end for

In the Inter-DC replication, the value ofc has a
significant impact. If this value is set large, it means only
those datacenters that have a larger number of read
requests or are far away from the primary replica will
have a replica. This leads to the replica numbers
becoming smaller, which will result in higher read access
latency and read access cross-datacenter bandwidth. At
the same time, the storage costs and the updated
propagation bandwidth will have a relatively low value. If
we setc to be a small value, the situation will be the
opposite. This is a trade off decision; in the experiment
we will see how thisc value affects the TGstag’s result.

4.2 Load aware adaptive Intra-DC replication

Once the replica is assigned to a specific datacenter, it
will be stored in a node with sufficient storage that has the
lowest load. We refer to this kind of replica as the
secondary replica.

When a node’s load exceeds its threshold value, it
triggers an Intra-DC replication process. We call the
replica created by Intra-DC replication the slave replica.

Before performing the Intra-DC replication, we rate
each data based on three factors: the total request number
of the data, the access frequency of the data and last
access time of the data. Formula (2) is used to calculate
the weight of each datao.

weighto = c1∗ rno + c2∗ rnwo/interval +

c3/(currentTime− lastAccessTimeo) (2)

rno is the request number ofo since the last Inter-DC
replication. This number will be reset to 0 once the
Inter-DC replication is done.interval is the specific time
interval used for our frequency calculation usage.rnwo is
the request number within that interval.c1, c2 andc3 are
constant coefficients used to do the normalization.

Algorithm 3 shows how Intra-DC replication works.
To begin with, all data will be sorted by their weight
values. Then we choose the topk ratio of the object as the
candidate to replicate, e.g. the top 5%. The selected data
will be replicated to the nodes with both sufficient storage
and the lowest loads. If the current node is the slave
replica, then the information in this newly created slave
replica must be sent to the secondary replica, so the
secondary replica can propagate updated values to the
new slave replica when it receives one from the primary
replica.

When one node’s data access rate falls below a specific
level, it will remove this slave replica and notify the related
secondary replica.

As in the data storage node, the bottleneck is I/O;
using CPU resources to calculate weight will not cause
serious issues to the entire system. The exceeded
threshold scenario will not occur very often, so it will not
significantly impact the system’s overall performance. In
order to make these per record statistics less expensive,
we use Hierarchical Timing Wheels [6] to reduce storage
overhead.

Algorithm 3 Intra-DC replication
1: ob jectIDs←sortByWeight(weights)
2: candidateIDs←selectOb jectIDs(ob jectIDs, topNRatio)
3: newSlaveReplicaNode←selectCandidateNode()
4: if current node is slave replicathen
5: noti f ySndReplica(candidateIDs,newSlaveReplicaNode)
6: end if
7: replicate(candidateIDs,newSlaveReplicaNode)
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4.3 Replica access

As discussed in section 3 and section 4.2, there are three
types of replicas: the primary replica, the secondary
replica and the slave replica. Once there is an update
request for datao, it will update the primary replica first
and then propagate the update message to all secondary
replicas in other datacenters. Once the secondary replica
receives this update, it forwards the update to any slave
replicas within that datacenter.

Regarding read access, the situation becomes more
complex. When user contact nodeni in datacenterdc j for
datao, first it checks if there exists some replicas ofo in
dc j. If find, it will request the one with the lowest load. If
there is no replica withindc j, then it will go to the nearest
datacenter that has the replica ofo. At last, it needs to
record related statistics for the future usage. Algorithm4
presents the detail procedure.

Algorithm 4 Replica read access
1: if there is a replica ofo in local datacenterthen
2: node← f indSuitableNode(o)
3: f orwardRequest(o,node)
4: else
5: dcID← f indNearestDC(o)
6: f orwardRequest(o,dcID)
7: end if
8: updateStat(o)

5 Experiments

We have conducted several experiments to compare
different replica creation strategies. This chapter
describes our experiments and the results in detail.

We modeled a social network application and used it
as our workload. The number of users’ friends follows a
zipf distribution. Their write and read access frequency
also follows this distribution, which matches the real
workloads [15]. We set all data with an identical size of
1k.

