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Urs Köster⋆ and Aapo Hyvärinen

University of Helsinki and Helsinki Institute for Information Technology

Abstract. Capturing regularities in high-dimensional data is an impor-
tant problem in machine learning and signal processing. Here we present
a statistical model that learns a nonlinear representation from the data
that reflects abstract, invariant properties of the signal without making
requirements about the kind of signal that can be processed. The model
has a hierarchy of two layers, with the first layer broadly corresponding to
Independent Component Analysis (ICA) and a second layer to represent
higher order structure. We estimate the model using the mathematical
framework of Score Matching (SM), a novel method for the estimation
of non-normalized statistical models. The model incorporates a squaring
nonlinearity, which we propose to be suitable for forming a higher-order
code of invariances. Additionally the squaring can be viewed as mod-
elling subspaces to capture residual dependencies, which linear models
cannot capture.

1 Introduction

Unsupervised learning has the goal of discovering the underlying statistical struc-
ture of a stream of observed data. This is a difficult problem since most real world
data has a complex structure which is hard to capture without prior knowledge.
Typically, linear models like Independent Component Analysis (ICA) are uti-
lized. Previous nonlinear extensions of ICA have incorporated prior knowledge
on the data [1] [2], so they are not applicable to general data with unknown
structure. Therefore we attempt to move towards more general models that can
extract complex higher order structure rather than presupposing it. In addition,
there is a strong incentive to develop algorithms for the efficient estimation of
unsupervised statistical models since recent experiments show they can signifi-
cantly improve the performance of supervised models [3].

Here we present a model that goes beyond the limitations of ICA without sac-
rificing generality. It has two layers of weights freely learned from the data, along
with a nonlinearity forming a nonlinear representation of the input. The model
is specified as a generalization of previous ICA-type models like Topographic
ICA (TICA)[4] and Independent Subspace Analysis (ISA)[2]. Since both layers
are learned from the data, no prior structure is imposed on the second layer.
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Learning in models like this can be done by maximizing the likelihood of
the model distribution wrt. observed data. Here one often faces the problem
that a model PDF (probability density function) cannot be normalized, and a
straightforward estimation of the model is not possible. With Score Matching
we present a novel approach to attack this problem. We recently showed [5] that
a consistent estimation of the parameters maximizing the likelihood is possible
without knowledge of the normalization constant. While other methods based
on Monte Carlo methods or approximations have been successfully applied in
the past, Score Matching has the advantage that it is a computationally efficient
method guaranteeing statistical consistency.

The paper is organized as follows: In section 2, we present the two-layer prob-
abilistic model in more detail, and we explain how it can be estimated using the
Score Matching framework. In section 3 we first verify the estimation method
by applying the model to artificial data with a known statistical structure. Fol-
lowing this, we present results on real-world data, image patches and natural
sounds. The discussion, section 4, puts the new model in perspective with re-
lated methods. We highlight the important difference that our model gives rise
to sparse connections in the second layer, which is not the case for related work
on Contrastive Divergence [6] or modelling ”Density Components” [7]. Finally in
section 5 we conclude the paper with remarks about the scalability of the model
and sketch some possible extensions to other types of data and more than two
layers.

2 Model and Estimation

2.1 A Two-layer Model

While supervised learning methods have often used multiple representation lay-
ers, as in multi-layer Perceptrons trained with backpropagation, few unsuper-
vised methods have used such a multi-layer representation. A major problem
is that it is usually impossible to obtain the probability distribution of such a
model in closed form. For this reason training such models often seems to require
a lot of computational resources, because Markov Chain Monte Carlo or similar
approximative methods have to be applied.

Still multi-layer models can provide a superior representation for a wide va-
riety of data. We suggest that the lack of suitable estimation principle is a major
reason for the poor performance of multilayer models in the past. Using the novel
Score Matching approach we show that a very simple and general model can be
demonstrated to perform well on a variety of tasks. We propose that our new
approach provides a viable alternative to simpler models. Since we formulate it
as a generalization of ICA, we find an intuitive way to interpret the results of
the model in terms of generalized independent components.

The model that we present here is a bare-bones two layer network with two
layers of weights and a scalar nonlinearity acting on the sum of the inputs to
each unit.

yi = Vig(Wx) (1)



The output of one top-level unit yi is thus obtained from the data vector x given
the weight matrix W, the row of weights Vi as well as the nonlinearity g(u). The
size of W and V is chosen to be equal to the data dimensionality n for simplicity,
but the estimation method we propose can also deal with overcompleteness in
one or both layers. The weight matrix V is further constrained to have non-
negative elements.

