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Abstract 

For manufacturers of consumer electronics, conformance testing of embedded soft

ware is a vital issue. To improve performance, parts of this software are implemented 

in hardware, often designed in the Hardware Description Language VHDL. Confor

mance testing is a time consuming and error-prone process. Thus automating (parts 

of) this process is essential. 

There are many tools for test generation and for VHDL simulation. However, most 

test generation tools operate on a high level of abstraction and applying the generated 

tests to a VHDL design is a complicated task. For each specific case one can build a 

layer of dedicated circuitry and/or software that performs this task. It appears that the 
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ad-hoc nature of this layer forms the bottleneck of the testing process. We propose 

a generic solution for bridging this gap: a generic layer of software dedicated to 

interface with VHDL implementations. It consists of a number of Von Neumann

like components that can be instantiated for each specific VHDL design. 

This paper reports on the construction of and some initial experiences with a con

crete tool environment based on these principles. 

1 INTRODUCTION 

As is well-known, the software embedded in consumer electronics is becoming in

creasingly voluminous and complex. Accordingly, testing the software takes up an 

increasing part of the product development process - and hence of the costs of prod

ucts. Therefore, Philips considers automating (parts of) the test process a vital issue. 

More and more, manufacturers of consumer electronics do not completely develop 

the software themselves but import parts from other manufacturers. To guarantee 

well-functioning and interoperability of these parts, it is essential that they are tested 

for functional conformance w.r.t. internationally agreed standards. Therefore, testing 

efforts in this area concentrate on functional conformance testing (see (ISO 1991, 

Holzmann 1991, Knightson 1993) for testing terminology and methodology). 

To optimise performance (in terms of speed or bandwidth), the lower layers of pro

tocol stacks are often implemented directly in hardware. Testing these layers would 
imply hardware testing. However, Philips is interested in detecting design errors be

fore implementation in silicon, which would mean testing hardware designs rather 

than their implementations. 

Nowadays, hardware is designed using internationally standardised Hardware De

scription Languages. Testing a design then is testing a program in the description 

language at hand. Among the Hardware Description Languages, VHDL (IEEE 1993) 

is prominent. 

There are many tools for test generation on the one hand and VHDL simulation, 

analysis and synthesis on the other hand. Moreover a lot of effort is put into extending 

and refining these tools. Ideally, therefore, the testing process could be automated 

by generating tests with a test generation tool, and then executing these tests using a 

simulation tool. However, most test generation tools expect behaviour to be modelled 

in clean-cut events with a high level of abstraction. Applying such tests to a VHDL 

design whose interface behaviour consists of complex patterns of signals on ports is 

by no me~s a trivial task. 

Now, it is always possible to solve this problem by adding a layer of dedicated 

circuitry and/or software to bridge the gap between low-level events and high-level 

events, but it appears that the ad-hoc nature of this dedicated circuitry and software 

forms the bottleneck of the testing process. 

We propose a generic solution for bridging the gap between generating tests on the 

abstract level and executing tests on the simulation level. This makes it possible for 

each of the two different tasks (test generation and test execution) to be performed at 
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the appropriate level within one test trajectory, with a higher degree of automation. 

The idea is to build a generic layer of software (written in VHDL), dedicated to 

interface with VHDL implementations. We call this layer the test bench. It consists 

of a number of components that fulfill various tasks: to offer inputs to interfaces of 

the implementation, to observe outputs at these interfaces and to supervise the test 

process. The components are Von Neumann-like in the sense that for each specific 

VHDL design they are loaded with sets of instructions. These sets are compiled 

from user-supplied mappings between high level and low level events and abstract 

test cases derived from the specification. In order to be maximally generic, the test 

bench should accept tests described in a standardised test language. In this way, any 

tool that complies with this test description language can be used for test generation. 

Of course, this test bench will not solve all the problems involved in interpreting 

abstract tests. But by performing many of the routine (and repetitive) tasks, it enables 

the tester to concentrate on the specific properties of the interface behaviour of the 

protocol under test. 