Our experiment is based on CloudSim [8], a widely
used framework for the modeling and simulation of cloud
computing platforms and services. We created eight for
our experiments, to emulate the number of Amazon EC2
datacenters [17], and to simulate a geo-cloud environment
that spans the world. The access latencies among these
datacenters are all the real values we obtained from the
Amazon EC2 platform by creating a micro instance node
in each region, all of which ping each other. The detailed
values can be seen in Table1. In CloudSim, we made
each datacenter with as many nodes as could be created
on demand. Each node has fixed storage size and limited
access frequency capacity.

Table 1: Latencies between Datacenters in Amazon EC2
DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

DC1 0 87 83 90 255 201 271 150
DC2 87 0 21 177 213 139 219 203
DC3 85 22 0 171 198 129 216 197
DC4 90 175 171 0 354 285 445 223
DC5 256 221 198 360 0 81 221 370
DC6 201 137 119 285 91 0 172 310
DC7 151 197 184 412 189 141 0 330
DC8 142 203 197 224 374 403 368 0

We created a default policy wherein every object must
have a minimum of two replicas; also, we have specified
the primary replica must be included in the Include List.

We compared our approach to two other approaches:
Fixed Number replication (Fix Number) and Dynamic
Constraint-based replication (DCR). In the Fixed Number
approach [16], each object has a fixed number of replicas,
namedn (we set n=3 as the default value) as used in
Dynamo [1], Cassandra [3], and many other large
applications. Each datacenter is identified by a 128-bit
integer and is then mapped into an integer ring. The data
will be assigned to one datacenter as the primary replica
based on its ID and is replicated to the following (n-1)
datacenters in that ring. In the DCR approach [4], data
will be retrieved from the remote primary replica; a
secondary replica will be created when there is a read
request from that datacenter. There is retention intervalI;
within I the replica will always exist. AfterI, if the next
request in this datacenter is read, the last access time of
that replica will be updated. If the next request is an
update request from the primary replica, then this replica
will be removed. ThisI has an important effect on the
result. If it is too short, the replica will be created and
removed too often, which will result in higher costs. If the
value is too long, the updates need to propagate data to a
number of different datacenters even if there is not
another read in those datacenters. In this experiment, we
adjust I into a suitable value based on this scenario,
making it reach an optimal point from both a read access
latency perspective and cross datacenter bandwidth
consumption. In our experiment, we modeled the arrival
of the requests as a Poisson Process, which is a common
way [18,19].

In this experiment, we set the following default
values. As the same with other work [4], the write access
proportion is set to 0.1, and the probability of remote
friends is set to 0.1. We conservatively set the overload
request percentage to 0, as we can see in section 5.6,
when this overload ratio value increases, TGstag can
perform even better compared to other algorithms.
Because a large access pattern shift in a short amount of
time is not likely [4], we set 10% as the default access
pattern change percentage. We varied one factor value
and kept the other factors unchanged in one group of the
experiment.

In this paper, we used average read latency and cross
datacenter bandwidth as our evaluation criteria.
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Fig. 2: Impact on Inter-DC Replication Factor

5.1 Impact on Inter-DC replication factor

The first experiment we conducted was to observe the
impact on the Inter-DC replication factor. In this
experiment we varied the Inter-DC replication factorc,
thus varying the number of replicas for each object
remaining in the write/read request ratio and remote read
access percentage. Since it is not applicable to the Fix
Number and DCR approach, we’ve only presented how
this change affects TGstag here.

From Figure 2 we can see as factorc increases,
TGstag’s access latency increases while the bandwidth
consumption decreases. This is because when c increases,
the average object replica numbers decrease, thus more
requests have to contact remote datacenters, resulting in
the increase of average read access latency. However, as
the replica numbers decrease, the update propagation
bandwidth consumption likewise decreases. Also, when
the replica numbers decrease, the storage needs also
decrease. There is a resulting tradeoff between latency
and bandwidth & storage when choosing this value.

