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Abstract

Do players always attain a Pareto optimal outcome in an equilibrium point of a
supergame if they are allowed to negotiate for their actions in every period ? In order to
answer this , we consider a two-person repeated bargaining game in which players can make
long~term contracts on their actions , if they want. We show that the stationary outcomes
of subgame perfect equilibria in our repeated bargaining game are both Pareto optimal and
individually rational if the equilibrium strategies for both players have " limited " memory
in a sense that they do. not punish each other over periods. We also point out that these
outcomes are not necessarily Pareto optimal if the equilibrium strategies have unlimited

memory.



1. Introduction

The theory of repeated games is one of the most important fields of game theory. The
purpose of it is to investigate dynamic interactions among players in repeated situations.
It helps us to understand phenomena such as cooperation, coordination, betrayal, revenge, etc.,
in terms of noncooperative utility-maximizing behavior of players. Among many types of
repeated games, a supergame, in which the identical component game is repeated infinitely
many times, has been investigated by many authors ( For example, see Aumann [1], Luce and Raiffa

{6], and Rubinstein [8] etc. ).

The " Folk Theorem " states that the average payoffs of Nash equilibrium points in a
supergame are the feasible individually rational payoffs in the component game. It shows that
any Pareto optimal and individually rational payoffs in the component game can be attained
by a Nash equilibrium point in the supergame. This result is significant because it implies
that cooperation among players can be explained by their noncooperative behavior which does not
require any outside enforcement mechanism. Since no explicit negotiations are allowed in the
"

supergame, we can say that the Folk Theorem gives light on the so-called " tacit coordination

among players in repeated situations.

On the other hand, the Folk Theorem contains an embarrassing result that the set of
all Nash equilibrium payoffs is very large in the supergame ( see Kaneko [5] on this point ).
It has been commonly recognized since Selten [10, 111's pioneering work on perfect equilibrium
points that the concept of a Nash equilibrium point is inadequate as a noncooperative solution
concept in repeated games. One may hope that the concept of perfectness could narrow down
the set of equilibrium outcomes in a supergame. Rubinstein [8], however, proved that the
Folk Theorem remains true even if we adopt a subgame perfect equilibrium point as the

noncooperative solution concept in the supergame.



The Folk Theorem depends crucially on the rule of a supergame that at each period of
the game every player can obtain perfect information on history. Under this rule of the
game , a player can employ a strategy with unlimited memory if his capability of memory is
unlimited. That is , he is free to take actions dependent on history of the game as he
wishes. As an extreme case, he may employ a strategy with zero-memory , i.e. , he takes
his action independent of history. If all players employ strategies with zero-memory, the
stationary outcome of an equilibrium point in the supergame must be just a Nash equilibrium
point in the component game because each player can not be punished by the other players

for his past behavior.

In the present paper, we will consider a two-person repeated bargaining game based on
the supergame model. In our repeated game, two players can negotiate for their actions in
every period before they choose their actions independently. They are allowed to reach a
binding agreement not only about which action pair they should choose but also about how long
they should play it in future. That is, the players can make a long-term contract on their
actions. In the context of such a repeated bargaining, we will investigate the following
questions :

(1) Can the possibility of negotiations and binding agreements reduce the multiplicity
of equilibrium outcomes in a supergame in the way that non-Pareto-optimal outcomes are
eliminated ?

(2) Are punishments over many periods useful for attaining cooperation i.e. Pareto

optimal outcomes in repeated bargaining situations ?

The two questions above are closely interdependent. Because the equilibrium outcomes
of the game depend crucially on to what extent each player punishes the other for past
behavior, or in other words, how large memory the strategies players employ have. In order

to answer those questions, we will introduce the concept of memory for a strategy, and will
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characterize the stationary outcomes of Nash and subgame perfect equilibria in our repeated

bargaining game under several conditions on memory for both players' equilibrium strategies.

The bargaining between two players proceeds as follows. At the beginning of every
period of the game, players 1 and 2 in turn propose their preferred action pairs and terms
of contract. Player 1 first makes a proposal to player 2. Then. player 2 decides whether
he accepts it or not. If player 2 accepts it, they will play the agreed action pair as many
times as they agreed. If player 2 rejects it, he can make a counter-proposal to player 1.
Player 1 also decides whether he accepts it or not. If he rejects it, their negotiations at
the present period break down and they must decide their own strategies independently.
Afterwards, the game proceeds to the next period and the same process will be repeated
infinitely many times. We remark that each player can create the same situation as the
supergame, if he wishes, by breaking down negotiations at every period. We employ the limit

of average payoffs as the players' preferences in our repeated game.

