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Abstract
For performance optimization tasks such as floorplanning,
placement, buffer insertion, wire sizing, and global routing,
the Elmore RC delay metric [3] remains popular due to its
simple closed form expression, fast computation speed, and
fidelity with respect to simulation. More accurate delay
computation methods are typically either CPU intensive or
difficult to implement. To bridge this gap between accuracy
and simplicity, we propose the D2M RC delay metric, which
is virtually as simple and fast as the Elmore metric but is
significantly more accurate. The new metric is theoretically
bounded above by the Elmore delay, yet it rarely is more
than a few percent below the actual delay. Consequently, the
metric behaves like the Elmore metric in that it generally
overestimates delay, but with consistently less error.
Further, the metric is extremely accurate at the far end of
RC lines.

1.  Introduction
As process technology scales to the ultra deep sub-micron
regime, interconnect delays increasingly dominate gate
delays. Thus, physical design tools such as floorplanning,
placement, and routing are becoming more “timing-driven”.
To be effective, such a tool must be able to efficiently
compute interconnect delay since millions of delay
calculations may be required to optimize a design. Moment
matching via asymptotic waveform evaluation (AWE) [14]
is very accurate but too computationally expensive to use
within a tight optimization loop. Two-pole variants (e.g.,
[5][16]) of AWE are considerably faster, but still may be too
expensive. Closed form delay equations are certainly
preferable since they are efficient and easy to implement, as
long as accuracy is sufficient. Both Pileggi [13] and Cong et
al. [2] have recently surveyed timing metrics for RC trees.

The Elmore delay metric [3], or the first moment of the
impulse response, is the most widely applied interconnect
delay metric. It is also the simplest metric that still captures
some amount of metal resistance effects [13]. Rubenstein et
al. [15] proved that RC trees have monotonic responses and
derived best and worst case bounds on the step response
waveform. Gupta et al. [4] showed that the Elmore metric
provides an upper bound on delay for any input waveform.

The Elmore delay is known to be extremely inaccurate at
times because it ignores the resistive shielding of
downstream capacitance. For example, in the RC network
shown in Figure 1, the Elmore delay to capacitor is
independent of the resistors , , , and . The higher
the values of these resistors, the more downstream
capacitance is shielded, i.e., the larger the error is for the
Elmore approximation. One can actually choose values for
the and elements to cause arbitrarily large error. For
real deep sub-micron technologies, the Elmore delay can
result in errors of several hundred percent [13]. Errors from
the Elmore delay are generally much more pronounced for
near-end nodes (nodes relatively close to the driving source)
than for far-end nodes (nodes relatively far from the source)
since resistive shielding is less prominent for far-end nodes.

Figure 1   A simple RC tree network.

To achieve greater accuracy than the Elmore delay can
provide, additional moments of the impulse response can be
employed. Moment matching does not directly produce a
delay approximation, but rather a reduced order response
which can be solved via nonlinear iterations. These iterations
can dominate the runtime of the entire delay computation
method [13]. Thus, several works have sought to circumvent
iterations by proposing delay approximations metrics that
are direct functions of the circuit moments.

Kahng and Muddu [6][8] proposed three delay metrics. The
first is obtained by computing two poles and residues from
the first two circuit moments, then throwing out the less
dominant pole. The second is generated by using the transfer
function generated by these two poles and matching it to a 3
dB frequency. The final metric adds the first moment to the
standard deviation of the impulse response; however, this
metric is better suited for highly inductive transmission lines
than for RC trees. Indeed, the metric is always larger than
the Elmore delay, which already is an upper bound for RC
trees. This metric was also proposed independently in [10].

Tutuianu et al. [16] showed how to compute two poles with
guaranteed stability from the first three circuit moments.
More recently, Kay and Pileggi [9] proposed PRIMO which
fits the moments of the impulse response to probability
density functions. First, the parameters to the probability
density function must be computed from the moments, and
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then a single table lookup operation is all that is required to
produce the delay. Lin et al. [11] later proposed the h-
gamma metric which subsumes PRIMO by avoiding time-
shifting the distribution functions and matching moments to
the circuit’s homogenous response.

