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A TWO-PARAMETER STUDY OF THE LOCKING REGION
OF A SEMICONDUCTOR LASER SUBJECT TO
PHASE-CONJUGATE FEEDBACK

KIRK GREEN*, BERND KRAUSKOPF!, AND GIOVANNI SAMAEY*

Abstract. We present a detailed bifurcation analysis of a single-mode semiconductor laser
subject to phase-conjugate feedback, a system described a delay differential equation. Codimension-
one bifurcation curves of equilibria and periodic orbits and curves of certain connecting orbits are
presented near the laser’s locking region in the two-dimensional parameter plane of feedback strength
and pump current. We identify several codimension-two bifurcations, including a double-Hopf point,
Belyakov points and a T-point bifurcation, and show how they organize the dynamics.

This study is the first example of a two-parameter bifurcation study of a delay system. It was
made possible by new numerical continuation tools, implemented in the package DDE-BIFTOOL,
and showcases their usefulness for the study of delay systems arising in applications.

Key words. Semiconductor lasers, phase-conjugate feedback, delay differential equations, two-
parameter continuation, heteroclinic orbits, T-point bifurcation
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1. Introduction. The majority of lasers in application today are semiconduc-
tor lasers. They can be found, for example, in CD-players, laser printers and in
optical communications networks. Semiconductor lasers are so-called Class B lasers,
in which the polarization of the electric field can be adiabatically eliminated. As a
consequence, they can be described well by three-dimensional rate equations, one for
the complex electric field E(t) and one for the population inversion N (t) (the number
of excited states that can produce a single photon). It turns out that the phase ¢(t)
of the electric field follows the two equations for the optical intensity P(t) = |E(¢)|
and the inversion N(¢). Therefore, a solitary semiconductor laser is essentially a
two-dimensional dynamical system that cannot exhibit chaotic dynamics. The only
observable dynamical behavior is a damped periodic exchange between the electric
field and the inversion. These oscillations are referred to as relazation oscillations
in the laser literature (not to be confused with relaxation oscillations in slow-fast
systems); see, for example, [26, 38] as an entry point to the theory of semiconductor
lasers.

The occurrence of interesting dynamics in a semiconductor laser system requires
the addition of one or more degrees of freedom to the rate equations. The good
news, from a dynamical systems point of view, is that this is easily achievable with
the addition of some form of external influence. This may be due to noise, optical
injection from another laser, or delayed optical feedback, the subject of this paper.

Optical feedback results when a part of the solitary laser’s output light is fed
back into the laser after a delay time 7. This feedback can be unwanted; for example,
reflections from a CD or optical fiber can seriously interrupt the proper operation of
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the device. However, more recently, it has been demonstrated that chaotic output
from a feedback laser can be used in optical encryption schemes [10, 31, 42].

In an experiment, controllable optical feedback is obtained by adding an external
mirror to the laser set-up; see already Fig. 2.1. If this mirror is a conventional optical
reflector then one speaks of conventional optical feedback (COF), a system that has
received much attention due to its relevance for applications, as well as because very
complicated dynamics has been found; see, for example, [11, 32]. If the optical feed-
back comes from a phase-conjugating mirror (PCM) then one speaks of a laser with
phase-conjugate feedback (PCF). This is the laser system that we are studying here.
It is physically interesting because, unlike in COF, the PCM reverses the phase of
the light, so that the reflected wave travels back along the same path as the incident
wave. This means that the alignment of the laser beam is not so much of an issue.
Furthermore, perturbations to the light front on the way to the PCM are undone on
the way back. Also in the PCF laser many interesting dynamical regimes have been
identified; see, for example, [1, 12, 16, 24]; more details can be found in Sec. 2.

Mathematically, optical feedback is described by adding a delay term to the equa-
tion describing the electric field. This implies that the system is described by a delay
differential equation (DDE) with an infinite-dimensional phase space. Consequently,
lasers with optical feedback may exhibit very complicated dynamics, and their anal-
ysis is quite hard. Until quite recently, the analysis of the linear stability of steady
states and direct simulation of the equations were essentially the only tools to study
the dynamics of DDEs arising in applications. However, this is changing with the
introduction of advanced tools allowing detailed bifurcation studies of DDEs. These
consist of (a) the publicly available Matlab Package DDE-BIFTOOL for numerical
bifurcation analysis (see [8] and Sec. 4 below), and (b) an algorithm, using DDE-
BIFTOOL to obtain the necessary starting data, to compute unstable manifolds of
saddle periodic orbits in a suitable Poincaré section [25]. (This algorithm was used
in Ref. [19] to identify the break-up of a torus in the PCF laser and its subsequent
disappearance in a crisis bifurcation [19].)

The package DDE-BIFTOOQOL is our main tool here. It allows the continuation
of steady states and periodic solutions in (systems of) DDEs, irrespective of their
stability, and detects their local bifurcations. Codimension-one bifurcations of steady
states can be continued in two parameters, but at present codimension-one bifur-
cations of periodic orbits can only be detected, not followed; see Sec. 4 for details.
DDE-BIFTOOQL is still under development with the aim of reaching the same func-
tionality as continuation packages for ordinary differential equations (ODEs), such as
the well-known continuation package AUTO [6]. The latest release of DDE-BIFTOOL
allows the continuation of connecting orbits [36], much in the same way as the Hom-
Cont part of AUTO; see Sec. 4.1.

Continuation techniques have not yet been widely used to study the dynamics
and bifurcations in DDEs arising in applications. First examples include the series
of papers [21, 34, 35] in which connecting bridges of periodic solutions in the COF
laser were studied, and similar work on a vertical-cavity surface-emitting laser [37].
Continuation studies of the PCF laser can be found in Refs. [17, 18, 19].

So far all continuation studies mentioned above follow steady states and periodic
orbits as a single parameter is changed (usually the strength of the feedback). This
is also the case in Ref. [18] where the locking range of the PCF laser was studied in
detail. This revealed regions of bistability associated with a saddle-node bifurcation,
a Hopf bifurcation and heteroclinic connections. The next logical step in the study of
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DDEs is to construct a full two-dimensional bifurcation diagram.