After the first layer of weights W has performed a linear transform of the
data, the scalar nonlinearity g(u) is applied to the outputs. This nonlinearity is
the same for all units, and it is fixed in advance rather than learned from the
data. We choose to focus on a squaring for the first nonlinearity, i.e. g(u) = u2

where the nonlinearity is taken to be element-wise. The second layer V computes
linear combinations of these squared outputs. There are several ways to interpret
the squaring nonlinearity that we propose here. Firstly, we would like to point
out the connection to our work on Independent Subspace Analysis (ISA) [2],
where the components inside a subspace are squared to compute the L2-norm of
the projection onto a subspace. This provides a way to model dependencies of
squares that cannot be removed by a simple linear transform. Modelling these
dependencies explicitly allows a better fit to the data than linear models could
achieve, since high correlations exist between the activity of similar features even
if they are linearity uncorrelated. [8] The second way to describe the model is
to in terms of invariant features. This can provide high selectivity to certain
aspects of the data while ignoring aspects that are not relevant to describe the
statistical structure of the input. From this point of view the outputs would be
features highly invariant under a specific kind of transformation on the input
data. A sum of squares, an operation that preserves amplitude but discards the
phase of a signal, could perform such an invariant feature extraction. [9]

Finally there is an output nonlinearity acting on the second layer outputs.
It has the purpose of shaping the overall model PDF to match the statistics
of the data. In principle, this could be matched to the optimal distribution for
the data under consideration e.g. by an iterative optimization. For simplicity
however, we assume the data can be modeled in terms of sparse sources, so we
choose an element-wise square root nonlinearity of the form h(u) = −

√
u + 1.

Such a convex choice of h is related to supergaussianity of the PDF.

For learning, the outputs of the second nonlinearity are summed together to
define a probability distribution q over the input data.

log q(x|W, V ) =

n
∑

i=1

h (Vig(Wx)) (2)

Intuitively, this model can be thought of as a two layer neural network processing
the incoming data vector and computing the probability that the data came
from the distribution defined by the model. This immediately provides a means
of training the model by adjusting the parameters to maximize the likelihood of
the model given the observed training data.



Fig. 1. Graphical representation of the two-layer model

For estimation, we usually need to compute the log-likelihood of the model

log l(W,V|x) =

n
∑

i=1

h (Vig(Wx)) − log (Z(W, V )) (3)

where Z denotes the normalization constant of the distribution, which is obtained
by integrating over all space. It is obvious that the normalization constant cannot
be computed in closed form, which makes the estimation of the model impossible
with standard methods. Therefore we apply the novel estimation method Score
Matching which is described below.

2.2 Score Matching

As we stated above, the probability distribution of the data can in general only
be obtained up to a multiplicative constant. This makes it impossible to compute
the likelihood of the model, and standard optimization methods like gradient de-
scent on the log-likelihood cannot be used. In the past, Monte Carlo methods
such as Contrastive Divergence [10] have been applied to this problem, or ap-
proximations of the likelihood were used. Here we circumvent the problem by
focusing on the score function of the density, Ψ (η;W,V) with respect to η,
where η is a variable which replaces the data vector x for notational unambigu-
ity.

Ψ (η;W,V) = ∇η log p(η;W,V) (4)

Additionally we can define the data score function Ψx(.) = ∇η log px(.) for the
distribution of observed data. The model is optimized by matching the data and
model score functions (hence the name Score Matching). We can achieve this by
minimizing the squared distance

J(W,V) =
1

2

∫

η

‖Ψ(η;W,V) − Ψx(η)‖2dη (5)



This could painstakingly be computed using a nonparametric estimation of the
density, but as shown in [5] the expression can be expressed in a much simpler
form in terms of derivatives of the data score function:

J̃(W,V) =
1

T

T
∑

t=1

n
∑

i=1

[

∂

∂ηi

Ψ i(x(t);W,V) +
1

2
Ψ2

i (x(t);W,V)

]

+ C (6)

Here the J̃ indicates a sampled version of the objective function, but in the limit
of T → ∞ and given the existence of a nondegenerate optimum, this estimator
is statistically consistent. C is a constant that does not depend on any the
parameters. Estimation of the parameters can easily be performed by following
the gradient of this function wrt. the parameters.

3 Experiments

3.1 Methods

We performed experiments on a variety of data to show the power and adapt-
ability of the model. The focus was on natural data, i.e. natural image patches
and speech recordings, to demonstrate the particular suitability of our model
to this very complex and rich kind of data that is poorly modeled by simpler
methods. For the natural data we performed preprocessing in the form of whiten-
ing (decorrelation), Contrast Gain Control by dividing each data vector by its
L2-norm, and some dimensionality reduction by PCA.

In general we start the optimization by learning the independent components
of the data, which is achieved by clamping the second layer weights to the identity
matrix. This serves to avoid local minima and speed up the convergence of the
algorithm. After this, the second layer connections are learned. It is an important
feature of the estimation method that learning for the first layer is not stopped;
rather the first layer features start to move away from ICA features to adjust to
the second layer as it forms more complex and invariant features.

An additional technical constraint was the use of L2-normalization on the
rows of V, corresponding to the second layer output vectors. This prevents indi-
vidual units from ”dying” and also sets a bound on the maximum activity. We
verified that it does not qualitatively change the structure of the outputs. W

was constrained to be orthogonal as it is customary with ICA algorithms. For
the optimization we used a stochastic gradient approach with mini batches con-
sisting of 100 data samples. Not only does this significantly increase the speed
of convergence, but we found that without stochasticity, local minima hindered
the convergence of the second layer weights.