We also can see in Figure2, afterc reaches a certain
value, even if we continue increasing the value ofc, there
will be no obvious changes to the latency or bandwidth.
This is because oncec exceeds a specific value, the
replica numbers do not decrease as they need to obey the
minimal replica number policy. In order to see how the
value ofc affects the result, in the following experiment
we picked three values (c=9,10,11 as default) and applied
them in TGstag. So in each experiment, we have 5
algorithms to compare: Fix Number, DCR and three
TGstag algorithms with different values ofc.

5.2 Impact on write access proportion

As different kinds of applications have different
write/read proportions, in this experiment we tried 3

Table 2: Result on different write proportion
Fix Number DCR TGstag20 TGstag30 TGstag40

Latency(ms) 19.3 11.2 2.2 2.9 4.8
Bandwidth(MB) 34 23 20 19 17

(a) Write proportion is 0.025
Fix Number DCR TGstag20 TGstag30 TGstag40

Latency(ms) 19.0 16.0 6.6 7.2 8.0
Bandwidth(MB) 63 43 42 39 36

(b) Write proportion is 0.1
Fix Number DCR TGstag20 TGstag30 TGstag40

Latency(ms) 21.5 18.5 8.9 10 10.4
Bandwidth(MB) 102 69 70 63 58

(c) Write proportion is 0.2

groups with write proportions to be 0.025, 01 and 0.2
respectively.

We can know from the Inter-DC replication algorithm
introduced in section 4.1 and described in Algorithm2,
when a write proportion is set to a large value, in order to
reach the same value of the replica number, the threshold
factor c should also be set to a relatively large value. For a
low write proportion, the value should be a small one. In
this experiment we selected the Inter-DC replication
factor c from different ranges of values in different write
proportion scenarios.

Tables 2(a), (b) and (c) present the detail results.
We’ve named the TGstag series of algorithms as
“TGstag” + “value of c”, e.g. TGstag20 means TGstag
with c=20. From Table 2 we can tell for each
experimental group, TGstag performs better than the Fix
Number and DCR approaches after adjustingc to suitable
values.

The second row of Tables2(a), (b) and (c) show the
latency results. For the Fix Number replication, the
average read latency only increased a little with an
increased write proportion. This is because neither its
replica number nor the locations of these replicas have
anything to do with the write proportion. For the DCR, as
the write proportion increases, when replica exceeded its
retain intervalI, the chance that next operation it meet is
write request will increase, in this situation the replica are
prong to be removed and thus need to contact remote
primary replica more frequently, which result the higher
read access latency. For TGstag, as the write proportion
increases, the numbers of datacenters with read request
frequencies that exceed the threshold then decreases, thus
the number of Inter-DC replicas decrease. This means
more read requests need to contact remote datacenters,
resulting in an increase of read request latency.

The third row of Tables2(a), (b) and (c) presents the
bandwidth results. For Fix Number approach, as the write
ratio increases, the update propagation bandwidth
likewise increases, while the remote read access
bandwidth remains the same; thus the total cross
datacenter bandwidth increases at a constant speed. For
both DCR and TGstag, as the write proportion increases,
more read requests then contact the remote datacenter,
which makes the remote read access bandwidth grow
more rapidly. As a result, although the update propagation
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Fig. 3: Impact on Remote Friends’ Ratio

bandwidth consumption may not increase or decrease, the
total bandwidth they use still grows very quickly.

5.3 Impact on remote friends’ percentage

In this experiment, we increased the remote friends’
percentage gradually from 0 to 0.3, without changing
other factors, seeing how this factor affects the result.

Figure3(a) shows the latency result. For Fix Number
replication, replica numbers and locations remain the
same. As the ratio of remote friends’ increase, remote
read requests likewise increase, resulting in the average
read latency to increase linearly. For the DCR approach,
at first the remote read access numbers increase. However,
as this ratio keeps increasing, when a read request comes
from a specific datacenter, it is likely there has already
been a secondary replica retrieved and stored in that
datacenter before. Therefore, there is no need to contact a
remote datacenter to store the primary replica. As a result,
the read access latency growth rate becomes slower. For
TGstag, the situation is similar. At first, while the remote
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Fig. 4: Impact on Access Pattern Changes

friends’ ratio increases, the average read latency also
increases linearly. But when it reaches a certain level,
while it is still increasing, it creates more Inter-DC
replicas, resulting in the read latency growth occurring
much more slowly than the Fixed Number approach.