In this paper we do just this: we present a consistent two-dimensional bifurcation
diagram near the locking region of the PCF laser in the plane of feedback strength
versus pump current. (These parameters are physically natural and were also used
in an experimental overview of the COF laser in Ref. [9].) We follow bifurcations of
steady states and connecting orbits in two-parameters. We make a first attempt at
mapping bifurcations of periodic orbits by detecting a sufficient number of individ-
ual bifurcation points at appropriate values of the parameters. We identify several
codimension-two bifurcations, most importantly, a double-Hopf point, a Belyakov
point and a bifurcation of heteroclinic orbits known as a T-point. We show how the
dynamics of the PCF laser near the locking region are organized around these points.

The paper is organized as follows. In Sec. 2 we introduce the rate equations for
the PCF laser. In Sec. 3 we give a brief introduction to the basic theory of DDEs. The
capabilities of the continuation package DDE-BIFTOOL, in particular with respect
to connecting orbits, are introduced in Sec. 4. In Sec. 5 we present a two-parameter
bifurcation analysis of the steady states and a heteroclinic orbit involved in the locking
mechanisms of the PCF laser. To allow for a better comparison with previous studies,
we also present one-dimensional cross sections through the bifurcation diagram for
fixed values of the pump current. In Sec. 6 we look more closely at the bifurcations
of steady states and continue the branch of heteroclinic orbits involved in the locking
mechanism all the way to its end in a codimension-two bifurcation of heteroclinic
orbits known as a T-point. The heteroclinic orbits along this branch are studied in
Sec. 7 where we also identify a codimension-two Belyakov point. In Sec. 8 we map
out bifurcations of periodic orbits near the locking region. Finally, in Sec. 9 we draw
conclusions and discuss future work.

2. Phase-conjugate feedback. Our object of study is a semiconductor laser
with phase-conjugate feedback from a phase-conjugate mirror, schematically shown
in Fig. 2.1. A PCM can be made by utilizing a number of nonlinear optical processes,
including stimulated Brillouin scattering, backward stimulated Raman scattering and
three-wave down conversion [12]. Probably the most common way of making a PCM is
to use degenerate four-wave mixing in which three input waves mix to produce a fourth
output wave. Two of the input waves are counter-propagating pump waves from, for
example, additional semiconductor lasers. The third wave is the incident wave, which
may enter at any angle to the pump waves. These three waves couple through a
third-order susceptibility x(® and produce a fourth wave, phase-conjugated to the
incident wave. This phase-conjugated wave may be more intense than the incident
wave due to additional gain provided by the pump waves [38].

In contrast to conventional optical feedback, the laser light is wave-front inverted
at the PCM. The return conjugated wave retraces the path of the incident wave and,
therefore, the system is self-aligning. Any distortions of the incident wave between
its source and the PCM are undone on the return trip [12]. This produces a highly
focused beam [12] that is of considerable advantage when stable output is desired, such
as, in mode locking [15] and phase locking, where PCF has been shown to reduce the
laser noise considerably [1, 16, 39].

Mathematically, a single-mode semiconductor laser subject to weak (instanta-
neous) phase-conjugate feedback can be described by the three-dimensional delay
differential system
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for the evolution of the slowly varying complex electric field E(t) = E,(t) + iEy(t)
and the population inversion N (¢) [16, 24]. In system (2.1), nonlinear gain is included
as G(t) = GN(N(t) — No)(1 — €P(t)), where € = 3.57 x 1078 is the nonlinear gain
coefficient and P(t) = |E(t)|? is the intensity. Parameter values are set to realistic
values corresponding to a Ga-Al-As semiconductor laser [16, 24], namely, the line-
width enhancement factor a = 3, the optical gain Gx = 119051, the photon lifetime
7, = 1.4ps, the magnitude of the electron charge ¢ = 1.6 x 107'°C, the electron
lifetime 7, = 2ns, and the transparency electron number Ny = 1.64 x 10%. Further,
Nsot = No+1/(Gn7p). The constant phase shift gpcm at the PCM and the detuning
parameter § were both set to zero, as is common in the field [16, 24]. Therefore, the
feedback term in system (2.1) reduces to kE*(t — 7) and involves the complex con-
jugated electric field E*, the feedback rate x and the external cavity round-trip time
7. For one-parameter studies of (2.1), we fix 7 at the realistic value 7 = 2/3ns, cor-
responding to an external-cavity length of Leys & 10 cm, and consider the bifurcation
parameter k7; for two-parameter studies we also free the pump current I.

System (2.1) has Zo-symmetry under the transformation (E,N) — (—E,N),
where the symmetry group is Z, = {1,—1}. This corresponds to a rotation over
7 of the complex E-plane, so that any attractor (or other invariant set) is either
symmetric, or has a symmetric counterpart. This symmetry allows the possibility
of symmetry-breaking and symmetry-restoring bifurcations [24, 27], and also implies
restrictions on the types of bifurcations of periodic orbits. For example, symmetric
orbits cannot undergo period-doubling bifurcations [28].

It was shown in Ref. [24] that the general picture of the dynamics of the PCF laser
is that of stable periodic operation interspersed with ‘bubbles’ of more complicated,
chaotic dynamics. In Ref. [17], these periodic solutions were shown to be connected
to a steady state solution. This steady state solution represents a frequency match
between the solitary laser and the pump lasers used in the four-wave mixing [38].
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Here, the laser is frequency locked and phase locked. In this region the laser phase no
longer undergoes diffusion, resulting in an extremely narrow line-width which has been
shown to remain stable even with the addition of noise from spontaneous emission
[1, 16, 39]. The region in which this stable locked solution exists is called the locking
region of the PCF laser.

3. Background on DDEs. System (2.1) is a delay differential equation with
an infinite-dimensional phase space. As the reader may be unfamiliar with the theory
of DDEs, we now give a brief introduction; see [5, 22, 23] for further details.