The primary contribution of this work is a new delay metric
for RC trees, namely,

(1)

where and are the first two moments of the impulse
response. D2M stands for “delay with 2 moments”. The
metric has several advantages:

• It is simpler than previously proposed higher order delay
metrics [6][8][9][11][16], making it more amenable for
optimization. Its simple form may be suitable for finding
optimal algorithms for buffer insertion and wire sizing,
which  have been discovered for the Elmore delay  [2].

• It is significantly more accurate than the closed form
metrics proposed in [6][8][16]. In particular, the metric
shows remarkable accuracy at the far end.

• It is provably less than the Elmore delay, yet we observe
that it typically overestimates delay. Consequently, the
metric behaves similarly to the Elmore delay but with
significantly reduced error.

• Although not as accurate as the h-gamma metric [11],
the new metric avoids the need to carefully construct a
2-dimensional table model. Also, at the near end, h-
gamma can severely underestimate delay while our met-
ric tends to overestimate delay.

The remainder of the paper is as follows. Section 2 presents
background material and notation, Section 3 explains the
derivation and properties of the new delay metric, Section 4
presents experimental results, and we conclude in Section 5.

2.  Background
Assume that we are given an RC tree with nodes

where is the source. Let be the
capacitance at node for , and let be the
total resistance of the portion of the unique path from to

that overlaps with the unique path from to . The
Elmore delay to node  is given by

. (2)

From the formula, one can see that two tree traversals are
sufficient to compute the Elmore delay.

Let be the moment of the impulse response for
node . We use to denote this value for a generic node.
By definition, for every node [4]. The moment
for node  can be recursively expressed as (for )

. (3)

Observe that Equations (2) and (3) are equivalent for
, except for the sign change. Thus, the Elmore delay

is the absolute value of the first moment. Observe from
Equation (3) that additional moments can easily be
computed recursively via additional tree traversals. Further,
one can express any moment directly as a closed form
formula in terms of  and  values.

Moment matching [14] approximates the transfer function
by a reduced set of  approximate poles and residues:

(4)

where are the transfer function residues that
correspond to the poles . Let be
the Laplace transform of the voltage response under a step
input, i.e., . The time
domain response  for  can be written as:

(5)

Let for . For the remainder of the
discussion, we refer to these coefficients as the residues
for mathematical simplicity. Equation (5) can now be
rewritten as:

(6)

For a -pole approximation, there are unknown poles
and unknown residues. The following system of
equations determine these values.

(7)

If ,then is called the dominant pole. When is
dominant, then Equation (6) can be approximated by

(8)

At the 50% delay point, where , one can solve
Equation (8) explicitly for the delay to yield the single-
pole delay approximation:

. (9)

Solving the system of equations in (7) for yields
and . Thus, Equation (9) can be

rewritten as , which is effectively the
Elmore delay scaled by , or about . We call this
metric the scaled Elmore delay. Pileggi [13] notes that
shifting the Elmore approximation this way does not change
the relative delay error problem, but merely shifts the error.

Two-pole approximations (e.g., [5][16]) are recognized to
be considerably more accurate than the Elmore delay and
are generally derived from matching the first four equations
from the system in (7). Thus, using three moments is much
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more powerful than using a single moment. The solutions to
the 2-pole system may be unstable, i.e., poles may be non-
negative; hence, special care has to be taken to ensure
stability. Further, Equation (6) cannot be solved explicitly
for delay; instead, iterative techniques are required.

3.  The D2M RC Delay Metric
As evidenced by the accuracy of two-pole approximations
and the h-gamma metric [11], three moments provide
sufficient information from which to derive fairly accurate
delays. However, these methods have to do quite a bit of
computation in order to derive the delay, and in the process
lose the intuition contained within the Elmore delay.