Figure3(b) shows bandwidth consumption results. As
the ratio of remote users increase, the update propagation
bandwidth consumption and remote read access
bandwidth of all three approaches increase.

5.4 Impact on user access pattern changes

In this experiment we see how changes in user access
patterns affect the result.

By referring to an access pattern change, we mean the
location of a user’s friends’ changes from one datacenter
to another. We varied the percentage of total read requests
that change from 0.0 to 0.2. From Figure4(a), we can see
that as this access pattern change ratio increases, the Fix
Number replication’s average latency increases quickly.
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Fig. 5: Impact on Number of Fix Replicas

For DCR, because it is an online algorithm, it can
adjust dynamically as the access pattern changes. But
based on the definition of access pattern changes we have
used here, when this value becomes larger, the percentage
of remote friends increases slowly, so the latency of the
DCR approach still increases slowly. For TGstag, when
the access pattern changes increase, more read requests,
which could have been served locally before, now need to
contact a remote datacenter, resulting in the average
latency increase.

Figure 4(b) presents the impact on cross datacenter
bandwidth consumption. For Fixed Number replication,
as the change percentage increases, the remote read
access number increases greatly; therefore the total
bandwidth consumption likewise increases quickly. For
DCR and TGstag, because they can adjust both the
number and the location of replicas dynamically, their
bandwidth consumption grows much more slowly than
Fix Number replication.
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Fig. 6: Impact on Overload Ratio

5.5 Vary number of replicas in Fix Number
replication

For Fix Number replication, as the number of replicas
increase, the average read latency reduces, but the cross
datacenter bandwidth and storage costs both increase. In
this experiment, we see the impact of changing the
numbers of these fixed replicas.

We varied the number of replicas in the Fix Number
replication from 1 to 8, and then compared it with DCR
and TGstag. In reality, this experiment is not applicable to
DCR and TGstag because they do not adopt the static
fixed number replica strategy; however, in order to make
the comparison results intuitive, we must include their
results in Figure5. From Figure5(a), we can see when
the fixed replica numbers are 4 and 5, the average read
latency is almost the same as DCR and TGstag.

Figure 5(b) displays the bandwidth used by Fixed
Number approach as the replica numbers increase. As it
increase, the Fixed Number approach uses more cross
datacenter bandwidth. This is because in every write
request, the primary replica needs to propagate more
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secondary replicas when the fixed number increases.
When the replica number is 5, the cross datacenter
bandwidth Fixed Number approach used is much higher
than that of TGstag (in this situation, their average read
latency is the same as described in previous paragraph).

5.6 Impact on overload ratio

In the above experiment, we set the overload request
percentage to 0, which means we will not utilize TGstag’s
Intra-DC replication. In this experiment, we varied the
overload ratio from 0 to 0.1 and compared TGstag to the
other two algorithms in each situation to see how this
affects the result. Figure6(a) shows the latency results.
As the overload ratio increases, the Fixed Number and
DCR approaches require that more local requests be made
to other datacenters, causing an increase in latency. For
TGstag, when the overload situation occurs, it replicates
the object into other nodes within the same datacenter
without having to contact other datacenters, so the
average read latency remains the same. The results for
bandwidth are similar to latency. Figure6(b) presents
these results in detail.

6 Conclusion

In this paper, we explored a two-layer geo-cloud based
dynamic replica creation strategy and proposed a novel
approach called TGstag. TGstag includes two parts:
policy constraint heuristic Inter-DC replication and load
aware adaptive Intra-DC replication. It aims to minimize
cross-datacenter bandwidth consumption and average
read access times with constraints of policy and
commodity node capacity. The experiment results prove
the effectiveness of TGstag.
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