Models featuring a delay can be found in many areas of science, for example, in
biology [33], control theory [14] and, as we have seen, laser physics [26]. They lead
to a mathematical description by a DDE which, in its simplest form of a single fixed
delay 7 € R, takes the form:

= F(z(t),z(t — 7),n) (3.1)
where
F:R"xR*" xR - R

is differentiable and n € RP is a multi-parameter. We consider here only the case
of one fixed delay. This is not an over-simplification; for example, both the COF
laser and the PCF laser introduced in Sec. 2 are of this important class. We remark,
however, that the continuation methods described in Sec. 4 also work for a finite
number of fixed delays and even for certain state-dependent delays [30].

The phase space of (3.1) is the infinite-dimensional space of continuous functions
C over the delay interval [—7, 0] with values in R™. The space R” is called the physical
space; for example, it is (E, N)-space in system (2.1). A point ¢ € C is a continuous
function

q:[-7,0] > R".

We call ¢(0) the head of ¢ and {q(t) | t € [-7,0)} its history. The evolution of a point
q € C after time t > 0 is given by the evolution operator

¥:CcC.
A solution of (3.1) is a function
z:[0,00) = R*, t+ & ()

for some initial point z¢ € C.

A steady state (or equilibrium) of (3.1) is a point zg such that zo(t) = %o for all
t € [-7,0] and fixed o € R". In other words, F(Zg,Zo,n*) = 0 (for some fixed n*)
and ®!(zo) = o for all ¢t > 0. The stability of zq is given by the linearization (acting
on a point x € C)

DF(zo,n%) z = A1(Zo,n")z(t) + A2(Zo,n")z(t — 7) (3.2)
around z¢. Here, using u,v € R” as the arguments of F(u,v,n),

OF u,v, _ * oF u,v,
A1(Zo,n*) := % and  As(Zo,n") := % . (3.3)
u (Z0,Z0,n*) v (Z0,Z0,m*)
5



When we define the n x n matrix A as
A(zo,n*,A) 1= M — Ay (%0,7") — A2(T0,n")e ™™ (34)
then the eigenvalues are given as the roots of the the characteristic equation
det(A(zo,n*,A)) = 0. (3.5)

It is a crucial property of DDEs with fixed delays that the eigenvalues are discrete
and that there are always finitely many eigenvalues with real part larger than ~, for
fixed any v € R. In particular, there are only finitely many unstable eigendirections
(associated with eigenvalues with real part greater than zero). As usual, a steady
state is called hyperbolic if there are no eigenvalues that have zero real part.

A periodic orbit is a solution I" such that ®'(q) = ¢ for some period T > 0 and all
g € T. After choosing a section ¥ € R (locally) transverse to I, the point ¢ = T'NCyx
is a fixed point of the corresponding Poincaré map P. Here P is defined on the space
Cs, of points in C with headpoints in ¥, that is,

P Cz—)Cz, qb—)@tq(q)

where t, is the return time to ¥. The stability of I is given by its Floguet multipliers,
which are the eigenvalues of the linearization D P of P at the corresponding fixed point
q- The linearization DP can be found by solving the variational equation along T'.
For any fixed radius r > 0 there is only a finite number of Floquet multipliers outside
a circle of radius r, so that there are always finitely many unstable eigendirections.
A periodic point is called hyperbolic if there are no Floquet multipliers on the unit
circle.

As is the case for ODEs, a local bifurcation occurs when a steady state or a
periodic orbit is not hyperbolic. The generic bifurcations are saddle-node and Hopf
bifurcations of steady states and saddle-node (or fold), period-doubling and torus (or
Neimark-Sacker) bifurcations of periodic orbits.

A solution z(t) of (3.1) at some parameter n = n* is called a connecting orbit if
the limits

 Jim z(t) =z, t_lgrnoo z(t) =a™, (3.6)

exist, where z% are steady states of (3.1). Connecting orbits are discussed in more
detail in Sec. 4.1.

4. Numerical continuation with DDE-BIFTOOL. The continuation pack-
age DDE-BIFTOOL [8] has been developed for the numerical bifurcation analysis of
DDEs with fixed, discrete delays or state-dependent delays [30]. While a large number
of packages exist for the numerical bifurcation analysis of ODEs, for example, AUTO
[6] and CONTENT [29], DDE-BIFTOOL is the first publicly available package for
the bifurcation analysis of DDEs. Roughly speaking, DDE-BIFTOOL has the same
functionality as the early versions of AUTO with new features constantly being added,
such as the computation of connecting orbits discussed below in Sec. 4.1.

DDE-BIFTOOQL allows the user to find and follow steady states and periodic so-
lutions irrespective of their stability. It also detects the generic codimension one local
bifurcations of steady states and periodic orbits by detecting when an eigenvalue of
the linearization has a zero real part or is on the unit circle, respectively. The soft-
ware is able to switch to the continuation of emanating branches of periodic orbits at
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bifurcation points (such as a Hopf bifurcation). Furthermore, once a codimension-one
bifurcation of a steady state has been detected, it can be followed in two param-
eters. At present, codimension-one bifurcations of periodic orbits can be detected,
but cannot be continued in two parameters. A recent addition to DDE-BIFTOOL is
the computation of connecting orbits using projection boundary conditions and their
continuation in two parameters [36]. This algorithm is a natural extension of the
method that was implemented for the computation of connecting orbits in ODEs in
the HomCont [4] extension of AUTO.

The infinite-dimensional nature of DDEs means that the computation of solu-
tions and their stability is far from trivial. To compute the stability of steady states
DDE-BIFTOOQOL approximates an appropriate number of the rightmost roots of the
characteristic equation and corrects them by using a Newton’s iteration. A steady
state is represented by the value of the parameter 7, the steady state position Zy and
the eigenvalues \; of this steady state. A saddle-node bifurcation is detected and rep-
resented by a null-vector of A(zg,n*,0), the matrix defined in (3.4). Similarly, a Hopf
bifurcation is represented by the complex null-vector of A(zg,n*,iw) and correspond-
ing frequency w. To represent and follow periodic solutions orthogonal collocation,
based on a piecewise polynomial representation of the solution, is used. A periodic
solution is represented by the value of the parameter 7, the period 7" and a time-scaled
profile z*(¢/T') on a mesh over the interval [0, 1].