We first show that the set of all stationary outcomes of Nash equilibrium points in our
repeated bargaining game coincides with the set of all individually rational action pairs in the
component game, regardless of the memory of equilibrium strategies. Therefore, as long as
we adopt the Nash equilibrium point as a noncooperative solution concept, the possibility of
negotiations and binding agreements does not help the two players to improve their payoffs

in the supergame.

Secondly, we show that the set of all stationary outcomes of subgame perfect equilibria
in our repeated bargaining game coincides with the set of all Pareto optimal and individually
rational action pairs in the component game if the memory of both players' equilibrium
strategies isA limited in the following way : There exists at least one period t* such that
the players' behavior in any succeeding period t ( > t* ) does not depend on the history of the

game until period t¥. This means that the players do not punish each other for their past



behavior until period t*. We also point out that the set of all stationary outcomes of subgame
perfect equilibria in our repeated bargaining game contains many non-Pareto-~optimal action

pairs if both players' equilibrium strategies have unlimited memory.

The paper is organized as follows. In Section 2, the component game of our repeated
bargaining game is introduced. In Section 3, our repeated bargaining game sketched above
is formalized. The concept of memory for a strategy is defined. In Section 4, the main
theorems are presented. The proofs of all theorems are given in Section 5. Section 6 has

the conclusion.




2. The Component Game

LetG=(Sl,Sz;f1

of player i's strategies and f i his payoff function. For i = 1, 2, we assume that Si is a

, ) ) be a two-person game in normal form, where Si is the set

compact set and fi is a real-valued continuous function on S = S1 XS2 . A strategy pair s =
( S1+ Sy ) &S is also called an outcome in G. Throughout the paper, we will restrict

attention to pure strategies only.

The minimax payoff for player i in G is defined to be

v, = mnmax f.(s.,s.), j#i (2.1)
1 S, S. 1 1 ]
i i

A strategy for player j attaining vi is called a minimax strategy for player j against

player i, and is denoted by s¥i . That is,
)

v. = max f.(s. , s¥1).
1 S. 11 ]

1

A strategy pair s = ( Sy 52 )JES is said to be individually rational if

f(s) > v. |, i=1, 2.
1 - 1
For sj & S]_, a strategy for player i is said to be a best response to sj , denoted by bi( s].), if
f.(b(s,),s.)= maxf (s.,s,).
11 7] i s. 1 1 ]

1

A strategy pair s = ( Sy > 52 )&S is said to be ( weakly ) Pareto optimal if there exists no

S e S such that

fi(’s?) > f(s) , i=12

Let E be the set of all strategy pairs s € S which are both individually rational and

Pareto optimal. Then we define



w. = min fi(s),i=l,2. (22)
scE

w_ is the least payoff for player i when all individually rational and Pareto optimal strategy
1
pairs are selected. For i = 1, 2, we also define a strategy pair mi = ( mli, m2i YCE
which solves the maximization problem :
max f.(s) subject to f(s)=w . (2.3)
seE J 1 1
The strategy pair m! will be used in order for player j to punish player i for deviating from

a ( subgame perfect ) equilibrim play in the repeated bargaining game described in the next

section. It can be easily proved that
fj(s)gfj(mi) . Li=1,2 i4i,

for all individually rational strategy pairs s.



3. The Repeated Bargaining Game l_’

We consider a repeated bargaining game in which the component game G is played
infinitely many times. In our model, unlike the usual one of a supergame of G, at the
beginning of every period two players can negotiate not only about which strategy pair they
should choose but also about how long they should choose it from now on. Once they have

reached an agreement, they must keep it.

The game proceeds as follows. At the beginning of every period, player 1 first proposes
to player 2 a strategy pair sl = ( sl1 , 321 ) and a number Tl of periods for which sl should
be played successively. Then, player 2 decides whether he accepts player 1's proposal or not.
If player 2 accepts it, they reach the binding agreement that they will play sl for ! periods
from now on. If player 2 rejects the proposal, then he must counter-propose to player 1
a strategy pair s2 = ( 512, s 22) and a number T2 of periods. If player 1 accepts player 2's
proposal, they reach the agreement that they will play s2 for T2 periods. If player 1 rejects
the proposal, their negotiations in the present period break down and they must decide their
own strategies s 1 and sz independently. Afterwards, the same process will be repeated

infinitely many times.

