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Optimizing complex engineering problems may demand large computational efforts because of the use of numerical models. Global
optimization can be established through the use of evolutionary algorithms, but may demand a prohibitive amount of computational time.
In order to reduce the computational time, we incorporate in the global optimization procedures a physics-based fast coarse model. This
paper presents a two-level genetic algorithm (2LGA) for electromagnetic optimization. This algorithm employs the global convergence
properties of the genetic algorithm, where acceleration of the optimization results from the fast computations of the coarse model (low
level) and where accuracy is guaranteed by using a limited number of fine model (high level) evaluations. Using the coarse model, we iter-
atively build surrogate models (intermediate levels) where metamodels produce surrogate models which approximate the fine model. The
proposed algorithm comprises internal parameters which are self-tunable. We applied the 2LGA to the optimization of an algebraic test
function, to the optimization of a die press model (TEAM Workshop Problem 25) and to the optimization of an octangular double-lay-
ered electromagnetic shield. The results show that the 2LGA is converging to the optimal solutions as the traditional genetic algorithm
and that the acceleration is dependent on the accuracy of the low level. An acceleration factor of more than two can be achieved.

Index Terms—Computationally efficient, genetic algorithm, inverse problem, optimization, shielding, two-level optimization, TEAM
Workshop Problem 25.

I. INTRODUCTION

S EARCHING the global optimum of a certain electro-
magnetic system, is the main goal when optimizing

electromagnetic systems. Stochastic optimization algorithms:
genetic algorithm [1], simulated annealing [2], particle swarm
optimization [3], etc., have been extensively applied to
optimization problems in electrical engineering [4]. These al-
gorithms however need a reasonably large computational time
in finding an optimal or a near-optimal solution. Parallelization
of the stochastic algorithms is a remedy to the computational
overhead, but is mostly not sufficient. Efficient algorithms need
to be built which demand only a few model evaluations in order
to arrive at an optimal or near-optimal solution.

Efficient local optimization algorithms were constructed for
accelerating the electromagnetic optimization of high fidelity
(fine) models (high level). These algorithms are based on the
construction of a surrogate model within the optimization pro-
cedure. A first type of surrogate models are models which in-
terpolate preliminary computer simulations of the fine model.
Such a model is “a model of the model”, also called metamodel,
where optimization can be carried out within this model. Several
frameworks have been proposed and developed [5], [6], where
such a metamodel is used. A second type of surrogate-based op-
timization is the use of a physics-based coarse model (low level),
next to the computationally demanding fine model, in the opti-
mization procedures. Space mapping techniques [7] and mani-
fold mapping techniques [8] were applied for designing electro-
magnetic devices. These techniques use a surrogate model (in-
termediate level) which is iteratively refined. A main drawback
of these (local) two-level algorithms is their lack of robustness
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to a given problem and their global convergence properties. Hy-
bridization, i.e., extending the algorithm with more reliable op-
timization techniques [9], introduction of a trust-region frame-
work [10] has to be implemented in many cases.

Within global optimization frameworks, the recently pre-
sented Efficient Global Optimization (EGO) algorithm [11],
uses surrogate models in the form of a metamodel. We present
a two-level genetic algorithm (2LGA) which uses surrogate
models based on a physical model in the optimization procedure
and which employs the principles of a conventional genetic
algorithm in order to find a global optimum in a fast way.

II. SURROGATE MODELS

A. Metamodels

From a computer model , which is physics-based
(Maxwell’s equations), with input parameters
and response

(1)

an approximation model can be built [12]. is the feasible
region of the -dimensional parameter vector . The model

(2)

is much more efficient to run than the time-demanding computer
model and yields the possibility to get insight into the functional
relationship between input parameters and responses. Further,
this metamodel (2) can be used within a fast optimization frame-
work. The responses and need to be similar, so that the meta-
model is correctly used within such a framework. We emphasize
that these models are not physics-based but that they make an as
accurate as possible interpolation of a physical model. The fol-
lowing basic steps are involved when constructing metamodels
[13].
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• Selection of sample points in the design
space (design of experiments).

• Evaluation at each sample point in the (expensive) model
.