DDE-BIFTOOQOL can be extended to monitor other quantities that might be of
interest to users. One such example was developed and implemented for the analysis in
Sec. 7 to find and follow a neutral saddle (-focus) point. This is a steady state solution
where the sum of the real parts of the unstable (complex conjugate) eigenvalues A1 2
and the leading stable eigenvalue A3 is equal to zero. A neutral saddle is represented
by the steady state position Zg, the values of the parameter 7, the leading eigenvalues
A1,2 and A3, and their eigenvectors, and is subject to the constraint that Re(A;2) +
Re(A3) = 0. These fields are used as elements inside the branch structure when
computing and continuing a neutral saddle point.

4.1. Computing connecting orbits in DDEs. A recent addition to DDE-
BIFTOOL is the continuation of connecting orbits [36]. Both homoclinic orbits (z~ =
xt in (3.6)) and heteroclinic orbits (z~ # z* in (3.6)) can be computed and continued
as certain system parameters n are varied. This requires finding a good starting
solution for a fixed parameter value. For a homoclinic orbit, one can start from
a nearby periodic orbit with a sufficiently large period. Heteroclinic orbits can be
approximated by using time integration, or by using an extension of the method of
successive continuation [7].

A defining condition for a connecting orbit is that it is contained in both the
stable manifold of z* and in the unstable manifold of z—. A classical approach in
the ODE case is to approximate this condition by truncating the time domain to an
interval of length T and to apply (so-called) projection boundary conditions [2]: one
end point of the connecting orbit is required to lie in the unstable eigenspace of z~
and the other end point in the stable eigenspace of zT.

In the implementation this approach was extended to the case of DDEs. Because
one needs to provide an initial function segment (rather than just an initial value as
for ODEs), the boundary conditions need to be written in terms of solution segments.
Further, T has infinitely many eigenvalues with negative real parts, so that it is
impossible to write the final function segment as a linear combination of all (infinitely
many) stable eigenfunctions. Instead, it is required that the end function segment is
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in the orthogonal complement of all unstable eigenfunctions.
More specifically, the condition for the initial function segment z(6)=xz(0), 6 €
[—7,0] can be written as

o
zo(0) =2~ + eZakv;e)‘w, (Z o |* = 1)
k=1

where s~ is the number of unstable eigenvalues A~, with corresponding eigenvectors
v~ . The ay are unknown coefficients, and € is a measure for the desired accuracy. An
extra condition is added to ensure continuity at § = 0. As discussed above, we cannot
write the end conditions for the final function segment in a similar way. Instead a
special bilinear form [22] is used to express the fact that the final function segment is
in the complement of the unstable eigenspace of . This leads to s extra conditions:

0
w;:H(a:(T) —zt) + / w,‘:He_}‘kJr(a"'T)Ag (zt,n) (z(T+6) —2t)do =0.

-7

Here st is the number of unstable eigenvalues of =™, wk+ are the left eigenvectors

corresponding to the eigenvalues )\: and the matrix Ay is defined in (3.3). While
this integral condition works well in practice, one slight drawback is that it does not
control the distance of the end function segment to the steady state.

Connecting orbits arise in one-parameter families: any time-translate is also a
connecting orbit. Therefore, a phase condition needs to be added to pick just one
of these orbits. In general, a number s, of free parameters is required to obtain a
generically isolated solution. As a consequence, the equations for z— and zt (steady
state equations), and A, and vy and A{ and w; (characteristic equations), have to
be added to the defining system. The result is a system of n differential equations,
supplemented with (s~ + st)(n + 1) + s* + 2 extra equations, resulting in the need
for s, = st — s~ 41 free parameters. We end up with a boundary value problem,
which we solve by using a collocation method, where the solution is represented as a
piecewise polynomial.

5. The locking range. In this section we use the continuation package DDE-
BIFTOOL to detect and follow the bifurcations involved in the locking mechanism
of the PCF laser. The resulting bifurcation diagram shown in Fig. 5.1 was obtained
by starting a two-parameter continuation from bifurcation points identified in one-
parameter studies, including the study described in Ref. [18]. Plotted in red are curves
of Hopf bifurcations H; » where each point on the curve represents a steady state with
a pair of pure imaginary eigenvalues. The Hopf curves H; » are drawn dark when they
are supercritical (the bifurcating periodic orbit is stable), and are drawn in a lighter
tone when they are subcritical (the bifurcating periodic orbit is unstable). In blue
are plotted curves of saddle-node bifurcations SN and pitch-fork bifurcations PFy, in
both cases each point represents a steady state with a real eigenvalue equal to zero.
Furthermore, we plot a curve of heteroclinic connections Het; between two saddle
steady states that are each others symmetric counterparts.

The general picture of the locking range of the PCF laser is that it is bounded
by the curve of saddle-node bifurcations SN to the left, the (supercritical parts of
the) curves of Hopf bifurcations Hi » to the right and a curve of pitchfork bifurcations
PF; below. Passing through the locking range is a curve of heteroclinic orbits Het; .
The area above the curve Het;, and between the curves SN and H is a region of
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F1G. 5.1. Bifurcations bounding the locking range of the PCF laser in (kT,I)-space. The arrows
correspond to the one-parameter continuations shown in Fig. 5.2.

bistability, that is, the periodic orbit involved in the heteroclinic bifurcation Het; and
the non-symmetric steady states born in the saddle-node bifurcation SN coexist; see
already Fig. 5.2 (b) to (f). Note that, when the heteroclinic curve crosses the curve of
Hopf bifurcations H» there is a second region of bistability, where two stable periodic
solutions coexist.

