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Let us consider the following dual questions.

A. Given a function f (x), find its Fourier series

α0

2
+

∞∑

k=1

(αk cos kx + βk sin kx).

B. Given a trigonometric series
∑∞

k=1(Ak cos kx + Bk sin kx), find a function f (x)

such that the given trigonometric series is its Fourier series (then we can find the sum

of the given trigonometric series).

Upon learning the theory of Fourier series, we know questions of type A are straight-

forward but questions of type B are not, for a given trigonometric series may not even

be a Fourier series, as

∞∑

k=2

1

ln k
sin kx

shows, let alone to find a such function. Nevertheless, our experiences in doing many

type A exercises are crucially helpful when tackling type B problems. For instance, if

you are asked to find the sum of the trigonometric series

∞∑

k=1

1

k2
cos(kx)

(

x ∈ [0, π]
)

,

your experiences of calculating the Fourier series of f (x) = x2 on [−π, π], which

gives you

x2 =
π2

3
+ 4

∞∑

k=1

(−1)k cos kx

k2
,

and of f (x) = x on [0, π], which gives you

x =
π

2
−

4

π

∞∑

k=1

cos(2k − 1)x

(2k − 1)2
,

will help you to figure out that for x ∈ [0, π],

∞∑

k=1

1

k2
cos(kx) =

1

12
(3x2 − 6πx + 2π2). (1)
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However, in most such problems, there is only one parameter involved. In this short

note, we are going to obtain the sum of a two-parameter trigonometric series, namely

the sum of

∞∑

k=1

1

k2

(

1 − cos

(
2kπ

l

))

cos

(
2kπ

l
n

)

for integer parameters l and n, by carefully locating a function f (x) and calculating

its Fourier series. How did we find this function? By trying many type A exercises.

First, let us consider the general term an for the periodic sequence

1, 0, 0, . . . , 0
︸ ︷︷ ︸

l−1

, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

l−1

, 1, 0, . . . . (2)

If l = 2, we know an = 1

2
((−1)n + 1), n = 0, 1, 2 . . . For the general case, we show

an =
1

l

l−1∑

k=0

exp
(

2π i
n

l
k
)

. (3)

In fact, it is a direct corollary of the following simple lemma.

Lemma.

l−1∑

k=0

exp
(

2π i
n

l
k
)

=
{

l, if l | n;

0, otherwise.

Proof. If l | n, exp(2π i n

l
k) = 1, and we get

l−1∑

k=0

exp
(

2π i
n

l
k
)

= l.

If l ∤ n, exp((2π i n

l
k) 	= 1, and we have

l−1∑

k=0

exp
(

2π i
n

l
k
)

=

l−1∑

k=0

(

exp
(

2π i
n

l

))k

=
1 − (exp(2π i n

l
))l

1 − exp(2π i n

l
)

= 0.

Next, let us consider an from a different angle. Define a continuous function f (x)

on [0, l] as

f (x) =

{
−x + 1, for 0 ≤ x ≤ 1;

0, for 1 ≤ x ≤ l − 1;

x + 1 − l, for l − 1 ≤ x ≤ l.

It is easy to see that f (x) is the linear interpolation of the sequence in (2). Now, extend

this f (x), first evenly to [−l, l], then periodically to the whole real line R. Denote the

extended function as f̃ (x). The famous Dirichlet-Jordan theorem (see [1]) assures the

convergence of its Fourier series to f̃ (x); hence an = f̃ (n).
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Now, let us calculate the Fourier series of the even function f̃ (x). By the Euler-

Fourier formulas, we have

α0 =
2

l

∫ l

0

f̃ (x) dx =
2

l

(∫ l

0

(1 − x) dx +

∫ l

0

(x + 1 − l) dx

)

=
2

l

(
1

2
+

1

2

)

=
2

l
,

and

αm =
2

l

∫ l

0

f̃ (x) cos
(mπ

l
x
)

dx

=
2

l

{∫ 1

0

(−x + 1) cos
(mπ

l
x
)

dx +

∫ l

l−1

(x + 1 − l) cos
(mπ

l
x
)

dx

}

. (4)

It is easy to check that

∫ 1

0

cos
(mπ

l
x
)

dx =
l

mπ
sin

(mπ

l

)

and

∫ l

l−1

cos
(mπ

l
x
)

=
l

mπ
(−1)m+2 sin

(mπ

l

)

,

and by integrating by parts, we also have the following:

∫ 1

0

x cos
(mπ

l
x
)

dx =
l

mπ

(

sin
(mπ

l

)

+
l

mπ
cos

(mπ

l

)

−
l

mπ

)

,

∫ l

l−1

x cos
(mπ

l
x
)

dx =

l

mπ

{

(−1)m+1(l − 1) sin
(mπ

l

)

+
l

mπ
(−1)m

(

1 − cos
(mπ

l

))
}

.

Now putting all these into (4), we get that

αm =







0, for m odd;

l

k2π2

(

1 − cos

(
2kπ

l

))

, for m = 2k.

Therefore,

f̃ (x) =
α0

2
+

∞∑

m=1

αm cos
(mπ

l
x
)

=
1

l
+

l

π2

∞∑

k=1

1

k2

(

1 − cos

(
2kπ

l

))

cos

(
2kπ

l
x

)

.
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Thus,

an = f̃ (n) =
1

l
+

l

π2

∞∑

k=1

1

k2

(

1 − cos

(
2kπ

l

))

cos

(
2kπ

l
n

)

.

Comparing the above with (3), we have the following result.

Theorem.

∞∑

k=1

1

k2

(

1 − cos

(
2kπ

l

))

cos

(
2kπ

l
n

)

=
π2

l2

l−1∑

k=1

exp
(

2π i
n

l
k
)

,

or equivalently,

∞∑

k=1

1

k2

(

1 − cos

(
2kπ

l

))

cos

(
2kπ

l
n

)

=









l − 1

l2
π2, for l | n;

−
1

l2
π2, otherwise.

(5)

Remarks.

1. Letting n = 0 and l = 2, we get the well-known identity

∞∑

k=1

(−1)k−1 1

k2
=

π2

12
,

which in turn implies the other well-known identity

∞∑

k=1

1

k2
=

π2

6
.

2. Letting n = 0 in the theorem, and using the fact

∞∑

k=1

1

k2
=

π2

6
,

we can easily get

∞∑

k=1

1

k2
cos

(
2kπ

l

)

=
π2

6
−

l − 1

l
π2,

which, in essence, is a different version of what we got in (1). In contrast to there,

where we need two Fourier expansions, here only one function f (x) is needed to

derive a much more general result (5).

3. The lemma, although simple, is useful in classical number theory. For instance,

by this very lemma, the number of solutions of f (x1, . . . , xn) ≡ N (mod l), 0 ≤ x j ≤

l − 1, can be expressed as

1

l

l−1∑

x1=0

. . .

l−1∑

xn=0

l−1∑

k=0

exp

(

2π i
f (x1, . . . , xn) − N

l
k

)

.

For this and related rich discussions in classical number theory, see [2].
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