This paper reports on the construction of and some initial experiences with a con

crete tool environment based on these principles. This prototype tool environment is 

called Phact and has been developed at Philips Research Laboratories Eindhoven, 

in cooperation with CWI Amsterdam and the universities of Eindhoven and Nijme

gen. It consists of a test generation part and a test execution part. The intermediate 
language between the two parts is the standardised test description language TICN 

(Tree and Tabular Combined Notation (ISO 1991, Part 3». In the test execution part 

we find the test bench written in VHDL, with, a front-end that accepts TICN test 

suites. 

In the current version of our tool environment, test generation is done by the Con

formance Kit (van de Burgt et al. 1990, Kwast et al. 1991) of Dutch PIT. This 

tool takes as input a specification in the form of an Extended Finite State Machine 

(EFSM) and generates a TICN test suite for the specification. The Leapfrog tool 

from (Cadence 1996) is used for VHDL simulation. 

This paper is organised as follows. In Section 2, we globally describe the tool 

environment and the testing process it supports. Section 3 highlights each important 

step in the test process. In Section 4, we describe our experiences with the use of 

the environment and discuss its current limits. Finally, in Section 5, we compare our 

approach with other approaches for analysis of VHDL designs. 
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2 GLOBAL DESCRIPTION OF TEST ENVIRONMENT AND TEST 

PROCESS 

In this section, we give an overview of the tool environment and the testing process 

it supports. The next section treats some interesting aspects in more detail. We begin 

with a short digression on functional conformance testing. 

Conformance testing aims to check that an implementation conforms to a speci

fication. Functional conformance testing only considers the external (input/output) 

behaviour of the implementation. Often the implementation is given as a black box 

with which one can only interact by offering inputs and observing outputs. 

In the theory of functional conformance testing many notions of conformance 

have been proposed. The differences between these notions arise from (at least) two 

issues. The first issue is the language in which the specification is described (and 

the (black box) implementation is assumed to be described). Specifications can be 

described, e.g., by means of automata, labelled transition systems, or by temporal 

logic formulas. Secondly, the differences arise from the precise relation between im

plementation and specification that is required. Typically the different conformance 

notions differ in the extent to which the external behaviour of the implementation 

should match the specification. 

Thus conformance testing always assumes a specific notion of conformance. How

ever, for most conformance relations, exhaustive testing is infeasible in realistically 

sized cases: some kind of selection on the total test space is inevitable. So it is gen

erally not possible to fully establish that an implementation conforms to the specifi

cation; the selected tests rather aim to show that the implementation approximately 

conforms to the specification. Conformance then simply means: the resulting test 

method has detected no errors. An appropriate mixture of theoretical considerations 

and practical experience should then justify this approach. This holds in particular 

for the test process supported by our tool environment. 

Following ISO methodology (ISO 1991, Knightson 1993), the conformance test 

process can be divided in the sequence of steps given in Figure 1. 

Our prototype tool environment automates the test generation and test execution 

phases and to a lesser extent the test realisation phase. It expects two inputs: the 

VHDL code for the Implementation Under Test (henceforth called IUT) and the 

(abstract, formal) functional specification, in the form of a deterministic Extended 

Finite State Machine (EFSM). From the EFSM specification abstract test cases are 

derived. These test cases are translated to the VHDL level and executed on the IUT. 

The histor.y of the test execution is written to a log file and the analysis phase just 

consists of inspecting this file and the verdicts it contains. 

Note that the EFSM is required to be deterministic. We believe that the restriction 

to deterministic machines is not a real restriction since we are mostly interested in 

testing a single deterministic VHDL implementation. 

The tool environment consists of two parts, taking care of test generation and test 

execution, respectively. Each one contains an already existing tool. Test generation 

is done by the Conformance Kit, developed by Dutch PTT Research (van de Burgt et 
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1. test generation 

2. test realisation 

3. test execution 

Figure 1 Global conformance testing process 

al. 1990, Kwast et al. 1991). When given an EFSM as input, this tool returns a test 

suite for this EFSM in TICN notation. The user can to a certain extent determine the 

parts of the EFSM that are tested and the particular test generation method used. We 

elaborate on this in Section 3.1. 