• Choosing a metamodel to represent the model.
• Fitting of the response data to a surrogate model.
The first and third step are the most crucial steps. The design

of experiments (DoEs) has a large impact on the number of
evaluations in the expensive model (computational time) and
the accuracy of the metamodel. Further, the choice of the
metamodel is important for the accuracy and is problem-de-
pendent. A proper choice of the type of metamodel, depending
on the application, has to be taken. In the following, we explain
shortly DoEs and widely used metamodels in electromagnetic
problems.

1) Design of Experiments: Were originally developed for in-
vestigating the impact of certain parameters on a certain phys-
ical system [14]. These techniques were then applied for the
analysis of computer simulations. An experimental design rep-
resents a sequence of computer experiments which need to be
performed. A popular approach is the use of the Latin hypercube
sampling method [15] where a collection of parameters are sta-
tistically generated. In [13], a survey of possible and more ad-
vanced designs are explained.

2) Response Surface Models: Are regression models where
the responses are dependent on fit-
ting parameters . A full quadratic response surface model for
a single response output has the following form:

(3)

with single-valued, an -dimensional vector and
an -dimensional matrix. The above-mentioned response sur-
face models are used in the response surface methodology opti-
mization framework. In [16], the RSM is used for electromag-
netic optimization.

3) Kriging Models: Were originally developed and used
within the geostatistical community [17]. Kriging exploits
the spatial correlation of data in order to build interpolations.
Several approaches exist: the geostatistical approach which was
initially developed uses maximum likelihood estimates (MLE)
for the construction of the Kriging models. The surrogate model
for the th output can be constructed as follows:

(4)

with regression model , similar to (3), and random function
. The random process is assumed to have mean zero and

the following covariance:

(5)

with the correlation matrix and the correlation
function with parameter vector (which has the same dimension
as ). In general, the Gaussian correlation function is adopted
[18]. The regression model makes it possible to follow the
general tendency. Deviations from are understood as local
and the introduction of makes it possible to follow these fluc-
tuations. The popular Design and Analysis of Computer Exper-
iments (DACE), proposed in [18], is a framework for dealing

with kriging approximations to expensive computer models. In
[19], Kriging is used for electromagnetic device optimization.

4) Artificial Neural Networks (ANNs): Can also be used to
approximate the expensive computer model . The neuromodel
needs to be trained in such a way that it approximates the re-
sponses . The neural network, represented by the input-output
relationship contains internal free parameters
(weighting factors, bias, etc.) which are determined after
training the network. For a certain number of training samples

with parameters , the following cost needs
to be minimized [20]:

(6)

with error vector

(7)

The number of internal free parameters (complexity of the
ANN) has to be chosen sufficiently small to avoid poor gen-
eralization performance, and large enough in order to achieve
a small learning error. Multilayer feed-forward (MLFF) per-
ceptrons are most commonly used for the implementation of
neuromodels [21]. The neural network can then be used for
optimization purposes by using

(8)

instead of ; see, e.g., [22].

B. Physics-Based Local Surrogate Models

The user can provide next to an expensive model , a much
cheaper to evaluate model . Mostly, this model is an approxi-
mation and can not approximate the expensive model well. This
model is based on the same physical laws or on an approxima-
tion of the laws employed in . For electromagnetic problems,
approximations can be performed in geometry (e.g., 2-D geom-
etry instead of 3-D), material characteristics (e.g., complex per-
meability instead of full hysteresis model), source distributions.
For example, the behavior of an electrical machine where is
calculated using numerical methods can be approximated by a
magnetic circuit; see, e.g., [23]. A coarse model can also be a
numerical method with coarse discretizations instead of a fine
one.

These coarse models can be used as basis for surrogates so
that these surrogates approximate (1). Several forms exist, we
explain briefly the basic forms. The space mapping surrogate
[24] aligns the parameter spaces of the two models

(9)

by using a parameter mapping function , which is linear with
.
If the response functions are incorrect in the responses, a

simple response correction can be applied on the responses
of , so that following surrogate model is obtained:

(10)
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In the manifold mapping concept, is linear with , so that
following (local) surrogate model is obtained in the vicinity of
a certain point

(11)

with Jacobian of . It is possible to make the surrogate inter-
polate by assuming and [8]

(12)

We remark that the calculation of the Jacobian can be very
time demanding.