The non-symmetric saddle steady states are born in the saddle-node bifurcation
SN together with a pair of non-symmetric stable steady states which correspond
to the locked solutions of the PCF laser. These locked solutions are destabilized
along the curves of Hopf bifurcations H; » when they bifurcate with a periodic orbit.
Between ¢; and ¢z, on Hp, the Hopf bifurcation is subcritical, that is, the bifurcating
periodic orbit is unstable. As was shown in Ref. [18], for fixed I, this subcritical Hopf
bifurcation leads to a bistability between an attracting steady state and an attracting
periodic orbit, and a heteroclinic connection between their respective saddles [18].
This bistability is due to a saddle-node bifurcation of limit cycles SL curve connecting
¢1 and ¢o, and running parallel to the subcritical part of Hy; see already Fig. 8.1 (b).

The pitchfork curve PF; is a bifurcation of the trivial steady state (E,N) =
(0, I;‘f). Below PF}, the trivial steady state is stable. It is destabilized at PF; when
it bifurcates with a pair of non-symmetric stable steady states (the locked solutions).
Physically, the PCF laser is in its off-state below PF;. In this system with Zo-

symmetry the pitchfork bifurcation constitutes the laser threshold, that is, it marks
9
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F1G. 5.2. One parameter continuation of steady states and periodic orbits for fized pump current
I; from (a) to (f) I takes the values 0.064, 0.065, 0.0657345, 0.0657347, 0.067, and 0.068.

the onset of lasing.

The Hopf curves Hi o intersect at the point DH, at (k7,I) = (0.893,0.06589),
which is a codimension-two double-Hopf bifurcation point where there are two pairs
of complex eigenvalues on the imaginary axis [28]. At this bifurcation point the center
manifold is four-dimensional, in other words, this bifurcation is only possible in a
phase-space of dimension greater than or equal to four. Around a double-Hopf point
the system can bifurcate to a number of invariant objects, including two-dimensional
tori which may branch to three-dimensional tori [28]. In fact, we will see below that,
near the double-Hopf point, a period-doubling route to chaos [18] becomes a route to
chaos via the break-up of a torus.

At (k1,I) =~ (0.225,0.06433) the heteroclinic curve Het; ends at the saddle-node
curve SN at a saddle-node heteroclinic point SNhet. Here the saddle-node bifurcation
takes place on a codimension-one heteroclinic connection. If we divide out the sym-
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metry of system (2.1), this is a saddle-node homoclinic bifurcation [28]. Below the
point SNhet the saddle-node bifurcation SN takes place on a limit cycle [20].

The lower part of the Hopf curve H; is seen to bend off and run roughly parallel
to the curve PF; before terminating. For low values of fixed pump current I, this
means that it is possible for the laser to lock and unlock as the value of k7 is varied;
see already Fig. 5.4 (b). However, this effect occurs for a very small range of T and
would be extremely difficult to observe experimentally.

We now discuss transitions through the two-dimensional bifurcation diagram in
Fig. 5.1 as we vary the value of x7 for fixed values of I, this is the approach we took
in Ref. [18]. The bifurcation diagrams in Fig. 5.2 were obtained with DDE-BIFTOOL
and the respective I-values are indicated by the arrows on the right of Fig. 5.1.
For steady states we plot Re(E) and for periodic solutions we plot | max(Re(E))—
min(Re(E))|, offset by the Re(E)-value of the steady state at the Hopf point. At-
tracting solutions are drawn as solid curves, while unstable solutions are drawn as
dashed curves. By studying the eigenvalues of the system we are able to identify
the bifurcations involved. Apart from saddle-node bifurcation SN, Hopf bifurcations
H > and saddle-focus heteroclinic bifurcations Het; already shown in Fig. 5.1, we
also find saddle-node bifurcations of limit cycles SL, period-doubling bifurcations PD,
symmetry-breaking (or restoring) bifurcations SB and torus (or Neimark-Sacker) bi-
furcations T. The different bifurcations are color coded throughout; compare Fig. 5.1,
and see already Figs. 5.3, 5.4 (b) and 8.1.

For low values of I [Fig. 5.2 (a)], the saddle-node bifurcation SN occurs very close
to the saddle-focus heteroclinic bifurcation Het;. For I < 0.06433, the steady state is
destabilized in the supercritical Hopf bifurcation H;. The ensuing periodic solution
then undergoes a period-doubling bifurcation PD, the first along a route to chaos [18,
Fig. 1]. At I =~ 0.06433 the Hopf bifurcation H; becomes subcritical, for larger values
of I [Fig. 5.2 (b)] we observe the emergence of a saddle-node bifurcation of limit cycles
SL. This is the scenario considered in Ref. [18]. At I = 0.0657345, the period-doubling
route to chaos is preceded by a torus bifurcation T and two saddle-node bifurcations
of limit cycles SL. Consequently, we find a bistability between two stable periodic
solutions [Fig. 5.2 (c)]. One of the periodic solutions is born in the Hopf bifurcation
H; at kT ~ 0.8653 and is destabilized in the torus bifurcation T at kT ~ 0.9118. The
other periodic solution is born in the saddle-node bifurcation of limit cycles SL at
kT & 0.8598, first identified in Fig. 5.2 (b), and is destabilized in the period-doubling
bifurcation PD at k7 = 0.9593. For I > 0.0657346 the route to chaos via the break-up
of a torus persists [Fig. 5.2 (d)]. This change, from a period-doubling route to chaos to
a route to chaos via the break-up of a torus, appears to be due to the presence of the
double-Hopf point. At the double-Hopf point the Hopf curves H; and H» pass through
one another. Fig. 5.2 (e) shows the situation for I = 0.067. The first Hopf bifurcation
that destabilizes the non-symmetric saddle steady state is now H,, which leads to a
stable periodic orbit that is destabilized in a torus bifurcation T at k7 ~ 1.236. As [ is
increased further there is an increasingly larger region of bistability between a stable
periodic solution and the non-symmetric stable steady state at the left boundary of
the region of stability. This is a result of the heteroclinic curve Het; moving away from
the saddle-node bifurcation curve SN, and crossing into the locking range. Finally, for
I > 0.068222 the periodic orbit involved in the heteroclinic bifurcation exists past the
first Hopf bifurcation. This is shown in Fig. 5.2 (f) where for I = 0.068 we observe a
bistability between the periodic orbit involved in the heteroclinic bifurcation and the
periodic orbit born in the Hopf bifurcation H,.
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F1G. 5.3. Bifurcations of steady states in (k7,I)-space. The labels along the curves Het
correspond to phase portraits shown in Figs. 7.1 and 7.3.