The test cases in the test suite are applied to the IUT by a test bench, which is, 

like the IUT, written in VHDL. The Leapfrog tool from (Cadence 1996) simulates 

the application of the test suite to the IUT using the test bench. Thus testing an IUT 

here means: simulating it together with the test bench. 

The test bench, which is described in more detail in Section 3.3 and in (Sies 1996), 

consists of several components connected by a bus: stimulators, observers, and a 

supervisor. Stimulators apply input vectors to the IUT. Observers observe the output 

of the IUT and feed this information back to the supervisor. The stimulators and 

observers are diligent but ignorant slaves to the supervisor, which operates on the 

basis of the test suite and feedback from the observers. The test bench has been 

designed generically and only needs to be instantiated for each particular IUT. 

Compilers connect the test generation part, the output of which is in TICN nota

tion, to the test execution part, the input of which must be readable for VHDL pro

grams. There are three compilers, one for each type of component of the test bench. 

The compiler for the supervisor translates the TICN test suite to an executable for

mat. The compilers for the stimulators and observers map abstract events from the 

EFSM to patterns of bit vectors at the VHDL level. They require user-supplied trans

lations (comparable to PIXITs in ISO terminology). Section 3.2 discusses this in 

more detail. 

Given an IUT written in VHDL and a specification or standard to test against, the 
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EFSM 
spec 

PIXIT VHDL 
design 

Figure 2 Overview of the test trajectory using Phact 

verdict 
log 

global test set-up from Figure 1 leads in our setting to the following sequence of 

steps, also depicted in Figure 2: 

O. (Manual) Write an abstract specification EFSM of the IUT. 

1. (Automatic) Use the Conformance Kit to derive a test suite for this EFSM, spec

ifying which parts of the EFSM must be tested and what test generation method 

must be used. 

2.(a) (Automatic) Compile the test suite to the executable format for the supervisor. 

(b) (Manual) Define translations between abstract events and patterns of bit vec

tors (in Figure 2 called PIXITs). 

(c) (Automatic) Compile the translations to input files for the stimulator and ob

server, respectively. 

(d) (Manual) Instantiate the test bench as appropriate for the IUT. That is: enter 

the number of stimulator/observer pairs, the precise name and location of the 

compiled translation files, etc. 

3. (Automatic) Run the Leapfrog tool on the instantiated test bench together with 

the IUT. 

4. (Manual) Inspect the resulting conformance log file. 

We end this section by remarking that the Leapfrog tool also allows the use of the 

Hardware Description Language Verilog (IEEE 1995a). In particular, the Leapfrog 

can simulate combinations of VHDL and Verilog programs, which makes it possible 

to plug a Verilog program as IUT into the VHDL test bench. 

3 STEPWISE THROUGH THE TESTING PROCESS 

The following sections explain the consecutive steps in the testing process more 

thoroughly. 
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3.1 Generating tests with the Conformance Kit 

The Conformance Kit consists of a collection of tools for test generation. 

The Extended Finite State Machine model supported by the Kit is a slight ex

tension of the traditional Mealy-style FSM model. Transitions are labelled with in

put/output pairs, where input and output are treated as simultaneous events (inputs 

without outputs are allowed). In addition to states and transitions, an EFSM may 

contain a finite set of variables that range over the boo leans or over finite, convex 

subsets of the integers. Transitions may modify the values of the variables and may 

be guarded by simple formulas over the variables. There is also the option to mark 

transitions. For instance, it often happens that certain transitions are added to the 

EFSM only to make it complete. These transitions are artificial and should not be 

tested. This is achieved by marking them with a certain marker and excluding all 

transitions marked thus from the test generation. Finally, it is possible to specify 

Points of Control and Observation (PCOs) where inputs and outputs occur. They 

correspond to interfaces of the IUT. 

To allow for test generation, the EFSM should be deterministic. Given a determin

istic EFSM, one of the tools in the tool set builds a deterministic, trace-equivalent, 

and minimal FSM (i.e., the FSM exhibits the same external behaviour as the EFSM 

and contains no pair of distinct but trace-equivalent states). Test generation tools 

proper take this FSM as input and return a TTCN test suite. 

