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1. Introduction.   The  mean  of  order  t  of  the   positive  values

x = (xi, x2, ■ ■ ■ , xn) with positive weights w = (wi, w2, • ■ ■ , wn),

YjWi=l, is defined [3], [5] by

Mt(x, W)  = \    Y wixi        ; I 9* 0,

(1.1) Ln"   J
Mo(x, w) =  P XiWi   =   lim Mt(x, w).

i-l «-o

Homogeneity in x distinguishes M, from all other means of the form

<f>-1 f y,?-1 Wifl>(xA ]. where <f> is any function with a unique inverse

<p~l [5, Theorem 84].

Without losing homogeneity, Mt has been generalized to the

hypergeometric mean value M(t, c; x; w) [4]. In the present paper we

shall make a further generalization while maintaining homogeneity.

We construct a two-parameter mean, L(s, t; x), by first forming the

mean Ms(x, «). Using an arbitrary weight function, P(u), we then

take an integral average over all possible choices of the weights u

satisfying ^5'»1m,= 1. Because un = 1 —Ui— ■ ■ • —un-i, the average

requires an (n — l)-fold integration with respect to U\, u2, ■ • • , m„_i.

If the variables x are all positive, then for any real 5 and t we define

L(s,t;x)=\   j M.(*,w)P(«)rf«'      ,        t9*0,

(L2)
L(s, 0; x) = lim L(s, I; x),

'—o

whereu' = (ui, ■ ■ ■ ,m„_i),du' = duxdu2 ■ ■ ■ dun^i,P(u)^0,fsP(u)du'

= 1 and E= {«'|w,->0, 1 ̂ i^n — 1 and un = l—ui— ■ • ■ — m„_i>0}.

The L(s, t; x) mean is homogeneous in x. It can be regarded as a

special case of the integral mean [5, Chapter 3]
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Mtif,P) =\^Jfiu)Piu)duJ\

but it is a generalization of previously known ways of constructing a

homogeneous mean of the discrete variables xi, x2) • • • , x„. After

defining a set of natural weights w associated with the function Piu),

we shall show (Theorem 3) that Lis, t; x) contains Af((x, w) in the

special case s = t. It contains also the hypergeometric mean,

Mit, c; x; w), in the special case s = l and Piu) = Picw; u), a particular

weight function depending on the parameters cw = icwi, cwi, ■ ■ ■ , cwn)

[4, Equation (2.2)]. All properties of MQ, c; x; w) which do not de-

pend explicitly on c can be generalized to properties of Lis, t; x).

In this generalization, s and t each play roles analogous to that of

t in Mit, c; x; w).

2. Elementary properties of Lis, t;x).li Piu) is such that Llis, t; x)

is an improper integral, it is easily shown to converge uniformly in

s, t, and x for 0<m^x,^M, 1 ̂ i^n, all real s, and —T^t^T. As a

result of this uniform convergence and the continuity of M'six, u) in

5, t, x, and u, Lis, t; x) is continuous in s, t, and x.

In considering some limiting values of Lis, t; x), we use the nota-

tion xmax=max{xi, X2, • • • , x„J and xmin = min{xi, x2, • • • , x„}.

Theorem 1.

(a) Lis,  0;   x)    =   lim Lis, l;x) = exp      I   In Afs(x, u)Piu)du'    ,
1-0 L J e J

(b) lim Lis, t;x) = xmax, (c)   lim Lis, t; x) = xmia,
t—♦ 00 t—*— «>

(d)   lim Lis, t;x) = xmax, (e)   lim Lis, t;x) = xmi„.

Proof. Part (a) is an application of L'Hopital's rule, differentia-

tion with respect to t under the integral sign being permissible be-

cause the integral of the derivative converges uniformly for —T^t

^ Tand 0<m^x,^M, l^i^n. Parts (b) and (c) follow from proper-

ties of the integral mean Mtif, p) [5, p. 143] with /(«) =Msix, u).

Parts (d) and (e) follow from properties of ikfs(x, u) [5, Theorem 4].

Theorem 2. (a) Lis, t; x) is a strictly increasing function of x;

i.e. if Xifjsyifor all i and Xj<jj for some j, then Lis, t; x) <Lis, t; y).