Alternatively, we empirically sought a simple function of
the first three moments that correlates well with actual
delays. Our new D2M delay metric is given by

. (10)

The relative values of and are of particular interest.
For a single RC circuit, so the ratio of to
is one. In general, for RC lines, we observed that this ratio
was significantly less than one at the near end, and slightly
greater than one at the far end. Similarly, we observed that
the ratio of actual delay to the scaled Elmore delay is much
less than one at the near end, and slightly greater than one at
the far end. Consequently, adjusting the scaled Elmore
delay by some function of should result in a metric
that is more accurate than the Elmore delay. We attempted
to integrate into the metric, but all attempts resulted in a
reduction in accuracy at the far-end.

Theorem 1: The D2M metric is strictly less than the Elmore
delay.

Proof: Gupta et al. [4] showed that the second central
moment of the transfer function is always
non-negative. This implies that . We have

(11)

and since , this quantity is strictly less than the
Elmore delay.

For RC trees, we empirically observe that the new delay
metric is never as close as 2% to the Elmore delay, which
suggests a tighter upper bound exists. In [7], Muddu and
Kahng observe that for an open-ended distributed RLC line
that when the line has no inductance. If it
can be shown that this bound holds for RC trees (which it
appears to empirically), then the tighter upper bound would
become .

An alternative way to view this metric is as a single-pole
approximation where the dominant pole is
and the residue is one. Solving Equation (9) at the 50%
delay point with these values yields our delay metric.
Indeed, single-pole approximations are typically how closed
formed metrics are derived (see Section 4.1) since there are

many ways to estimate the dominant pole. By viewing D2M
as a single-pole approximation, one can extend it to delay
points other than the 50% delay. For example, the 10-90
output slew would be given by

. (12)

We have not empirically tested the accuracy of our metric
for other delay points.

To apply the delay metric to ramp inputs, the “step”
moments can be suitably modified to yield “ramp”
moments. The Laplace transform of the voltage response

 under a ramp input can be written as

(13)

where is the input ramp time. One can now use the
modified “ramp” moments and

instead of the “step” moments
in the D2M metric (Equation (10)).

4.  Experimental Results
We now compare the D2M metric to the Elmore delay and
to four other higher-order closed form metrics, which we
will call DM1, DM2, DM3, and DM4. All of these metrics
were derived from a single-pole approximation (Equation
(9)) for a different dominant pole and residue. We now
explicitly define these metrics.

4.1  Previous Closed Form Delay Metrics
In [7], Kahng and Muddu illustrated that a two-pole
approximation could be derived by using only two
moments, instead of three, of the impulse response by
adding the constraint that . The resulting two
poles and residues are

 and

. (14)

Solving Equation (9) using the first pole and residue yields
(what we call) the DM1 delay metric proposed in [8],
namely,

. (15)

In [6], Kahng and Muddu attempt to approximate these 2-
poles with a single-pole by matching the transfer functions
up to the 3 dB frequency. They propose using a new pole

 which is given by
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(16)

Using a residue of one in Equation (8), yields the second of
Kahng and Muddu’s delay metrics:

. (17)

In [16], Tutuianu et al. proposed a “first order delay
estimate” to be used as an initial guess to a Newton-
Raphson iteration. The authors used the fact that the limit of

as goes to infinity converges to the dominant
pole to approximate by . Their approximation
for a second pole is given by

. (18)

The values for the two corresponding residues are obtained
by solving the first two equations of the system in (7). In
particular, the residue expressions are

 and . (19)

The delay estimate DM3 is thus given by substituting the
dominant pole and the above corresponding residue

 into Equation (9).

The actual delay metric proposed in [16] is obtained by
running a single Newton-Raphson iteration for DM3. So the
new “improved explicit approximation” is given by

. (20)

4.2  Single-Sink Comparisons
The first set of experiments seeks to analyze the difference
between D2M and other proposed closed form metrics,
DM1-4. We begin with a random 10 RC circuit connected
in series, e.g., Figure 1 denotes a 5 RC circuit. Each resistor
and capacitor was randomly chosen between 1-20 kΩ and 1-
20 ff, respectively. These test cases are actually quite
challenging for a delay metric since the nodes at the near
end will have significant resistive shielding. An RC line
also permits one to track accuracy trends from near-end to
far-end nodes. Let node 1 be the node closest to the source,
node 2 the second closest, etc.