We highlight two of the test generation methods (for more information on test 

generation methods in general we refer to (Fujiwara et al. 1991, Holzmann 1991». 

The Transition Tour method. This method yields a finite test sequence (i.e., a 

sequence of input/output pairs) that performs every transition of the FSM at least 

once. Thus it checks whether there are no input/output errors. 

The Partition Tour method. In addition to the previous method this method also 

checks for each transition whether the target state is correct. It is similar to the 

UIO-method (Sabnani & Dahbura 1988, Abo et al. 1991) which in its tum is 

a variant of the classical W-method (Chow 1978). Unlike the Transition Tour 

method, this method yields a number of finite test sequences, one for each transi

tion of the FSM. Each one is a concatenation of the following kinds of sequences: 

- A synchronising sequence, that transfers the FSM to its (unique) start state. 

Theoretically, such a sequence need not always exist. In practice however, most 

machines have a reset option and hence a synchronising sequence. 

- A transferring sequence, that transfers the FSM from the start state to the initial 

state of the transition to be tested. 

- The input/output pair of the transition. 

- A Unique Input/Output sequence (UIO) which verifies that the target state is 

correct (that is, all other states will show different output behaviour when given 

the input sequence corresponding to the UIO). If this sequence does not exist 

it is omitted. 
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Although theoretically the fault-coverage of this method is not total, not even 

when one correctly estimates the number of states of the implementation (Chan 

et al. 1989), the counter-examples are academic and we expect that the fault cov

erage in practice is quite satisfactory. 

3.2 From abstract tests to executable tests 

In the EFSM specification the input and output events of the IUT are described at 

a very abstract level. For instance, a complicated pattern of input vectors, taking 

several clock cycles, may have been abbreviated to a single event Input..Datwn_1. 

The abstraction is needed to get a manageable set of meaningful tests. But when one 

wants to use the TTCN test suite derived from the EFSM to execute tests on the 

IUT, one has to go back from the abstract level of the EFSM to the concrete level of 

the VHDL implementation. This translation must be such that the VHDL test bench 

knows for each abstract event exactly what input should be fed to the IUT or what 

output from the IUT should be observed. For stimulators, the abstract input events 

have to be translated to patterns of input bit vectors. For the observers we have to 

write parser-code to recognise a pattern of output bit vectors as constituting a single 
abstract output event. 

These user-supplied translations may be quite involved and hence sensitive to sub

tle errors. We expect that in the approach outlined in this paper, this is the part that 

consumes most of the user's effort. 

The translation is constructed in four steps: 

1. All abstract events used in the EFSM are grouped per PCO in input and output 
event groups. 

2. All ports of the IUT are grouped into the input or output port group of one inter

face. Each interface should be associated with exactly one PeO. 

3. Each event of an input (output) event group at one PCO is translated to sequences 

of values of the ports in the input (output) port group at the associated IUT inter

face. This is done for each interface. 

4. All event translations are fed to the compilers that generate code which is under

stood by the test bench during simulation. 

We will give a very simple example of a user-supplied translation that is input for 

the observer compiler. 

The IUT for which the example file is intended is a protocol that transfers data 
from a Sender to a Receiver and, when successful, sends an acknowledgement back 

to the Sender. For synchronisation purposes, the acknowledgement is an alternating 

bit. The IUT has two interfaces (PCOs): Sender and Receiver. We consider the ob

server at the Sender interface, which should observe acknowledgement events. This 

situation is depicted in Figure 3. 

The Sender interface has two output ports (which are connected to the input ports 
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Observer 
s_ack 

~ 

I 
IUT 

s_reset --- ~ 

s_data 

Sender Receiver 

Figure 3 An example IUT 

of the observer): s_bi t, through which the alternating bit is delivered, and s_ack, 

through which arrival and presence of an acknowledgement is indicated. Further

more, the interface has two input ports: s_data, a 4 bit wide port through which the 

Sender communicates data to the IUT, and SJeset, which has the value 1 whenever 

the Sender resets the IUT. 

