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A TWO-PARAMETER FAMILY OF COMPLEX HADAMARD

MATRICES OF ORDER 6 INDUCED BY HYPOCYCLOIDS

FERENC SZÖLLŐSI

(Communicated by Marius Junge)

Abstract. We construct a 2-parameter family of complex Hadamard matrices
of order 6 by a natural block construction. We combine this family with an
earlier result of Zauner to derive a 2-parameter family of triplets of mutually
unbiased bases (MUBs) in C6. This invalidates some numerical evidence given
by Brierley and Weigert and sheds new light on the problem of determining

the maximal number of MUBs in C6.

1. Introduction

Complex Hadamard matrices were originally studied for their connection to von
Neumann algebras and pairs of orthogonal maximal Abelian ∗-subalgebras of the
matrix algebra Mn(C), as initiated by Popa [15]. A specific problem of interest was
the construction of circulant complex Hadamard matrices in connection with the
existence of bi-unimodular sequences. Results of Björck [3], de la Harpe and Jones
[10], and Munemasa and Watatani [14] showed that non-classical bi-unimodular
sequences exist for all prime order p ≥ 7. For p = 2, 3, 5 only classical bi-unimodular
sequences exist, the case p = 5 being settled by Haagerup [9].

In the past decade there has been renewed interest in complex Hadamard ma-
trices after it was shown by Werner [21] that these matrices play an important rôle
in several constructions in quantum-information theory. Protocols in quantum-
cryptography also rely on the existence of Hadamard matrices (see e.g. [7]). To

describe the state of the art, Tadej and Życzkowski compiled a catalogue [18] of
all known complex Hadamard matrices up to order 16 and have been regularly
updating it in an online version [19] with new results emerging in the literature
(e.g. [1], [13]). Full characterisation of complex Hadamard matrices is available
only up to order 5 in [9]. For order 6 such classification remains elusive despite
recent efforts [1], [8], [13], [17]. Particular motivation to study the 6× 6 case comes
from the problem of determining the maximal number of mutually unbiased bases
(MUBs) in C6, a notorious open problem in quantum-information theory. Recall
that two orthonormal bases {e1, . . . , ed} and {f1, . . . , fd} are mutually unbiased

in Cd if |〈ei, fj〉| = 1/
√
d. It is well-known that the maximal number of pairwise

mutually unbiased bases in Cd is not greater than d + 1, and this upper bound is
attained whenever d is a prime power (see e.g. [12], [23]). The first open case is
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922 FERENC SZÖLLŐSI

dimension 6, and there has been considerable effort devoted to this case in the past
few years, a recent survey being given in [2]. Numerical evidence [4], [6] suggests
that the maximal number of MUBs in C

6 is 3. However, the results of the present
paper show that such numerical results might be misleading and must be inter-
preted with sufficient care. Nevertheless, we still believe that the maximal number
of MUBs in C6 is indeed 3, and a discretization scheme introduced in [11] may
achieve a rigorous proof of such a statement in the future.

This paper is organized as follows. In Section 2 we construct a 2-parameter
family of complex Hadamard matrices of order 6 by a natural block construction.
In Section 3 we discuss connections between this new family and previously known
families of complex Hadamard matrices. Finally, in Section 4 we recall a construc-
tion of Zauner [24] to prove the existence of a 2-parameter family of MUB-triplets
of order 6. This result is particularly interesting, as it invalidates some numerical
evidence given recently in [5].

2. The construction

Recall that a complex Hadamard matrix is a square matrix with unimodular
entries such that the rows (and therefore columns) are pairwise orthogonal.

We will consider complex unimodular matrices with highly symmetrical block
structure. Such restriction made on the matrix implies that “almost all” orthogo-
nality conditions will hold automatically. Consider the following 2m × 2m matrix
consisting of m×m blocks A,B and their adjoint A∗, B∗, respectively:

(2.1) H =

[
A B
B∗ −A∗

]
.

For H to be a complex Hadamard matrix, we must exhibit unimodular matrices
A,B satisfying the following conditions:

(2.2) AA∗ +BB∗ = 2mIm, B∗B +A∗A = 2mIm, AB −BA = 0,

where Im is the identity matrix of order m. If A and B are circulant matrices, they
commute, and therefore the last equation holds automatically, while the first two
are equivalent. Hence, putting m = 3, the building blocks of H can be taken as

(2.3) A =

⎡
⎣ a b c

c a b
b c a

⎤
⎦ , B =

⎡
⎣ d e f

f d e
e f d

⎤
⎦ .