C. Physics-Based Global Surrogate Models

The proposed 2LGA in the next section uses surrogate models
which are based on the coarse model and which need to be glob-
ally valid. The starting point for building the surrogate model is
a certain given set of points

(13)

distributed in the design variable space. These points can be
evaluated in the coarse and fine model with set of responses:

(14)

(15)

and the following error between the two models:

(16)

The most simple form as surrogate model is the following:

(17)

where the constants and can be fitted based on (14)–(15).
Using this surrogate model only is not accurate enough because
of local fluctuations of errors between coarse and fine model.
Therefore, we propose to use the following surrogate model:

(18)

where the error function has to be determined using meta-
models, discussed in Section II-A. The procedure is as follows:
(a) from and determine the constants and in (17)
by using a least-squares routine, (b) determine by using
a metamodel, e.g., training of an ANN or using a Kriging meta-
model, where the input (13) and the output

(19)

are interpolated. We mark that the accuracy of surrogate model
(18) is dependent on the distribution of the set (design of
experiments).

We are aware of the fact that deviations locally occur be-
tween and , which are important and which have to be ac-
counted for. Therefore, the use of Kriging surrogate model (4)
is a good option in order to model the local deviations. In this
way, a surrogate model is constructed which tries to approxi-
mate the fine model in an as global as possible way, based on the
coarse model: global errors between the fine and coarse model

are modelled by and , local variations between coarse and
fine model are modelled by an error model .

III. TWO-LEVEL GENETIC ALGORITHM

A. Introduction

Two-level optimization algorithms implement two models in
the optimization procedure: a computationally demanding fine
model (high level) and a fast, less accurate coarse model (low
level). The latter enables acceleration of the optimization proce-
dure. This coarse model can be a metamodel or a physics-based
coarse model. In each iteration of a two-level optimization al-
gorithm, a surrogate model is built based on the coarse model
and based on a limited number of evaluations in the fine model.
In this way, the fine model is exploited strategically in the algo-
rithm while the coarse model is used more for exploration in the
design variable space.

Local two-level optimization algorithms were introduced
which make the combination of the coarse and fine model
possible. First, the space mapping algorithm was introduced
[24]. This algorithm has proven its usefulness in many elec-
tromagnetic applications: [7], [25]. This algorithm basically
uses surrogate model (9), which needs to be locally valid. The
manifold mapping algorithm [26] uses surrogate model (10).
On the basis of these main ideas, many extensions have been
developed, e.g., [27]–[29].

A main drawback of these algorithms is that their conver-
gence highly depends on the accuracy of the coarse model rela-
tively to the fine model. Implementing a coarse and fine model
into these algorithms does not always lead to an accurate solu-
tion. Indeed, in [30] a quality assessment of these coarse models
for space mapping optimization is given, that makes it pos-
sible to determine a priori, i.e., before implementing the space
mapping approach, if the quality of the coarse model is suf-
ficient enough for space mapping optimization. The HASM,
see [9], however deals with this problem by allowing the local
two-level algorithm to use a direct optimization technique when
the two-level algorithm is not converging. Moreover, these al-
gorithms converge to a local optimum. Therefore, we introduce
a global two-level algorithm with self-tunable internal param-
eters. The global properties of the algorithm are obtained by
using the basic ideas of the genetic algorithm and acceleration
of the algorithm is obtained by using a proper surrogate model.
By automatically setting parameters, the algorithm provides the
designer a robust, globally convergent optimization tool that ac-
cepts two models without requiring extra tuning efforts.

Several possibilities exist for the implementation of a genetic
algorithm. The basic idea is to alter the optimization of the cost

of the fine model

(20)

to the optimization of the cost of the surrogate model

(21)

The cost function is defined by the user and can be a least-
squares, a weighted sum of the several outputs of the computer
model, a minimax cost function, etc. The following types of
surrogate models can be used:

1) a metamodel-based surrogate model;
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Fig. 1. Flowchart of the 2-level genetic algorithm.