An acknowledgement event consists of an announcement that an acknowledge

ment is coming, followed by the acknowledgement itself. The announcement is indi

cated by the signal at s_ack having the value 1; the value at the s_bi t port is not yet 

relevant. Subsequently, the acknowledgement is delivered: port s_ack still carries 1, 

and port s_bi t has the value 0 or 1 for the alternating bit. 

Now we have all information needed to construct the translation that is input for 

the observer compiler. The translation code is given in Figure 4. Note that the lines 

preceded with / / are comments. 

First, the translation contains two so-called qualifiers, conditions that determine 

when the parsing of the output of the IUT at this interface should be started or 

aborted. Parsing should start when an acknowledgement is coming, so the start qual

ifier uses the value of the s_ack port. Parsing should be aborted whenever the IUT is 

reset, so the abort qualifier uses the value of the SJeset port. 

Next, the event translation proper is given. Bit masks are defined to recognise in

dividual output bit vectors. In this case the vectors represent two one-bit ports with 

s_bi t at the first position and s_ack at the second. So mask ack_coming has 1 for 

s_ack, and x for s_bi t, indicating that both 11 and 01 match here. Mask ack_O only 

matches when s_bi t is 0 and s_ack is 1. Output events are defined as regular expres

sions over the (names for the) bit masks. Here, the arrival of an acknowledgement is 

recognised by consecutive matching of the two relevant bit masks. This two-phase 

definition of events reflects the way the observer parses the output from the IUT 

during execution. 
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II Observer bit patterns for the PCO at the Sender side 

II Observed ports, with number of bits: 

II s_bit(l) s_ack(l) 

PCO Sender 

QUALIFIERS 

II Start parsing output when this qualifier is true 

[(:s_ack = '1')] 

II Abort parsing when this qualifier is true 

[(:s_reset = '1')] 

MASKS 

ack_coming = 'xl' 

ack_O = '01' 

ack 1 = , 11' 

EVENTS 

ACK_OUT_O = ack_coming ack_O; 

ACK_OUT_l = ack_coming ack_l; 

Figure 4 Example user-supplied translation for observer 

3.3 Executing tests at the VHDL level 

In order to test the VHDL implementation with the generated tests, we need to exe

cute the VHDL implementation. Executing VHDL code means hardware simulation, 

for which we use the Cadence Leapfrog tool. 

When simulating a VHDL program which models a reactive system, the program 

should be surrounded by an environment which behaves - from the program's point 

of view - exactly like the environment in which the program eventually must operate. 

This environment should also be able to observe whether the program is operating 

correctly, and to hand out verdicts reflecting these observations. Finally, since the ex

ecution is done by VHDL simulation, the environment itself should be programmed 

in VHDLtoo. 

Creating the proper environment in VHDL is hard work. However, many tasks 

remain the same when testing different IUTs. We have therefore created a generic 

VHDL environment, which can easily be instantiated to suit any IUT. The environ

ment we created to perform these tasks is referred to as the test bench. 
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Figure 5 Structure of the VHDL test bench 

The test bench consists of three kinds of components: a supervisor, some stimu

lators and some observers. The components communicate with each other by means 

of a bus. Figure 5 shows the structure of the test bench. 

Each component type is dedicated to perform its particular task for any IUT. To 
achieve this, each component type has its own instruction set. When plugging an JUT 

into the test bench, each component is loaded with a sequence of instructions which 

are specific to the JUT in question. Thus the components can be viewed as small Von 

Neumann machines. 

In the following paragraphs we explain the task of each component type in detail. 
Thereafter, we 'describe how the generic test bench is instantiated for testing a certain 

IUT. 

The supervisor component has control over the whole test bench. It takes the gen

erated TTCN test suite as input, works its way through each test case and outputs 

a log file with the verdict and some simulation history. While traversing a test case, 

it steers the stimulator and observer components and uses a number of timers. Each 

test case is executed in the following way. 

When the current TTCN test case states that input should be provided to the IUT, 

the supervisor notifies the stimulator at the designated interface. After the stimulator 

indicates that it has completed this task, the supervisor goes on with the remainder 

of the test case. 