Recall that two complex Hadamard matrices, H and K, are called equivalent if
there exists D1, D2 unitary diagonal and P,Q permutational matrices, such that
H = D1PKQD2. It is well-known (and obvious) that each complex Hadamard
matrix is equivalent to a dephased one (i.e. one with its first row and column
consisting of 1’s). With the notation (2.3) we have H and its dephased form X6 as
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follows:
(2.4)

H=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f
c a b f d e
b c a e f d

1
d

1
f

1
e − 1

a − 1
c − 1

b

1
e

1
d

1
f − 1

b − 1
a − 1

c

1
f

1
e

1
d − 1

c − 1
b − 1

a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X6=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

1 a2

bc
ab
c2

af
cd

ad
ce

ae
cf

1 ac
b2

a2

bc
ae
bd

af
be

ad
bf

1 ad
bf

ad
ce −1 −ad

ce −ad
bf

1 ae
bd

ae
cf −ae

bd −1 −ae
cf

1 af
be

af
cd −af

cd −af
be −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

As we have observed earlier it is necessary and sufficient for H to be a complex
Hadamard matrix where the complex numbers a, b, c, d, e, f have modulus 1 and
satisfy

(2.5)
a

b
+

b

c
+

c

a
+

d

e
+

e

f
+

f

d
= 0.

Let us denote by ϕ : T× T → C the following fundamental function of ours:

(2.6) ϕ[x, y] := x+ y +
1

xy
.

Observe that we have ϕ[ab ,
b
c ] =

a
b + b

c +
c
a . Hence to satisfy (2.5) one should look

for certain x, y, u and v ∈ T, such that for some α ∈ ranϕ,

(2.7) ϕ[x, y] = α and ϕ[u, v] = −α

hold simultaneously. It is straightforward to calculate that ranϕ is a so-called deltoid
being bordered by the three-sided hypocycloid ϕ[x, x] = 2x+ 1

x2 (see Figure 1). Let
us introduce the notation D := ranϕ ∩ ran(−ϕ). It is clear that for any α ∈ D

one can define a complex Hadamard matrix in the following way: take any value
of ϕ−1[α], say (x, y). Then define a = 1, b = x, c = xy. Similarly, take ϕ−1[−α] to
obtain the value (u, v) and define d = 1, e = u, f = uv. After substituting back to
(2.4) we get

(2.8) X6(α) ≡ X6(x, y, u, v) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 x2y xy2 xy

uv uxy vxy
1 x

y x2y x
u

x
v uvx

1 uvx uxy −1 −uxy −uvx
1 x

u vxy −x
u −1 −vxy

1 x
v

xy
uv −xy

uv −x
v −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Next we describe an algebraic way of inverting ϕ; i.e. how we can determine x, y
and u, v from a given α ∈ D. The equation ϕ[x, y] = α and its conjugate read

(2.9) x+ y +
1

xy
= α,

1

x
+

1

y
+ xy = α.

After multiplying the first equation by x2 
= 0 and the second by x 
= 0, one can
eliminate the variable y to obtain the following cubic equation for x:

(2.10) fα(x) := x3 − αx2 + αx− 1 = 0.

By symmetry, this equation must hold for y as well. For α ∈ intD the roots of
(2.10) are distinct and of modulus 1. Let us denote them by r1, r2, r3. Hence, one
can choose x as any of r1, r2, r3, and choose y as any other root. We therefore have
6 choices for the ordered pair (x, y).
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F6 1 6,0

F6
T 1 6,0

C6

C6

D6D6

D6D6

C6C6

C6C6

D6D6

D

D0

0 1 2 3

0

1

2

3

Figure 1. The intersection of the two deltoids D consists of six
equivalent sectors, one of which is the fundamental region D0. The
boundary of D and the inscribed circle correspond to the families
B6(y) and D6(c), respectively.

Finally, let us substitute −α into (2.10) and denote the roots by q1, q2, q3. The
method to determine the values of u, v is completely analogous to what we have
presented for x and y. As the arising equations are of degree three, x, y, u and v
can be given explicitly in closed form. We spare the reader the details.

For α ∈ intD we therefore have 6 × 6 = 36 choices for the ordered quadruple
(x, y, u, v). However, using the fact that r1r2r3 = 1, we get an easy automatized
calculation that shows that all of the emerging matrices X6(x, y, u, v) are equivalent
to one of the two matricesX6(r1, r2, q1, q2) orX

T
6 (r1, r2, q1, q2) (note that a complex

Hadamard matrix is generically not equivalent to its transpose).1 On the boundary
of D, however, it is easy to show that X6(r1, r2, q1, q2) and XT

6 (r1, r2, q1, q2) are
equivalent and hence all choices of the quadruple (x, y, u, v) lead to equivalent
matrices. Also, X6(r1, r2, q1, q2) is easily seen to be equivalent to its own conjugate,
X6(r1, r2, q1, q2), and hence XT

6 (r1, r2, q1, q2) and X∗
6 (r1, r2, q1, q2) are equivalent as

well.
We summarize the contents of this section in the following.