2) a physics-based surrogate model;
and to use the following basic strategies during the optimization:

A) A) no additional evaluations in the fine model;
B) B) refinement of surrogate model and generation of sev-

eral surrogate models.
A large number of metamodel-based optimization procedures
have been developed where the surrogates are often managed in
a model management framework [5], [6]. The surrogate model
is constructed within a certain region and the surrogate models
are sequentially generated (strategy 1B). These frameworks, to-
gether with strategies (1A) have the disadvantage to focus more
on the convergence of the surrogate model itself rather than the
original problem [5]. The EGO-algorithm also follows strategy
(1B). We propose an algorithm which uses a surrogate-based op-
timization using strategy ( B) where a physics-based global
surrogate model (18) is used as basis.

B. Two-Level Genetic Algorithm

We explain the 2LGA, based on the flowchart of Fig. 1. The
main parameters (number of individuals, number of subpopula-
tions, termination criteria, etc.) of the traditional 1LGA do not
need to be altered for the 2LGA. Further, other features of ge-

netic algorithms, such as the non dominated sorting [31], selec-
tion/recombination/mutation strategies, study of Pareto optimal
fronts, can be implemented in the 2LGA.
Step 1: The 2LGA starts by generating the initial popula-

tion . We employ the Latin hyper-
cube sampling method for generating randomly dis-
tributed individuals as design of the computer ex-
periments [13]. The number of subpopulations
and the number of individuals per subpopulation
(total number of individuals: ), are chosen the
same as the traditional genetic algorithm. According
to [1], is strictly dependent on the optimization
problem, and has to be determined heuristically.

Step 2: The individuals are evaluated in the coarse
model and the fine model: ,
respectively.

Step 3: The global surrogate model (18) is then built starting
from these evaluations by determining and

.
Step 4: The algorithm starts then optimizing the surrogate

model for a number of generations in the tra-
ditional (one-level) genetic algorithm

(22)

Parameter is an auto-tuned parameter, see the
next step. The initial number of generations is
chosen so that optimal acceleration of the algorithm
is obtained and is function of the computational time
of the fine model and of the coarse model . See
Section III-C for the time equation of the 2LGA.

Step 5: The accuracy of the previously used surrogate model
, depends on the fidelity of the coarse

model and the accuracy of the metamodel. We deter-
mine the accuracy of by the following error:

(23)

On the basis of , we determine the number of
generations in the next partial run of the ge-
netic algorithm. We employ a trust region strategy
for dependent on . If (good
correspondence between and ), the number of
generations can be extended

(24)

so that more acceleration is obtained. is the max-
imally allowed number of generations. Further, if

, the number of generations
remains the same as in the previous iteration

(25)

Finally, if , the number of generations
has to be reduced

(26)

so that more evaluations can be performed in the fine
model and relatively less in the surrogate model. In
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this way, the surrogate model can be refined in a
better way. is the minimally allowed number of
generations.

Step 6: The last step consists of producing a new generation
based on the best individuals in the fine model and
the best in the surrogate model

(27)

Here, the selection is different from the one in step 4,
because a new generation has to be composed from
two existing populations: on the one hand a popu-
lation obtained by partial optimization of the
surrogate model in step 4, and on the other hand
the population of fine individuals calculated in
step 2. Only 50% of the individuals can be kept be-
cause the new generation needs to have the same
number of individuals as the previous ones. There-
fore, in step 6, half of the population of surrogate
individuals and half of the population of fine indi-
viduals are selected by stochastic universal sampling
[32]. Then, both populations are merged, and sub-
jected to cross-over and mutation. Notice that se-
lection is carried out before the merging of the two
populations. If the selection would be done after the
merging, convergence difficulties may occur in case
of a bad surrogate model: if the surrogate model er-
roneously produces much lower cost values than the
fine model, almost no fine individuals are selected.
This means that the algorithm optimizes then mainly
the bad surrogate model, while it should optimize
the fine model.
The algorithm iterates steps 2–6 until the termina-
tion criteria are met.
The partial run of the genetic algorithm (step 4) has
the following basic procedures (traditional genetic
algorithm): selection, recombination, mutation and
migration.
Selection is carried out by stochastic universal sam-
pling. The fittest individuals have more chance to
be selected than the less fit ones, but bad individ-
uals have a selection chance that is always greater
than zero. Several other selection techniques exist
that find a compromise between selecting the fittest
individuals and preserving diversity [32].
Concerning the recombination or cross-over, [1]
suggests to set the cross-over probability at
generation equal to