When the TTCN test case states that output should be generated by the JUT, the 

supervisor checks with the observer at the designated interface to see if this output 

has been observed. If the output has been observed, the supervisor goes on with 

the remainder of the test case. If nothing was observed, the supervisor will wait 

for the observer's notification of new output from the IUT. If output other than the 

desired output is observed, the TTCN code indicates what action should be taken. 
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The TICN generated by the Conformance Kit typically hands out the verdict/ail in 

such a situation. 

When the TICN test case states that a verdict should be handed out, the supervisor 

logs this verdict to the output file, and quits the current test case. 

The other TICN commands handled by the supervisor are timer commands. TICN 

offers the possibility to use timers for testing timing aspects of the behaviour of a sys

tem. These timers may be started, stopped and checked for a time-out. At the start 

of the TICN test suite, all timers with their respective duration are declared. The 

supervisor handles these timer instructions in the obvious way. It can instantiate any 

number of timers with different durations and use them in the prescribed way. 

The TICN produced by the Conformance Kit, however, employs the timer con

struction in only two ways. It uses one timer for the maximum time a test case should 

take. This ensures that the test bench will not get stuck in the simulation. A second 

timer is used to test transitions from the EFSM that have an input event but no output. 

Since no output event is specified, the IUT should not generate one. This is tested 

by letting a timer run for some time, during which the IUT should not generate out

put. Any output observed before the timer expires is considered erroneous and leads 

to the verdict/ail. The precise value to which the no-output timer should be set is 

gleaned from the specification. 

The stimulator component provides input to the IUT. It waits until the supervisor 

commands it to start providing a certain abstract event, then drives the input ports of 

the IUT with the appropriate signals. It has access to the user-defined translation of 

abstract input events to VHDL input signals. 

The observer component observes output from the IUT and notifies the supervisor 

of the abstract events it has observed. Like the stimulator component, it has access 

to the user-defined translation of VHDL output signals to abstract output events. 

Observing the ports of a VHDL component and recognising certain predescribed 

events is no trivial task. The observer must parse the output of the IUT such that the 

patterns provided by the user are recognised. Parsing is done with the help of a parser 

automaton, constructed with the UNIX tool Lex (and the user-defined translation). 

The observer uses this automaton to decide which event matches the current outpu~. 

When the IUT outputs a sequence of values that does not fit into any of the patterns, 

the supervisor is notified of an error using a special error event. 

The supervisor and stimulators communicate directly in a synchronous way - the 

supervisor always waits for the stimulators to end their activity before resuming its 

own task - while the supervisor and observers communicate in an asynchronous way 

via FIFO queues. 

In order to plug an arbitrary VHDL implementation into the test bench as the 

current IUT, some instantiating has to take place. The test bench must have as many 

instantiations of the observer and the stimulator component as the IUT has interfaces. 

These instantiations must each be connected to the proper interface of the IUT. The 

IUT may need some external clock inputs, these have to be provided with the correct 

speed. The supervisor must have the desired number of timers at its disposal, as 

specified in the TICN test suite. Each observer (stimulator) must be given access to 
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the compiled version of the user-defined translation. Likewise, the supervisor must 

be given access to the compiled version of the TICN test suite. 

When these instantiating actions have been performed, the test bench is ready for 

simulation. 

4 EXPERIENCES 

We experimented with our tool environment by running it on a small protocol exam

ple. The protocol was derived from the Alternating Bit Protocol (Bartlett et al. 1969), 

with some modifications to test crucial features of the test bench. The features tested 

mostly concerned the synchronising mechanisms in the test bench. 

During the test runs, the VHDL implementation we constructed for the example 

protocol proved not to conform to its abstract specification. Among other things, the 

toggling of the alternating bit was not implemented correctly. Already in this small 

protocol, multiple errors were detected that were subtle enough to escape a manual 

inspection of the VHDL code. 

After conformance was shown for the corrected implementation, we modified the 

abstract specification EFSM to have discrepancies the other way around. All of these 

were detected. 