3.2 Artificial data

As a first test for the model and estimation method we generated data according
to the ISA model[2]. This is supergaussian data with dependencies within, but



not between subspaces of the data variables. This data was then mixed with
a random mixing matrix A. We used 10,000 samples of 21-dimensional data
generated with a subspace size of three.
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Fig. 2. The model was tested with ISA data, convergence is fast and finds the global
minimum. We show (a) the product of the estimated demixing and known mixing
matrix, (b) the learned second layer weights. The rows of the matrices are sorted in
ascending order on the columns of V. This does not affect the result and is purely for
easier visualization.

Figure 2 shows how the first layer weights W invert the mixing up to sub-
space membership, while V determines which variables belong together in one
subspace. Since the dimensionality of V is 21×21, and there are only 7 subspaces,
some rows of V go to zero and some are duplicated. Contrary to later experi-
ments, both weight layers were initialized randomly and learned simultaneously,
and no normalization on the rows V was performed.

3.3 Experiments on Natural Images

After confirming the identifiability of the method, we tested the model on natural
images which have a particularly rich statistical structure with many higher order
dependencies. We use 20,000 image patches of 12×12 pixels, whitened, performed
Contrast Gain Control [11] and reduced the data dimensionality to 120 by PCA.
We specified the dimensionality of both W and V to be 120 × 120. Optimizing
W first gives familiar ICA features as shown in fig. 3a. In fact variants such as
TICA and ISA can easily be performed by setting V appropriately. The second
layer learns connections between similar first layer features (fig. 3b), giving rise
to complex-cell like outputs which are invariant to the spacial phase of the data
(fig. 3c). Continued learning on the first layer features increased the similarity
of the position and size of filter feeding into the same second layer unit while
keeping the phase difference. This result was also confirmed with an overcomplete
model.



(a) First Layer

(b) Second Layer (c) Some Outputs

Fig. 3. a) First layer filters show the classical Simple-Cell type structure. b) Con-
nection in the second layer are sparse, with connections between similar units. c) A
random selection of outputs where each row shows the most active contributers to the
response with the black bars indicating ”synaptic strength”, i.e. how strongly the filter
contributes to the output.



3.4 Audio data

In order to demonstrate the general applicability of our model to a variety of
data, we also tested it on speech data from the TIMIT database. We sampled
random rectangular sound windows of 8ms length, and resampled them to 8kHz.
We also applied our standard preprocessing consisting of removing the DC com-
ponent, whitening and contrast gain control. Simultaneously we reduced the
dimensionality from 64 to 60 which amounts to low-pass filtering and serves to
eliminate artifacts from the windowing procedure. The results are presented in
figure 4.

(a) First Layer
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Fig. 4. (a) The first layer gives outputs localized in both frequency and time. (b) The
second layer gives connections between features with dependencies of squares.



4 Discussion

We have shown that an unsupervised model using two completely flexible layers
of weights to learn the statistical structure of its input data can effectively be
estimated using Score Matching. While including previous extensions of ICA as
special cases, this is far more general that previous models. For example ISA
forces the filters to group into subspaces of a constant size and with an equal
contribution, and did not allow a single filter to be active in more than one higher
order unit. These constraints have been lifted with the new model. Topographic
ICA is also included in our model as a special case. If the second layer is fixed to
an identity matrix convolved with a kernel (neighborhood function) that leaks
activity to off-diagonal elements, a topographic ICA model can be estimated. A
more complex topography can be obtained by allowing interactions other than
along the main diagonal.

Two models have recently been proposed that have a similar hierarchical
structure but are estimated differently. Most close related to our work is the
work by Osindero et al. [6]. Instead of using the traditional ”independent com-
ponent” point of view, the model is defined as a ”product of experts” model
following Student-t distributions. The estimation is performed using contrastive
divergence (CD), which was recently shown [12] to be equivalent to Score Match-
ing. The key difference between the models is in the results obtained on natural
data. While Osindero et al. report sparse activation of second layer units, we also
see sparse connectivity, which has interesting implications not only because of the
striking similarity to biological networks, but also for efficient signal processing.

The second work that we would like to mention is that of Karklin and Lewicki
[7]. They present a generative two layer model that performs ICA on the data
followed by a variance-modelling stage as in TICA[4]. Contrary to the PoT model
of Osindero et al. and our SM model, both layers are estimated separately using
the maximum a posteriori estimate. The authors observe that in contrast to
our model, the first layer units do not change significantly depending on the
”density components” modelling the variance of the first layer outputs. Applied
to natural stimulus data, this model gives rise to broadly tuned features in the
second layer that describe global properties of the data. Again this is in contrast
to the sparse connectivity obtained from our model.

5 Conclusion

We have presented a two layer model that that can be used to learn the statistical
structure of various kinds of data. By using the novel estimation principle Score
Matching, unsupervised learning in this type of model is made faster and more
straightforward than with alternatives such as Monte Carlo methods. Contrary
to previous linear models, higher order dependencies in the data can be captured
to give better models of real world data. Compared to similar models [6] [7], we
report the emergence of sparse connectivity in the second layer. Furthermore
our model is very general, so it can be overcomplete, and it can be extended to
incorporate a third or more layers.
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