(28)

with the maximum number of generations.
The mutation is set differently for the different sub-
populations. Some subpopulations have a large mu-
tation range, which is useful especially in the be-
ginning of the optimization in order to explore the
parameter space. Other subpopulations have a small
mutation range in order to approximate the optimum
accurately, which becomes more important at the

end of the optimization. An alternative is to set a
variable mutation probability like in [1]

(29)

in generation .
The population in the 2LGA consists of several sub-
populations that live isolated for a certain number,
e.g., 20, of generations. Then, 10% of the individ-
uals migrate to other subpopulations. Migration im-
proves the diversity in the subpopulations.

C. Discussion

The two-level GA has the following properties.
• If the surrogate model is a completely wrong model (inac-

curate coarse model and/or failing surrogate mapping), the
2LGA converges like a conventional one-level GA on the
fine model.

• If the surrogate model represents the fine model perfectly
(coarse model in combination with metamodel are perfect),
the number of fine model evaluations reduces drastically
due to the increasing number of generations in the surro-
gate model.

• The 2LGA is faster than other local two-level algorithms
(space mapping, manifold mapping, etc.) if optimization of
the coarse (surrogate) model needs to be carried out using
a genetic algorithm. Further, the algorithm is a means for
fast global optimization.

• Each internal parameter of the 2LGA is self-tunable.
The time equation of the 2LGA can be written as a function

of the time needed for computing one forward calculation in the
coarse and fine model: , respectively. The total time for
the solution using the 2LGA is given by

(30)

with being the total number of iterations in the 2LGA.
Time can be reduced using parallel computations where each
individual is evaluated in parallel ( for every ).

The total time for the traditional 1LGA can be written as

(31)

with the total number of generations in the 1LGA.
Acceleration of the 2LGA with respect to the 1LGA is

determined as follows:

(32)

We determine the initial number of generations by as-
suming a certain acceleration compared to the 1LGA and by
assuming that the number of generations remains constant

and the number of total generations in
the 1LGA, is the same as . The acceleration is then
given by

(33)
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If we assume an acceleration the same as needs to
be taken as infinity and optimization is performed in the coarse
model only with no evaluations in the fine model. Therefore, we
assume heuristically the following acceleration:

(34)

which gives, using (33), (integer) closest to

(35)

It is possible that the algorithm accelerates faster or slower than
(34), depending on the accuracy of the surrogate model
relatively to the fine model.

The third property of the 2LGA, given above, can be deduced
in the following way. The time equation of local two-level algo-
rithms, in particular the Aggressive Space Mapping algorithm,
is given by

(36)

where in each step of the space mapping algorithm, the opti-
mization the coarse model is carried out using a genetic algo-
rithm [see (31)] and one evaluation is carried out in the fine
model. is the total number of iterations in the space mapping
algorithm. For simplicity, we assume that the number of evalu-
ations that need to be carried out for optimization in the coarse
model, is the same as when optimizing the fine model using the
genetic algorithm with time (31). We define the acceleration
of the 2LGA with respect to the space mapping algorithm sim-
ilar to (32)

(37)

By making the same assumptions as for calculating , i.e.,
and , we have the following:

(38)

Since we want to find the necessary condition so that ,
we have

(39)

and by grouping the terms associated to and , we have

(40)

If we assume that the 2LGA needs more iterations than the
space mapping algorithm: , then we can write (40) as
follows:

(41)

If and parallel computations are carried out ,
then is always satisfied for having . For
the following realistic values needs
to be smaller than . If we assume for example that one

minimization in the coarse model needs coarse
model evaluations, and , then

or needs to be smaller than 71.5 in order to
obtain an acceleration . As a conclusion, space mapping
algorithms will be faster than the 2LGA if the computational
time of the coarse model is much faster than the fine model.