Theorem 2.1. For α ∈ D let r1(α), r2(α), r3(α) denote the roots of equation (2.10),
set as continuous functions of α. Similarly, substitute −α into (2.10) and denote the
roots as q1(α), q2(α), q3(α). Set x = r1(α), y = r2(α) and u = q1(α), v = q2(α).
Then formula (2.8) and its transpose yield two 2-parameter families of complex

1We thank Ingemar Bengtsson for pointing out this fact.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A 2-PARAMETER FAMILY OF HADAMARD MATRICES OF ORDER 6 925

Hadamard matrices of order 6, X6(x, y, u, v) and XT
6 (x, y, u, v). Other choices of

the roots ri(α), qj(α) lead to equivalent matrices.

3. Connections to other families

of complex Hadamard matrices

Throughout this section we use the standard notation of [19] for well-known
families of complex Hadamard matrices, and we denote the standard basis of C6 by
ei, i = 1, 2, . . . , 6. We will analyze how our new familyX6(α) is related to previously
discovered ones, such as F6(a, b), D6(c), and B6(y), respectively. In particular, we
prove that both the Beauchamp–Nicoara family of self-adjoint complex Hadamard
matrices B6(y) and Diţă’s 1-parameter affine family D6(c) are contained in X6(α).
Thus our construction unifies and extends some of the previously discovered fami-
lies.

We begin by noting that the region D is being characterized algebraically by the
discriminant function associated to equation (2.10),

(3.1) D[α] := |α|4 + 18 |α|2 − 8�[α3]− 27,

and we have α ∈ D if and only if D[α] ≤ 0 and D[−α] ≤ 0.
Next we discuss some internal equivalences within the family X6(α), thus show-

ing that it is possible to reduce D to a smaller fundamental region. First, the
transformation α → −α establishes a trivial equivalence. Second, equation (2.10)
is invariant under the substitutions α → ωα and y → ωy, with ω = e2πi/3.
The second transformation leaving the matrix X6(x, y, u, v) invariant establishes
an equivalence between the matrices X6(α) and X6(ωα). As a result, the region
D is found to consist of six equivalent sectors. We define the fundamental region
D0 := {α ∈ D : −π/6 < arg(α) ≤ π/6}.

Now we examine the extremal points of D0. By equation (3.1) a straightforward
computation shows the following: for α = 0, X6(α) and XT

6 (α) are equivalent to
F6(1/6, 0) and FT

6 (1/6, 0). The extremal point of D0 farthest from the origin can

be obtained as αmax =
√
−9 + 6

√
3e2πi/12, and X6(α

max) is equivalent to Björck’s
circulant matrix C6. The extremal point of D0 on the real axis is αmin = 1, and
X6(α

min) is equivalent to D6.
Let us next show that X6(α) is indeed a new family; i.e. it is different from the

only other known 2-parameter family of order 6, the generalized Fourier matrices
F6(a, b). To see this, observe that X6(α

min) is equivalent to D6, which is not
included in the families F6(a, b) or FT

6 (a, b). Therefore, by continuity, in a small
neighborhood U of αmin the family X6(α) is disjoint from F6(a, b) and FT

6 (a, b).
Within this neighborhood U the possible intersections of X6(α) and other known
families such as D6(c), B6(y) or M6(x) can at most produce 1-parameter curves.
This shows that the family X6(α) is at least locally generically new, around α0 = 1.
We conjecture that more is true: the family X6(α) intersects the Fourier family
only at α = 0.

Next we show that the whole family D6(c) is included in our family X6(α). In
fact, this follows easily from an earlier result of Zauner [24].

Proposition 3.1 (cf. Ex. 5.7 from [24]). With c = t3 the family D6(c) (as given
in [18]) is trivially permutation equivalent to the family with circulant blocks D(t)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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given below, which is thus included in the family X6(α):

(3.2) D(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 i
t it 1 1

t −t
it 1 i

t −t 1 1
t

i
t it 1 1

t −t 1

1 − 1
t t −1 i

t it
t 1 − 1

t it −1 i
t

− 1
t t 1 i

t it −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to show that D(t) corresponds to X6(α) with α being on the unit circle
(see Figure 1).

Next we turn our attention to the family of self-adjoint complex Hadamard
matrices B6(y) [1], [19] and show that this family is also contained in X6(α).