6. Bifurcations of steady states. In Fig. 5.3 we increase the area of (k7,I)-
space under consideration to take a somewhat more global point of view. We follow the
curves of saddle-node bifurcations SN, pitchfork bifurcations PF;, Hopf bifurcations
Hi > and heteroclinic bifurcations Het; shown in Fig. 5.1 further. We also follow the
additional curves of pitchfork bifurcations PF5, Hopf bifurcations Hz and heteroclinic
bifurcations Het;, and show a neutral saddle curve ms. This provides a consistent
picture of the bifurcations that can be continued, namely, bifurcations of steady states
and heteroclinic orbits.

Figure 5.4 shows an enlargement of Fig. 5.3 near the laser threshold, illustrating
the interaction of the pitchfork curves PFy > with the Hopf curves H; 3. The steady
states in three different regions are sketched, where stable steady states are drawn
as blue points and saddle (unstable) steady states are drawn as red points. As was
mentioned earlier, below the pitchfork curve PF; the trivial steady state is stable
[region 1]. Physically, the curve PF; marks the onset of lasing of the PCF laser (below
this curve the laser is off). At the curve PF, the trivial steady state is destabilized and
a pair of non-symmetric stable steady states emerge [region 2], these are destabilized
at the Hopf curve H;. The curve of pitchfork bifurcations PF; represents another
bifurcation of the trivial steady state. At this curve the trivial steady state has a zero
eigenvalue, which means that a pair of non-symmetric saddle steady states is born
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F1G. 5.4. Enlargement of bifurcation diagram in Fig. 5.3 near the laser threshold, and sketch
of stability of steady states in different regions (directions not sketched are attracting).

[region 3]. These saddles are those involved in the saddle-node bifurcation SN and
they appear as the lower branch of saddle steady states identified in Fig. 5.2. At the
Hopf curve Hj this non-symmetric saddle steady state undergoes a Hopf bifurcation,
where it bifurcates with a saddle periodic orbit. The codimension-two pitchfork-Hopf
bifurcation points PFH » represent the ends of the Hopf curves Hj 3, respectively. At
a pitchfork-Hopf point the center manifold is three-dimensional, and one finds a real
eigenvalue and two pure imaginary eigenvalues on the imaginary axis [28].

The shape of the Hopf curve H; means that the laser can lock and unlock for a
fixed value of the pump current I as the feedback strength k7 is varied. For example,
for I = 0.0612 a locked solution is born in a saddle-node bifurcation SN at k7T =
0.00428. This solution is unlocked (becomes unstable) at the Hopf curve H; at k7 ~
0.0606 and the ensuing solution is once again locked at the Hopf curve H; at k7 =
0.977. A final intersection with the Hopf curve H; at k7 =~ 1.227 results in an
unlocked solution. However, we note that this would be extremely difficult to observe
experimentally due to the small ranges in the parameters involved.

The curves of heteroclinic bifurcations Het; » are explained in the next section.
We already note that, as is to be expected, they end at the curves SN and PF> where
the non-symmetric saddle steady states involved in the heteroclinic orbits are born.
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Fic. 7.1. Heteroclinic orbits along the curve Hetly; from (a) to (e) (k7,I) takes the values
(0.314,0.065264), (1.303,0.069026), (2.085,0.069635), (2.201,0.070357), and (2.177,0.070394). (The
accompanying movie Hetl.mpeg shows the development of the heteroclinic orbits along the branch
Hety in four panels, top left: position along the curve Hety in (kT,I)-space, top right: the heteroclinic
orbit projected onto (E, N)-space, bottom left: E; on the truncation interval, and bottom right: N
on the truncation interval.)
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7. Global bifurcations. Figure 5.3 shows that the curve of heteroclinic bifurca-
tions Het; curls up near the point marked TP. This indicates that the center point of
the spiral is a codimension-two point known as a T-point [13]. At TP the heteroclinic
connection between the two non-symmetric steady states is destroyed. This results
in the creation of two heteroclinic orbits from the bifurcating heteroclinic orbit. To
show that this is indeed the case we must look at the heteroclinic orbits themselves.

Figure 7.1 shows heteroclinic orbits, calculated with DDE-BIFTOOL, for the pa-
rameter values along the curve Het; indicated in Fig. 5.3. The first column and second
columns show E, and N, respectively, as a function of time on the truncation interval
that was used by the boundary value solver; the third column shows the heteroclinic
orbit projected onto the E-plane; and the fourth column shows the heteroclinic orbit
projected onto (E, N)-space.

Near the saddle-node bifurcation SN [Fig. 7.1 (a)] the orbit is seen to leave one
saddle steady state and spiral into its symmetric counterpart; this was also found
in Ref. [18]. As one moves along the curve Het;, the heteroclinic orbits start to
increase in size in (E, N)-space [Fig. 7.1 (b4) and (c4)]. As the heteroclinic curve
Het; approaches the T-point TP in (k7, I)-space, the heteroclinic orbits continue to
grow in (E, N)-space [Fig. 7.1 (d)] until just prior to reaching the T-point TP the orbit
is seen to pass very near the origin of the E-plane. At the same time, the value of the
inversion N grows [Figs. 7.1 (el) and (e2)] with a final rapid oscillation before ending
up at the other non-symmetric saddle steady state. The maximum value of inversion
N reached is very close to the value of N of the trivial steady state [Fig. 7.1 (e4)].
This is a clear indication that we are very near the forthcoming T-point bifurcation.
The evolution of the connecting orbits is also shown in a movie accompanying Fig. 7.1.

One can find the new heteroclinic orbits constituting the heteroclinic orbits at the
T-point TP, that is, connecting the trivial steady state to the non-symmetric steady
states, by providing the boundary value solver of DDE-BIFTOOL with the position
and stability information of the trivial steady state. As is to be expected at a T-point
there is a codimension-two connection from the non-symmetric steady state to the
trivial steady state and a codimension-zero connection from the trivial steady state
to the symmetric counterpart of the non-symmetric steady state.