To determine actual delays, we applied the AS/X electrical
simulator from IBM [1]. We generated 100 random circuits
and computed delay according to each metric and AS/X.
Table 1 presents the average delay ratio of each metric to
the AS/X over all 100 circuits. A value close to one shows
excellent correspondence to AS/X; a value above one shows
over-estimated delay, while a value below one shows under-
estimated delay. We make several observations.

• DM3 is a poor approximation at the near-end since it
returns large negative values. For these cases, we use
zero as our initial guess for the DM4 iteration (Equation
(20)). Even so, DM4 also gives negative delay results at

the near-end. Both DM3 and DM4 show outstanding
correlation with AS/X at the far-end.

• DM2 does not appear to be any better than the Elmore
delay. It is significantly worse than Elmore for the first
two nodes and it under-estimates delay at the far-end.

• Both DM1 and D2M are more accurate than the Elmore
delay for every node, while neither significantly under-
estimates the delay. D2M is more accurate than DM1 at
both the near and far-ends. At the near end (node 1),
D2M overestimates delay by a factor of 3.7, but DM1
overestimates delay by twice this value, and Elmore
overestimates it by almost four times this value. At the
far-end, the D2M delays correspond almost exactly with
AS/X, while DM1 is off by roughly 2-4%.

Table 1 Ratio of each delay metric to AS/X averaged over 100

random 10 RC circuits.

Table 2   Minimum, maximum, and standard deviation of the
ratio of each metric to AS/X for 100 random 10 RC circuits.
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Average Ratio of Delay Metric to AS/X Delays

D2M Elmore DM1 DM2 DM3 DM4

1 3.734 13.128 7.250 34.853 -298.232 -3.417

2 2.152 4.771 2.809 6.538 -8.189 -1.167

3 1.543 2.839 1.749 2.981 -0.283 -0.241

4 1.246 2.049 1.315 1.804 0.753 3.140

5 1.103 1.684 1.124 1.303 0.928 1.214

6 1.033 1.495 1.037 1.043 0.962 1.058

7 1.006 1.398 1.011 0.896 1.002 1.010

8 0.999 1.354 1.014 0.820 1.000 0.999

9 0.999 1.332 1.029 0.778 1.000 0.999

10 1.000 1.323 1.041 0.757 1.000 0.999

RC
Elt

Minimum Ratio Maximum Ratio Standard Dev.

D2M Elm DM1 D2M Elm DM1 D2M Elm DM1

1 0.996 3.287 1.990 26.29 121.8 65.56 3.45 16.4 8.79

2 1.217 2.008 1.283 6.664 19.28 10.86 0.78 2.28 1.27

3 1.123 1.799 1.165 2.579 5.394 3.103 0.29 0.77 0.43

4 1.021 1.483 1.022 1.911 3.918 2.341 0.17 0.42 0.23

5 1.001 1.386 1.004 1.590 2.836 1.760 0.10 0.23 0.12

6 0.992 1.359 0.998 1.207 1.963 1.262 0.04 0.10 0.04

7 0.991 1.330 1.002 1.070 1.587 1.074 0.01 0.05 0.01

8 0.990 1.293 1.003 1.008 1.416 1.051 0.00 0.02 0.01

9 0.984 1.287 1.007 1.003 1.377 1.082 0.00 0.02 0.02

10 0.985 1.252 1.014 1.003 1.362 1.159 0.00 0.02 0.02
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The remaining experiments do not consider DM2, DM3,
and DM4 since they have regions where they are worse than
the Elmore delay. Table 2 takes a closer look at the results
for D2M, Elmore (using Elm to abbreviate Elmore), and
DM1. For the 100 circuits, the minimum and maximum
ratios of each metric to AS/X are shown, along with the
standard deviation of these ratios. We observe that:

• At node 1, for at least one RC circuit, the Elmore delay
is a factor of over 100 worse than AS/X. DM1 is about
half as bad, while D2M is about 26 times worse. Indeed,
this RC circuit is a particularly difficult instance.