Proposition 3.2. Let B be a complex Hadamard matrix of the form

(3.3) B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

1 −1 − 1
x −y y 1

x

1 −x 1 y 1
z − 1

xyz

1 − 1
y

1
y −1 − 1

xyz
1

xyz

1 1
y z −xyz 1 − 1

x

1 x −xyz xyz −x −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Define permutational matrices P = [e1, e4, e2, e5, e3, e6] , Q = [e5, e1, e3, e4, e6, e2],
and unitary diagonal matrices D1 = Diag (1, 3

√
z, 1/ 3

√
z, 1/y, 3

√
z,−1/(xy 3

√
z)),

D2 = Diag
(
1, 1/ 3

√
z, 1/( 3

√
z)2, 1,−xy( 3

√
z)2, y 3

√
z
)
, where 3

√
z denotes the principal

cubic root of z. A straightforward calculation shows that D1PBQD2 is composed
of circulant blocks and is therefore included in the family X6(α). As the members
of the family B6(y) are of the form (3.3), the family B6(y) is included in X6(α).

It is easy to show that the family B6(y) corresponds to the boundary of D (see
Figure 1).

One might wonder whether the symmetric family M6(x) is included in X6(α) as
well. On the contrary: as the matrix M6 and its conjugate M6 are inequivalent
(see [13]), one can see that in a small neighborhood of M6 the family M6(x) avoids
X6(α).

4. A two-parameter family of MUB-triplets in C
6

The maximal number of mutually unbiased bases (MUBs) in dimension 6 is not
known. In general, the problem of MUBs seems to be deeply related to orthogonal
Latin squares (see e.g. [16], [20], [22]). This would suggest that a complete system
of 7 MUBs does not exist in C6, a conjecture being supported further by numerical
evidence [4], [6]. The maximal number of MUBs currently known in C

6 is 3. Indeed,
some isolated examples of MUB-triplets are presented in [2], while a 1-parameter
infinite family of MUB-triplets is given explicitly in [11]. It also turned out that a
scarcely known publication of Zauner [24] also contains a beautiful construction of
another 1-parameter family of MUB-triplets. In the other direction, a discretization
scheme followed by an exhaustive computer search [11] provided a rigorous proof
that the standard basis and any member of the Fourier family F (a, b) cannot be
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extended to a MUB-quartet. Such a scheme could provide a rigorous full solution
to the maximal number of MUBs in C6 in the future.

It turns out that the construction of Zauner [24] can be automatically combined
with our family X6(α), thus providing a new 2-parameter family of MUB-triplets
in C6. This is particularly interesting because a recent publication of Brierley
and Weigert gave seemingly strong numerical evidence that members of the family
X6(α) cannot be part of MUB-triplets (although the authors very frankly admit
that their result cannot be accepted as rigorous proof). This shows that such
approximative numerical results might be misleading and in the same manner a
MUB-quartet might be “hiding” somewhere. Therefore, the maximal number of
MUBs in C

6 must be considered wide open.
Let us recall the result of Zauner [24] relevant to us. A detailed exposition of

this result in English is available in Appendix B of [11].

Proposition 4.1 (cf. Prop. 5.6 from [24]). If T is a 2m× 2m complex Hadamard
matrix with m ×m circulant blocks A,B,C,D, then there exist 2m × 2m complex
Hadamard matrices Z1, Z2 such that T =

√
2mZ−1

1 Z2.

Proposition 4.1 describes how to construct a triplet of MUBs from a given 2-
circulant complex Hadamard matrix T . The assumption T =

√
2mZ−1

1 Z2 implies
that 1√

2m
T = 1

2mZ∗
1Z2, and hence {I2m, 1√

2m
Z1,

1√
2m

Z2} is a collection of 3 MUBs

of order 2m. Clearly, the members of our new family X6(α) are suitable to take
the rôle of T above. In summary, we have proved the following:

Theorem 4.2. For each member of the family X6(α) there exist complex Hadamard

matrices Z1(α), Z2(α) such that
√
6X6(α) = Z∗

1 (α)Z2(α). In particular, there exists
a 2-parameter family of MUB-triplets (I6,

1√
6
Z1(α),

1√
6
Z2(α)) of order 6 emerging

from the family X6(α) via Zauner’s construction described in Proposition 4.1.

Note that Proposition 4.1 allows the blocks to be different A,B,C,D, whereas
the matrices X6(α) contain blocks A,B,B∗,−A∗. Therefore Zauner’s construction
may yield further results in the future.

We conclude our paper with the following observation: it is plausible that our
new family X6(α) intersects the Fourier families only at α = 0. If one could

exhibit similar families Xa,b
6 (α) for all members F (a, b) of the Fourier families, one

would provide a rigorous proof of the existence of a 4-parameter family of complex
Hadamard matrices of order 6. The existence of such a family is strongly indicated
by the numerical results of [17]. This could possibly lead to a full classification of
complex Hadamard matrices of order 6.
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