Figure 7.2 (a) shows the heteroclinic orbit between the two non-symmetric steady
states. As was detailed in Sec. 4.1, the codimension of a heteroclinic orbit is given
by the sum of the dimension of the unstable manifold of the end steady state mi-
nus the dimension of the unstable manifold of the initial steady state plus one [36].
The non-symmetric steady states have one-dimensional unstable manifolds. Conse-
quently, the heteroclinic orbit (and its symmetric counterpart) shown Fig. 7.2 (a) is
of codimension-one. This orbit is seen to start at one of the non-symmetric steady
states and then spend much time at the trivial steady state (red part of the orbit)
before a sudden oscillation back to the end non-symmetric steady state (blue part of
the orbit). These two parts correspond to the two heteroclinic orbits that we find at
the T-point. The first of these is shown in Fig. 7.2 (b). The non-symmetric steady
states have one-dimensional unstable manifolds and the trivial steady state has a two-
dimensional unstable manifold, therefore, the heteroclinic orbit shown in Fig. 7.2 (b)
is of codimension-two. This heteroclinic connection only exists at the point TP, and
its continuation would require freeing a third parameter, which is beyond the scope
of this study. The second heteroclinic orbit found at the T-point TP is shown in
Fig. 7.2 (c). Because the trivial steady state has a two-dimensional unstable manifold
and the non-symmetric steady states have one-dimensional unstable manifolds, this
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Fi1G. 7.2. Codimension-one heteroclinic orbit very close to the T-point TP (a), and the corre-
sponding codimension-two (b) and codimension-zero (c) heteroclinic orbits at the T-point TP.

heteroclinic orbit is of codimension-zero. In other words, this heteroclinic orbit exists
for all values of (k7,I) in a local neighborhood of the T-point TP.

In Figs. 5.3 and 5.4 (b), the dotted curve ns represents a neutral saddle curve,
along which the saddle steady states born in the saddle-node bifurcation SN have zero
saddle quantity, that is, 0 = Re(A1,2) + A3 =0, Re(M1,2) > 0, A3 < 0. We note that
the curve ns starts at the pitchfork curve PFs, the curve in which the non-symmetric
saddle steady states associated with the neutral saddle are born; see Fig. 5.4 (b).
The curve is seen to intersect the curve of heteroclinic orbits Het; at the point By,
a codimension-two Belyakov point [41]. Along the curve Het,, the heteroclinic orbits
between the saddle-node heteroclinic bifurcation SNhet and the Belyakov bifurcation
B have a negative saddle quantity corresponding to a bifurcating attracting periodic
orbit associated with the heteroclinic bifurcation. Above the Belyakov point B; the
saddle quantity is positive, this is the case of a chaotic Shil’nikov bifurcation and
implies the existence of an infinite number of saddle periodic orbits associated with the
heteroclinic bifurcation. Near the Belyakov point B; the PCF laser is excitable, that
is, if a locked steady state solution is perturbed enough it will produce a large pulse
by following the nearby heteroclinic orbit before ending up at the other symmetric
locked solution. This may lead to multipulse solutions, as was recently shown for a
semiconductor laser with optical injection [41].

The existence of a Belyakov point and a T-point implies that there are infinite
sequences of codimension-one homoclinic and heteroclinic orbits in their local vicini-
ties. However, it appears to be very difficult to find and follow these solutions. So
far we were unable to find further branches of connecting orbits near the Belykov
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Fi1G. 7.3. Heteroclinic orbits along the curve Hety; from (a) to (d) (k7,I) takes the values
(0.182,0.061478), (0.620,0.063430), (2.153,0.069019), and (2.751,0.070576). (The accompanying
movie Het2.mpeg shows the development of the heteroclinic orbits along the branch Hety in four
panels, top left: position along the curve Hety in (kT,I)-space, top right: the heteroclinic orbit
projected onto (E, N)-space, bottom left: Ey on the truncation interval, and bottom right: N on the
truncation interval.)

point. Near the T-point there are codimension-zero heteroclinic orbits some of which
we could find and continue. Theory dictates that the regions where they exist are
bounded by curves of codimension-one heteroclinic orbits [13]. Also in this case, we
could not locate a starting value which enabled us to follow branches of these orbits.

However, during our investigations, DDE-BIFTOOL detected another branch
Hety of connecting orbits. This new branch is shown in Fig. 5.3. As is the case
for Hety, it also represents heteroclinic orbits, shown in Fig. 7.3, between the non-
symmetric saddle steady states. The curve Het, starts at the pitchfork curve PFs,
where the non-symmetric saddle steady states associated with the heteroclinic connec-
tion are born; again see Fig. 5.4. The heteroclinic orbit shown in Fig. 7.3 (a) is very
close to the pitchfork curve PFs; note that the non-symmetric steady states, which
have just been created, are very close together [Fig. 7.3 (a3)]. As one moves along
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Het,, the orbits oscillate more as they spiral into the end steady state [Fig. 7.3 (b)].
Finally, near the end of the curve Hets, the damped oscillations become more irregu-
lar with the size of the orbit only increasing slightly in (E, N)-space [Fig. 7.3 (¢) and
(d)]. One sees the emergence of an extra ‘arm’ of the orbit in Fig. 7.3 (d3). This
may be an indication of a bifurcating periodic orbit responsible for the destruction
of the curve Hety at (k7,I) = (2.833,0.0702). It is clear that the heteroclinic curves
Het; and Het, cannot cross, as they involve the same branch of the one-dimensional
unstable manifold of the non-symmetric saddle steady states. We note that, unlike it
is the case of the curve Het;, there is no interaction of the curve Het; with the trivial
saddle steady state. The evolution of the connecting orbits is also shown in a movie
accompanying Fig. 7.3.

As is seen in Fig. 5.4, the curve Hety crosses the curve ns at the point Bz, another
codimension-two Belyakov point. Below the Belyakov point Bs the heteroclinic orbits
along the curve Het, have a negative saddle quantity corresponding to a bifurcating
attracting periodic orbit, above B, the saddle quantity is positive corresponding to
an infinite number of bifurcating saddle periodic orbits. Again, we were unable to
find further branches of heteroclinic orbits near this Belyakov point.