IV. OPTIMIZATION PROBLEMS

We applied the 2LGA to several optimization problems. Here,
we explain these optimization problems. First, we applied the
algorithm to an algebraic test function. In a next stage, we uti-
lized the 2LGA for the solution of two low-frequent electromag-
netic optimization problems: the optimization of a die-press and
the optimal design of an octangular-shaped shield. The forward
models in these two applications require the use of numerical
methods (finite element method).

A. Rosenbrock Test Function

The Rosenbrock test function is an algebraic test function,
which is widely used for testing new optimization algorithms.
The minimum of the Rosenbrock test function is located in a
narrow curved valley. Rosenbrock’s Function was originally de-
fined in two dimensions, but it can be augmented to dimen-
sions as well [33]

(42)

In this paper, is implemented. The coarse model is built
by implementing a linear transformation in the coarse model
parameters

(43)

where a global surrogate model (18) can not be constructed in a
straight forward way. is a 2-D matrix and is a 2-D vector.

B. Optimization of a Die-Press

The die press application, depicted in Fig. 2(a), is a bench-
mark optimization problem (TEAM Workshop Problem 25)
[34]. Four geometrical parameters , as
depicted in Fig. 2(b), have to be optimized in order to produce a
radial field between the inner and outer mold. The cost function
is therefore defined as follows:

(44)

with and the calculated -component of
the induction vector for certain geometrical parameters .

are the objective induction values in the cavity. The
induction values are uniformly distributed in the cavity with
typically .

Two models are made of the die press application for calcu-
lating the induction vectors with and . Both the
coarse and the fine model are finite element models (FEM). The
geometry, boundary conditions for the vector potential A and
flux lines of the fine model are depicted in Fig. 2(a). The yoke
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Fig. 2. Geometry, boundary conditions, and flux lines of the fine and coarse
model.

consists of nonlinear magnetic material, see [34] for its char-
acteristics. One evaluation takes approximately 3.75 s (some-
what depending on the geometry) on a 2.4 GHz computer. The
coarse model does not describe the whole geometry. In this way,
the mesh size or the number of unknowns is reduced and also
the computational time. The coarse model geometry is shown
in Fig. 2(b): it contains only the lower left part of Fig. 2(a), re-
sulting in flux lines which are not completely the same as in the
fine model. For example, the upper and lower boundary condi-
tions and force a given amount of flux through
the vertical boundaries, which is correct for one default param-
eter vector, here , only.
However, for other values of the input parameter vector x, the
enforced flux is an approximation of the flux in the fine model.
The value of is proportional to the excitation current density
where the proportionality constant is determined by comparing
the flux values of coarse and fine model at the default parameter
vector. When choosing the height of the domain of the coarse
model larger, the more accurate the coarse model becomes. This,
because the stray flux in the region is modelled more
accurately. The execution time is typically 1.05 s, about 36% of
the CPU time for the fine model.

C. Optimization of an Octangular-Shaped Shield

An octangular double-layered passive shield is able to reduce
an external uniform alternating field in the air region, enclosed

Fig. 3. Double-layered octangular shield placed in an external uniform alter-
nating field.

by the shield. The shield, as illustrated in Fig. 3, consists of two
layers of different materials—steel and aluminium—which can
be more efficient than a single layered one with the same ge-
ometry [35]. Furthermore, the octangular shape has an advan-
tage compared to a cylindrical shape: it can be built by folding
a flat metal plate at the corners of the octagon, so that the faces
of the octangular shield are not deformed. Indeed, in a cylin-
drical shape, the deformation due to bending causes mechanical
stresses which deteriorate the magnetic properties. The shield is
parametrized by the fraction of Fe (steel) in the
shield and the total thickness (m) of the shield. For practical
reasons, we take 1 mm mm. The shield needs to be
designed in such a way that a high field reduction is obtained in
the interior of the shield, and that the electromagnetic loss and
the thickness of the shield are minimized. The cost function of
the given two-layered shielding configuration is given by

(45)

with for a certain height (here, 20 cm) of the shield.
The shielding factor is found by evaluating the field in the
middle of the air region inside the shield and dividing it by the
uniform imposed field. The second cost term comprises the eddy
current loss and hysteresis loss in the shield. The last
cost term deals with the shield thickness. The chosen weighting
factors are . A priori, a certain number of trial
and error evaluations of the model were carried out. In this way,
we obtained a rough idea concerning the impact of the several
cost terms. On the basis of this rough idea, the user chooses
the weighting factors. An alternative is to study Pareto fronts
where the solution can be chosen that deserves the preference.
The shielding factor , and loss term can be
modelled by the following two forward models.