Following this small protocol, we considered a fair-sized, more complex and in

dustrially relevant design. For this we selected a part of the 1394 Serial Bus Proto
col, which has been standardised in (IEEE 1995b). The 1394 protocol implements a 

high speed, low cost bus that can handle communication between video and audio 

equipment, computers, etc. It supports multi-media applications, allows for "plug

and-play", and provides data transfer rates ranging from 100 Mbitls to 400 Mbitls. 

The experi~ents have not yet been carried to completion but we can already report 
some of our findings. We started off with a natural and abstract specification EFSM 

suggested by the standard document. However, when constructing the translation 

from abstract events to low-level events, we found that the interface behaviour of the 

implementation had a very high degree of interleaving of input and output events at 

different interfaces. In fact, the low-level representation of one abstract event often 

turned out to be a complete protocol in itself, involving low-level synchronization 

schemas and corresponding handshake mechanisms. To enable the test bench to deal 

with this behaviour, these protocols should be encoded into the stimulator and ob

server components. Given the simple, generic set-up of the stimulator and observer 

components, this appeared to be virtually impossible. This problem was worsened 

by the fact that the documentation of the protocol and the PIXIT information both 

lacked the degree of precision required to construct the translation. 

It remains to be investigated whether the problems encountered with the compli

cated interface behaviour are specific to the 1394 protocol or occur more frequently 

and require a refinement or extension of the test bench. 

The remainder of this section is devoted to the limits of the test generation method 

currently supported. 
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The EFSM specification fonnat imposes certain restrictions. It has difficulties in 

modelling, e.g., output events without an input,events occurring simultaneously at 

multiple interfaces, data parameters of events, and timers. Solutions here require 

more research in the theory of testing. 

Regarding the Confonnance Kit itself, it would be convenient if the test genera

tion process could be steered more directly by the user. For instance, one may want to 

transfer the implementation to a certain interesting state, and perfonn certain experi

ments in that state, whereas the Kit moves in a completely autonomous way through 

the state space. 

5 RELATED WORK 

Our tool environment has a modular structure and integrates two well-known tech

niques: one for automatic generation of TICN test suites based on finite state ma

chines and the other for the simulation of VHDL hardware designs. 

A number of papers that employ similar techniques for analysing VHDL designs 

have appeared. Only (Geist et al. 1996) seems to follow a similar approach to con

fonnance testing. When keeping the phased trajectory from Figure 1 in mind, the 

focus in (Geist et al. 1996) is on the test generation phase, the other phases are 

not described in detail. The method used for test generation is quite different from 

the classical graph-algorithmic approach such as applied by the Confonnance Kit. 

Model checking techniques are used to derive the tests automatically from an FSM 

model of either the implementation or the specification. To test a certain transition, a 

model checking tool is fed with the FSM and a query asserting the non-existence of 

this transition. The tool derives a counterexample containing the path to the transi

tion. This path is then used as a test sequence. More general temporal fonnulas can 

be used to direct the counterexample to check certain situations. Selection of inter

esting transitions is based on a ranking of state variables, as opposed to the transition 

marking supported by the Kit (see Section 3.1). Although coverage is obtained w.r.t. 

the 'interesting' state variables, there is no measure for coverage w.r.t. exhaustive 

testing. It seems that theoretic support for dealing with the state explosion problem 

is as much an issue for this approach, as it is for ours. 

In (Ho et al. 1995) a tool is described for exhaustive state exploration and simu

lation of VHDL designs. The VHDL design is transfonned into an FSM for which 

a transition tour is generated (see Section 3.1). This tour induces a finite set of finite 

sequences of bit vectors which together exercise every transition of the VHDL de

sign. As this tool only concerns simulation, there is no notion of confonnance w.r.t. 

a specification, or a mechanism for automatic error detection. 

In (Walsh & Hoffman 1996) a tool environment is described for the automatic ex

ecution of test scripts on VHDL components. There is no support for the automation 

of test script generation itself. 

Finally, there exist many tools for the verification ofVHDL designs (e.g., Beer et 

al. 1996, Bickford et al. 1996, Borrione et al. 1996). Each of them maps VHDL code 

to some semantical domain, on which the verification algorithms operate. It may be 
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worthwhile to see whether our approach can benefit from techniques used in these 

tools. 
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