8. Bifurcations of periodic orbits. In this section we make a first attempt
at providing a full two-dimensional picture, including bifurcations of periodic orbits,
of the locking range of the PCF laser. We performed a number of one-parameter
studies, detected bifurcations of periodic orbits by studying the Floquet multipliers,
and plotted the results in (x7, I)-space.

Figure 8.1 shows colored points indicating bifurcations of periodic orbits. For
different values of I a one-parameter continuation of a periodic orbit was performed.
By studying the Floquet multipliers of the system the following bifurcations were
detected: saddle-node bifurcations of limit cycles SL (yellow points) when a real Flo-
quet multiplier passes through the unit circle at +1, period-doubling bifurcations PD
(green points) and symmetry-breaking (or restoring) bifurcations SB (purple points),
both when a real Floquet multiplier passes through the unit circle at —1, and torus
(or Neimark-Sacker) bifurcations T (black points) when a complex pair of Floquet
multipliers pass through the unit circle. Figure 8.1 (a) shows bifurcations of the pe-
riodic orbit originating from the Hopf curve Hy, while Fig. 8.1 (b) shows bifurcations
of the periodic orbit originating from the Hopf curve Hs.

Below the double-Hopf point DH, Fig. 8.1 (a) clearly identifies that a saddle-node
bifurcation of limit cycles SL runs close to the curve of subcritical Hopf bifurcations
H;. The stable periodic orbit emerging from the curve SL is destabilized at the curve
of period-doubling bifurcations PD (the first in a route to chaos); see Figs. 5.2 (b)
and (c). Near the double-Hopf point DH there is an interaction of several bifurcations
[28] which we are unable to resolve. (In particular, our calculations suggest that
the curve PD does not end at the double-Hopf point DH but turns sharply to the
right.) The periodic orbit that is destabilized at PD is destroyed in a symmetry-
restoring bifurcation at the curve SB. Above the double-Hopf point DH the bifurcation
scenario is very different. The saddle periodic orbits originating from the Hopf curve
H; are seen to undergo period-doubling bifurcations PD and, in a small range, torus
bifurcations 7. An obvious question is: why is there a sudden change from a curve of
symmetry-breaking bifurcations SB, below the double-Hopf point DH, to a curve of
period-doubling bifurcations PD, above the double-Hopf point DH? With the present
tools we can not conclusively answer this question. However, initial investigations
have revealed a possible heteroclinic connection to a saddle periodic orbit near the
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end points of these curves (around (k7,I) =~ (2.3,0.0657)).

The bifurcation scenario of Fig. 8.1 (b) is somewhat clearer. It is now clear that
the torus bifurcation T identified in Figs. 5.2 (e) and (f), originates from the double-
Hopf point DH. In the lower half-plane, a large curve of period-doubling bifurcations
PD and a smaller curve of torus bifurcations T are identified. The torus bifurcation
T originating from the double-Hopf point DH leads to interesting dynamics. Theory
states that the curve T comes with narrow resonance tongues, also known as Arnold
tongues [28]. Inside these tongues we find phase-locked periodic solutions on the torus
which lead to additional curves of bifurcations of periodic orbits. Furthermore, away
from the curve T the tongues intersect leading complicated bifurcations to chaotic
dynamics [28]. A detailed analysis of these resonances is beyond the scope of this
chapter.

We also identify a region bounded by curves of saddle-node bifurcations of limit
cycles SL. On the curve SL we find a codimension-two cusp point C of saddle-node
bifurcations of limit cycles SL at (k7,I) =~ (2.3,0.0675). Such regions are common in
periodically driven systems [3] and laser models [40]. Inside this region we identify
torus bifurcations T and period-doubling bifurcations PD. It is known that a curve
of torus bifurcations can meet a curve of saddle-node bifurcations of limit cycles
at a Bogdanov-Takens bifurcation point [28]. Here we also expect a change from
supercritical to subcritical of the saddle-node bifurcation of limit cycle curve (this is
also known as a 1:1 resonance). Indeed, the lower curve T inside the bounded region
is seen to run very close to the curve SL. A period-doubling curve can also meet a
torus curve. Again we would expect a change from supercritical to subcritical of the
period-doubling bifurcation, a codimension-two point known as a 1:2 resonance [28].
However, at present we can not accurately identify such points and leave a detailed
study of bifurcations of periodic orbits as an open problem.

9. Conclusions. We have provided a state-of-the-art two-parameter bifurcation
analysis of the locking range of the PCF laser, where we paid particular attention
to the computation and continuation of connecting orbits. The general picture is
that the locking range is bounded by a saddle-node bifurcation and/or a heteroclinic
bifurcation on one side and by Hopf bifurcations on the other; this is consistent with
the one-parameter study of Ref. [18]. Pitchfork bifurcations were shown to lead to
interactions between the trivial steady state and the non-symmetric steady states
of the PCF laser, also forming the laser threshold. A number of codimension-two
bifurcations were found to be organizing centers for the dynamics of the PCF laser.
These include pitchfork-Hopf bifurcations, a double-Hopf point, a Belyakov point and
a T-point bifurcation. Finally, we made a first attempt at mapping out bifurcations
of periodic orbits in two parameters. This led to an overall consistent picture, in line
with what is to be expected from both theory and studies of other semiconductor
laser systems.

Some questions remain about further codimension-two points, in particular a cusp
bifurcation and possible Bogdanov-Takens and 1:2 resonance points. Furthermore, it
remains a challenge to find connecting orbits in the vicinities of the Belyakov points,
and to find the codimnesion-one connecting orbits bounding the regions near the
T-point where codimension-zero heteroclinic orbits exist.

To our knowledge what was presented here is the first two-parameter bifurcation
study of a DDE with continuation techniques. Our study highlights the usefulness of
continuation tools for DDEs and, we hope, may encouragement readers in other fields
to use these new techniques.
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