The shield is best modelled using a 3-D numerical technique
since the shield has a finite height and no axisymmetry. The
model discretizes the equation

(46)

where is the conductivity and the permeability. The perme-
ability is an analytical complex function of the magnetic field,
fitted from the experimental hysteresis loops as in [35], see
Fig. 4. A time-harmonic, quasi-static FEM is used as numer-
ical model for this fine model. This 3-D FEM uses first order
elements. As a result of nonlinearity, the FEM requires iterative
solving. The 3-D FEM has typically 220 000 degrees of freedom
and the cost terms are evaluated as follows. The eddy current
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Fig. 4. (a) Fitted hysteresis loop using complex permeability to measured hys-
teresis loops. (b) Polynomial fit of the complex permeability to the measured
hysteresis.

loss and hysteresis loss are calculated by integrals over
the shield volume

(47)

(48)

Because the model uses a frequency approach, the elements of
the vector are phasors. is the complex conjugate of . The
time for computing one forward evaluation in the fine model is

13.2 s.
We considered a 2-D formulation as low level where we

assume an infinite height of the octangular shield. The vector
potential has in this case only a -component. Because of
symmetry, the model describes only a quarter of the geometry
and solves (46). The 2-D FEM has typically 3200 degrees
of freedom, depending on the shield. This 2-D FEM is much
faster, but not so accurate. The time for computing one forward
evaluation in the coarse model is: s.

V. OPTIMIZATION RESULTS AND DISCUSSION

We compared the 2LGA with the traditional (1L)GA. The ef-
ficiency of the optimization algorithms are determined by in-
vestigating the number of fine and coarse model evaluations

Fig. 5. 2LGA applied on the optimization of the Rosenbrock’s test function.

Fig. 6. Surrogate model approximates better the fine model for increasing
number of generations.

needed to come within a certain relative distance of the true
global minima.

A. Optimization of the Rosenbrock’s Test Function

We defined in first instance the low level with (43) by
with the identity matrix, and vector by

(49)

(50)

with . The optimal solution of the coarse model is
given by . We implemented a 2LGA with

subpopulations with each individuals. The ter-
mination criteria of the GA are: maximum number of genera-
tions: generations and minimal objective value

. We have heuristically taken the initial number of
generations as and the maximum number of possible
generations as . We used the Kriging
metamodel as metamodel for determining . Constants
and of (17) are determined by a least-squares fit of the data.
The convergence history of the fine model evaluations is given
in Fig. 5, which depicts the best objective values. Fig. 6 shows
how the surrogate model is approximating the fine
model in a better way for increasing number of genera-
tions. This is because more data sets (14)–(15) are available so
that the error is constructed more accurately.

As shown in Fig. 5, only evaluations are
needed in the fine model, while evalua-
tions are needed in the surrogate model (coarse model combined
with metamodel).
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Fig. 7. Convergence history of 2LGA. First 1000 generations are more opti-
mizing the fine model and building the surrogate model, while for the next gen-
erations, the surrogate model is more used in the GA.

Fig. 8. Number of generations in each iteration. Each iteration corresponds
with �� evaluations in the fine model.

More complex transformations can be implemented than
(49)–(50), so that the low level is less accurate for modelling
the high level. This implies that more evaluations are needed in
the fine model so that an accurate surrogate model is built. For
example, if we have the following transformation:

(51)

then the fidelity of the coarse model relatively to the fine model
is very low. During the first iterations of the algorithm, the fine
model is preferably optimized (number of generations in surro-
gate model becomes ). Once the surrogate model has gained
enough data sets, the surrogate model is preferably used during
the optimization. This is illustrated by Fig. 7. The number of
generations in each iteration is given in Fig. 8. For iter-
ations 1 till 40, remains a small value , while
for the next iterations becomes larger. The surrogate model

becomes accurate enough. See Fig. 9 for the evolution of
the values in the 2LGA.