• Elmore delay always significantly overestimates delay at
node 1, with the best case being a factor of 3.3 more than
AS/X. DM1 is always at least twice AS/X, but this
behavior is not seen for D2M.

• D2M performs exceptionally at the far end. For nodes 8-
10, D2M is never more than 1% above or 1.6% below
AS/X over all 100 runs. Further, D2M is more stable
than the other metrics as can be seen by its uniformly
lower standard deviations.

Table 3   Ratio of delays for DM1, Elmore, and D2M to AS/X
for RC trees. Each row in the table summarizes results for 100

randomly generated tree topologies.

4.3  Multi-Sink Comparisons
We now compare DM1 and the Elmore delay to D2M for
RC trees. We wrote a random RC tree generator that takes
the number of RC elements (#RC) and number of sinks (S)

as input and generates a random tree topology with random
values for the resistors and capacitors. For each tree we
measured the ratio of each delay metric to AS/X at each sink
in the tree. The average, minimum and maximum ratios to
AS/X are presented in Table 3. Each row represents the
results for 100 random trees. The D2M uniformly
dominates Elmore and DM1 in terms of accuracy in the
average case. The maximum error is also uniformly better
than the other metrics. Not surprisingly, the overall
accuracy to tree sinks is less than for far end sinks in the 2-
pin case because sinks in trees can behave like near-end
nodes. Although not shown, D2M is also uniformly
dominant in standard deviation, or stability of results.

However, for 100 RC’s and 10 sinks, we observe that D2M
can be as much as 16% below AS/X delays, and is 6-14%
below AS/X in other cases with more than 50 RC’s. By
taking a closer looking at these handful of instances (18 out
of 18,700 sinks on 9 out of 1600 nets have DM2 delays that
are more than 6% below AS/X), we do not observe a
discernible pattern to the characteristics of the sinks that
cause this underestimation.

4.4  Comparisons to h-gamma
Our final experiments compare D2M to the h-gamma metric
[11]. Rather than implement our own version of h-gamma
(since the quality of the results returned by h-gamma
depends on how well crafted the 2-dimensional lookup table
is), Tao Lin [12] ran h-gamma on four RC circuits that we
generated and reported back the results. The first was a 7
node, 2-sink RC tree, shown in Figure 2. The other three
circuits were chosen from the set of 100 circuits with 10
RC’s reported in Section 4.2. We call them A, B, and C
where A is a fairly typical random circuit, B has more
resistive shielding at the near end, and C has very high
resistive shielding at the near end. We also compare with
the Elmore delay and DM1 to provide frames of reference.

Figure 2  An RC Tree example.

Results for the RC tree are shown in Table 4 (using h- to
abbreviate h-gamma). The first five data columns give the
computed delays in picoseconds, and the last four columns
give the ratio of the metric compared to AS/X. For this
example, h-gamma is clearly better at computing near-end
delays than the closed form solutions, and its results at the
far end are just as good as the other metrics. Notice though
that h-gamma can underestimate delay somewhat, by about
5% at nodes 2 and 6. This trend is more noticeable for the
circuits A, B, and C.