(b) //xmax>xmin, then Lis, t; x) is a strictly increasing function of t.

(c) //xmax>xmin, then Lis, t; x) is a strictly increasing function of s.

Proof, (a) From the definition of M,(x, u) we see that il/g(x, u)
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<Ms(y, u). The result is evident by inspection of (1.2) and Theorem

1(a). Part (b) is a property of the integral mean Mt(f, P) [5, p. 144]

with f(u) = Ms(x, u). For (c) it suffices to observe that f=Ms(x, u)

is a strictly increasing function of 5 [5, Theorem 16] and that

Mt(g, P) > Mt(f, P) if g(u) >f(u) for all u.
The following theorem shows that the elementary mean Ms(x, w) is

a special case of the L(s, t; x) mean; the weights w= (wi, w2, ■ ■ ■ , w„)

are the "natural weights" associated with the weight function P(u).

We define the natural weights by

(2.1) wi =   I    UiP(u)du',    1 £ » £ n.
J E

Theorem 3. // w denotes the natural weights, then L(s, s; x)

= M,(x, w).

Proof. If S9*0,

L(s,sfx)\= T f    M',(x, u)P(u)du'       =      f Yuix'iP(u)du'

tn r> -ll/«

Yx' I   UiP(u)du'       = M,(x, w).

If s = 0,

L(0, 0; x) = exp     j   ln P x?P(u)du'

= exp    Y m x< I   UiP(u)du'

= exp   In P Xi*    = M0(x, w).

A given set of weights w occurs as the natural weights associated

with a large class of functions P. This class contains the family

P(cw; u) [4, Equation (2.2)] where the natural weights are just the

parameters w. If P(u) =P(cw; u), L(s, t; x) becomes the "generalized

hypergeometric mean" L(s, t, c; x; w). In particular, L(l, t, c; x; w)

= M(t, c; x; w). For S9*0, L(s, t, c; x; w) can be expressed in terms of

M(t, c; x; w) by using the identity

(22)    L^,^[j[t^rY^-'nuwf
= L(s/r, t/r; xr),     r, s, t 9* 0.
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12 M. D. TOBEY [February

A similar argument gives the same identity if 5 or / is zero. Putting

r = s and Piu)=Picw; u'), we have

Lis, t, c; x; iv) = [MQ/s, c; x*; w)]11'.

Although Theorems 1 and 2 show at once that xmin<Z,(s, t; x)

<Xm«x, the introduction of natural weights allows us to give sharper

inequalities:

Corollary 1. Let w denote the natural weights. If xmax>xmin and

s<t, then M,ix, w) <Lis, t; x) <Mtix, w). The inequalities are reversed

if s>t.

Proof. By Theorem 2, Lis, t; x) is an increasing function of each

of the parameters 5 and /. Hence, applying Theorem 3, if s<t,

M,ix, w) = Lis, s; x) < Lis, t; x) < Lit, t; x) = Af<(x, w),

with reversed inequalities if s>t.

It is well known [l, p. 9] that if log fir, u) is convex in r, then

log J fir, u)du is convex in r. To study the convexity of L'is, t;x) in s,

we need the analogous theorem that if r log fir, u) is convex in r,

then r log Jfir, u)du is convex in r for r>0.

Lemma 1. Let fT{r, u) be continuous in r and u and log convex in r.

Then, if [fsfir, u)Piu)du']T is continuous, it is log convex in r for r>0.

Proof, lif'ir, u) is continuous and log convex in r, then \frir, u) ]1/r

=/(r, m) is continuous and log convex in the variable 1/r ior r>0

[5, Theorem 119]. Since/(r, u) is continuous in u and log convex

in 1/r, fsfir, u)Piu)du' is log convex in 1/r [l, p. 9], Hence

[/B/(r, u)Piu)du']r is log convex in r for r>0 [5, Theorem 119].

Theorem 4. (a) L'is, t; x) is log convex in sfor t/s^O. (b) L'is, t- x)

is log convex in t.

Proof, (a) For any fixed t^O, L'is, t; x)=[fBM',ix, u)Piu)du']'"

= [fEMriy, u)Piu)du']r, where yi = x\, l^i^n, and r = s/t. Since

Mliy, u) is log convex in r [5, Theorem 87], Lemma 1 implies

[feMriy, u)Piu)du']T is log convex in r for r = s/t>0. But if a function

is log convex in r, it is log convex in tr = s for any fixed t^O, [l,

Theorem 1.10].