B. Optimization of a Die Press Model

In order to make a valuable comparison between the 2LGA
and the traditional GA, we choose two subpopulations of 10
individuals each, as well as the same methods and settings
for selection (stochastic universal sampling), recombination
(cross-over), mutation and migration. Termination criteria
are: maximum time 80 min, maximally 100 generations and
minimal objective value 0.001. We used the Kriging metamodel

Fig. 9. Evolution of � in 2LGA for optimization of Rosenbrock’s test func-
tion. � influences the number of generations � when optimizing the sur-
rogate model � .

Fig. 10. Traditional genetic algorithm applied on the optimization of the
“coarse” die press model.

with Gaussian correlation function as metamodel for deter-
mining . Constants and of (17) are determined by a
least-squares fit of the data. Optimization of the coarse model
by a conventional 1LGA required typically 8.6 min CPU and
25 generations to obtain a final objective value of 0.000840
and the best individual is shown in Table I. The convergence
history of the best cost values of the coarse model are given
in Fig. 10. Optimization of the fine model by a conventional
1LGA resulted in a best objective value of 0.000756 and the
best individual is shown in Table I. Convergence is shown in
Fig. 11 and the total computational time needed approximately

minutes. We first implemented the 2LGA
with a fixed number of generations for the
partial optimization runs of the surrogate models, i.e., step 5
in Fig. 1 is not implemented. The obtained objective value
was 0.000654. When implementing the 2LGA with variable
number of generations, where step 5 is used, more acceleration
is obtained for the optimization of the die press. The fine model
cost evaluations are shown in Fig. 13. Only 13.8 min were
needed [see time (30)], yielding an acceleration of ,
which is better than 1.60 from (34).

C. Optimization of an Electromagnetic Shield

For the optimization of the electromagnetic shield, we paral-
lelized the calculation of the individuals. We used sub-
populations with each individuals each. The distributed
computing setup consisted of 8 nodes. As metamodel, we used
the Kriging metamodel, while constants and of (17) are
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Fig. 11. Traditional genetic algorithm applied on the optimization of the “fine”
die press model.

Fig. 12. Two-level genetic algorithm applied on the optimization of the die
press model with fixed number of generations.

Fig. 13. Two-level genetic algorithm applied on the optimization of the die
press model with variable number of generations.

TABLE I
OPTIMAL VALUES OF THE TRADITIONAL AND 2LGA FOR THE

DIE PRESS APPLICATION

determined by a least-squares fit. The best optimal parameters
values of the fine model are %Fe and total thickness
of the shield mm with best objective value 1.0562.
Convergence history of the fine model evaluations are shown in
Fig. 14.

The total time needed for optimizing the electromagnetic
shield took approximately 15.3 minutes. In the time (30), is
taken 2 (the individuals in each subpopulation are computed in

Fig. 14. Two-level genetic algorithm applied on the optimization of the octan-
gular double-layered electromagnetic shield.

parallel). As a comparison, the 1LGA applied on the fine model
resulted in an optimal value close % to
the optimal value of the 2LGA, using approximately 26 min
(60 generations). The obtained acceleration here is ,
which is lower than 3.04 from (34). The physical reason why
the coarse model is not as accurate as wanted is because the
finite height of the shield is not modelled by the coarse model.

VI. CONCLUSION

We proposed a genetic algorithm where in the traditional
genetic algorithm optimization of a high level model, a low
level is included. Intermediate levels, in the form of surrogate
models, are based on the low level and iteratively refined during
the optimization. This surrogate model employs metamodels
for making the interpolation possible between the high and
low level. The proposed 2LGA consists of internal parameters,
which are self-tunable. Further, acceleration of the algorithm
is obtained if the surrogate model is accurate enough. If the
surrogate model is a bad model, optimization is carried out in
the fine model. In other words, the 2LGA is a robust algorithm
where the accuracy of the obtained solution is not dependent
on the fidelity of the coarse model. We applied the 2LGA on an
algebraic test function and two electromagnetic optimization
problems. We compared the 2LGA with the traditional GA and
showed that it is an accurate, robust, and faster optimization
procedure.
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