Table 5 presents delays (ps) at each node for the circuits A,

#
RC S

Average Ratio Minimum Ratio Maximum Ratio

D2M Elm DM1 D2M Elm DM1 D2M Elm DM1

10 2 1.058 1.522 1.096 0.983 1.268 0.999 2.134 4.227 2.546

3 1.054 1.536 1.087 0.977 1.266 0.991 1.986 5.282 2.996

4 1.060 1.554 1.090 0.978 1.280 0.988 4.268 9.723 5.684

5 1.046 1.519 1.066 0.977 1.274 0.986 2.187 4.174 2.538

20 2 1.070 1.564 1.127 0.983 1.264 0.987 2.471 5.500 3.229

4 1.106 1.686 1.167 0.977 1.270 0.988 3.435 8.594 4.944

7 1.079 1.618 1.119 0.979 1.275 0.985 2.818 6.745 3.623

10 1.079 1.618 1.114 0.979 1.278 0.985 4.193 10.17 5.878

50 5 1.124 1.788 1.217 0.881 1.273 0.973 4.123 10.86 6.030

10 1.120 1.749 1.188 0.944 1.253 0.979 4.695 11.34 6.562

15 1.102 1.694 1.153 0.973 1.259 0.979 9.261 24.31 13.89

20 1.090 1.667 1.137 0.942 1.254 0.980 9.730 22.41 13.08

100 10 1.113 1.777 1.200 0.840 1.252 0.938 5.425 16.15 9.069

20 1.111 1.760 1.185 0.864 1.260 0.967 6.795 19.55 10.90

30 1.090 1.676 1.139 0.967 1.262 0.968 12.88 28.64 16.82

40 1.076 1.643 1.119 0.963 1.245 0.967 8.844 23.02 13.16

+
-

80Ω

0.5pFVin

(1)

1pF

(2)
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(4) (7)(5)60Ω 60Ω 60Ω 60Ω
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Γ
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B, and C for D2M, h-gamma, and AS/X. Observe that for
circuit A, h-gamma delays are very close to AS/X delays;
however, for circuits B and C, one can see that h-gamma
can significantly underestimate delay at the near end. In
particular, for node 1 in circuit B, h-gamma underestimates
delay by 75%, and at node 2 in circuit C, it underestimates
delay by 26%. Overall, h-gamma is clearly the more
accurate metric; however, D2M is actually more accurate at
the far-end (nodes 8-10) for all three circuits.

Table 4   Delay metric comparison for the RC tree in Figure 2.

Table 5   Delays (ps) for D2M, h-gamma and AS/X on the
circuits A, B, and C.

5.  Conclusions and Future Work
We have proposed D2M, a delay metric for RC trees that is
a simple function of two moments of the impulse response.
Our metric typically behaves as an upper bound to the real
delay, but the magnitudes of the error are significantly less
than for the Elmore delay. D2M is also more accurate than
other delay metrics that can be written as functions of the
first few moments, though is not as accurate as h-gamma.
The potential applications for the new metric are
widespread. Applications such as timing-driven placement,
interconnect synthesis, and global routing could benefit
significantly by using D2M instead of Elmore delay within

an optimization loop.

There are still some questions about D2M that we wish to
answer in future work. We would like to derive the metric
theoretically and prove the tighter upper bound

. We would also like to generalize the
metric to more than two moments. This could allow the user
to trade off (relatively inexpensive) moment computations
for accuracy.
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RC
Elt

Reported Delay Ratio to AS/X delay

D2M Elm DM1 h- AS/X D2M Elm DM1 h-

1 299 552 339 194 197 1.517 2.802 1.720 0.984

2 420 684 440 355 374 1.122 1.828 1.176 0.949

3 514 804 527 486 477 1.077 1.685 1.104 1.018

4 696 996 696 701 701 0.992 1.420 0.992 1.000

5 830 1128 839 840 845 0.982 1.334 0.992 0.994

6 492 756 501 431 452 1.088 1.672 1.108 0.953

7 905 1200 936 912 919 0.984 1.305 1.018 0.992

RC
Elt

Circuit A Circuit B Circuit C

D2M h- ASX D2M h- ASX D2M h- ASX

1 399 74 64 22 3 12 12 0 2

2 1440 714 750 578 226 230 622 144 200

3 2307 1916 1789 1097 929 869 1250 918 907

4 2605 2304 2162 1322 1216 1158 1473 1152 1206

5 2979 2772 2648 1822 1802 1792 2146 2057 2005

6 3960 3927 3910 2028 2017 2019 2637 2619 1611

7 4617 4614 4636 2080 2072 2077 2892 2885 2893

8 4787 4807 4778 2327 2321 2337 3104 3102 3121

9 5070 5049 5083 2438 2426 2446 3322 3315 3342

10 5106 5082 5117 2500 2484 2505 3468 3453 3483

Γ Γ

Γ Γ Γ

D2M 0.8003ED≤
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