For 2 = 0, In L'is, 0; x) = Je In M|(x, u)Piu)du' is convex in 5 since

Mlix, u) is log convex in s.

(b) L'is, t; x) is log convex in t since M\(j, P) is log convex in t

[5, Theorem 197], and L'is, t; x) has this form with/(«) = M.ix, u).

3. Inequalities for Lis, t; x). The next two theorems are results of
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properties of the mean Ms(x, u) and the integral mean Mt(f, P). The

first comes from Theorems 24, 186 and 198 of [5]. The second comes

from Theorems 12 and 188 of [5], with the special case t = 0 as an

elementary result of properties of the logarithm. We use the notation

xAry = (xiA-yi, x2A-y2, ■ ■■ , xnAryn) and xy = (xiyu x2y2, ■ ■ ■ , xnyn).

Theorem 5 (Minkowski). Let x and y be vectors with x(>0 and

yi>0, l^i^n. Then, unless s = t=l or Xi = kyu l^i^n,

L(s, t;xA-y) < L(s, t; x) + L(s,t; y),        (s, t ^ I),

with reversed inequality ifs,t^l. Equality holds in the exceptional cases.

Theorem 6 (Holder). Let x and y be vectors with x,->0 and y,->0,

l^i^n, and let p and q be real numbers greater than unity such that

l/pA-l/q = l. Then, unless s = t = 0 or x\ = ky\, l^t^w,

Lis, t; xy) < Ll"(s, t; x')L"«(s, t; y°),        (s, t ^ 0),

with reversed inequality if s,t g 0. Equality holds in the exceptional cases.

By defining the mean of a matrix of values xtj, both of the preced-

ing theorems can be included in an analogue of the Jessen-Ingham

inequality [5, Theorems 26 and 203]. The proof [7, p. 20] relies

primarily on the Minkowski inequality and uses Holder's inequality

for a special case.

Finally, we shall show that L(s, t; x) satisfies a Kantorovich in-

equality [2, p. 208]. The proof proceeds by adapting a method due to

Rennie [6, p. 982].

Theorem 7 (Rennie). Let 0<A^xt^B, l^i^n. Then if 19*0,

L'(s, t; x) A- A'B'Ir^s, -t; x) = L'(s, t; x)

A- A'BWi-s, t; 1/x) ^ A> A- B',

with equality if and only if Xi = A or Xi = B, l^i^n.

Proof. The equality between the first and second members is

seen by (2.2) with r= — 1. To obtain the inequality we notice that

M',(x, u) is bounded between A' and B' and, following Rennie, we

consider

[M'.(x, u) - A][l - b'm:1(x, u)]P(u) ^0,(t9*0).

Integrating and rearranging, we have

f M[(x, u)P(u)du' A- a'b* f M~'(x, u)P(u)du' g A* + B*.
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Equality holds if and only if M\ix, u)=A' or M\ix, u)=B' for all

Theorem 8 (Kantorovich). If t>0 and 0<A^x,^B, l^i^n,

then

1 ^ Lis, t; x)/Lis, —t; x) = Li — s, t; x)Lis, t; l/x)

^ [iA' + Bt)/2]1i'[iA-' + B-')/2]1",

with equality on the left if and only if xmax=xmin, and equality on the

right if and only if A=B.

Proof. The left inequality holds because Lis, t; x) is a strictly

increasing function of t by Theorem 2(b), unless xmax = xmin. The

equality between the second and third members is due to (2.2) with

r= — 1. To obtain the right-hand inequality we start with Rennie's

inequality (Theorem 7),

L'is, t;x) + A'B'L-'is, -t; x) g A' + B'.

Dividing by 2, applying the inequality of the arithmetic and ge-

ometric means to the left side, and squaring, we find

[Lis, t; x)/Lis, -t; x)]' ^ iA'+ B'y/iA'B'

= [iA' + B')/2][iA~' + B-')/2].

Taking the tth root gives the desired inequality. If A=B, we have

equality at each step of the proof; if A^B, then the conditions for

equality in Theorem 7 imply strict inequality of the arithmetic and

geometric means.
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