The repeated bargaining game sketched above can be formulated as P= {Gt}fj where
ct , the game in period t, consists of the following moves :
(1) Player 1 proposes a pair ( sl , T! yeS X N* to player 2, where N* ={_1, 2, ... }
U {ool,
(2) Player 2 chooses "1 " (yes)or " 0" (no ). If he chooses 1, he accepts
player 1's proposal and they will play sl for T! periods. Afterwards, the game Gt+sTl s played.
In the case of T' - OO , sl will be played infinitely many times. If player 2 chooses 0,

he rejects player 1's proposal and the game proceeds to the next move.
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(3) Player 2 proposes a pair ( 2 , T2 ) € SX N¥ to player 1 in his turn.

(4) Player 1 chooses 1 or 0 similarly to (2). If he chooses 1, he accepts player 2's
proposal and they will play s2 for T2 periods. Afterwards, the game G“T2 i1s played.
If player 1 chooses 0, he rejects player 2's proposal and their negotiations in period t break
down.

(5) After negotiations break down, players 1 and 2 choose their own strategies 1 and
S, independently, and then the game Gt ends. At the end of the period, each player is

t+]

informed of all moves in this period and the game G 1s played under the same rule as

of Gt in the next period t+l1.

Formally the repeated bargaining game |7 can be described as an extensive game of infinite
length, and with perfect information except that two players choose their strategies in G
independently in every period after negotiations break down. The path from the origin to each
move in the extensive form of F’ i1s called the history of the move. We can define a ( pure )

strategy for each player in r7 in the usual way as in an extensive game.

A strategy for player i (1 =1, 2 ) in [7 is represented as (Tl = {0‘ it oo where

t=1
U‘it (t=1, 2, ..) consists of the following elements :
t - t t t
O’i (x AN AN (3.1)
xit , yit and zit are the functions of the history h t-1 of the first move in period t and also

the proposals ( sl , T1), ( s2, T2) in SXN* satisfying
xtnth) e s x wk
vientl st ol (s2,12)) e {0, 1} (3.2)
z ntl, (sl,thy, (s2,12) ) €5

for i = 1, and



xotehtl (sl 1lye s x Nk
vteatl, st rlyefo, 1) (3.3)
2 nt1, (s, Thy, (52, 1%))€e s,

for 1 = 2.

xlt( ht-1 ) is the proposal which player 1, informed of the history ht‘l, makes at the
first move of period t. ylt( nt-1, ¢ sl , 1l ), (82, 12 ) ) is the response of player 1 to
player 2's proposal ( s2 , T2 ) after his proposal ( st , T1 ) is rejected.
zlt( ht-1 | (sl T1 ). ( s2 , T2) ) is the strategy in S; which player 1 chooses after the
proposals ( gl , Ti ) of player i, i = 1, 2, are rejected and thus negotiations in period t break
down. xzt, y2t s zzt can be interpreted in the similar way. The set of all strategies T~ i
(i=1, 2) for player i in |_7 is denoted by Z . We put Z = lezz. To avoid

1
a confusion, a strategy S; for player i in G will be called his action in what follows.

A strategy pair = ( O’l , O 2) for the two players in r7 uniquely determines the

sequence of action pairs in G,

a(q’)={st_}fj, st € 8§, t=1,2, ..,

where each st is plaved in period t. In this paper, we assume that players evaluate the sequence
a( J ) of action pairs according to the limit of the means of the payoffs in all periods. That is,
the payoff function for player i in r7 is defined by
u t
Fi(O’)=11_m(1/T) E‘ fi(S) (34)
T=00 t=1
where a((_'r)={st}°°.
t=1
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Definition 3.1. A strategy pair Q * = ( (Tl* , G‘Z* ) E Z is said to be a ( Nash )

equilibrium point if

OO *, T%) > F(Ty . 0F) Vo e, i-Lz2

An equilibrium point G * in |_7 is said to be stationary if a(J * ) = (s, s, ... ) for some s € S.

[7 , regarded as an extensive game, includes the foliowing five types of subgames starting
in each period t : (1) |_7t , which begins with the first move of period t ; (2) ]'72t( sl 11,
which begins after player 1 has proposed ( sl , Tl YE SXN* ;  (3) |—72t’ which begins with a
proposal of plaver 2 ; (4) |71t( s2 s T2 ), which begins after player 2 has proposed ( s2 s T2 )
5) r;zt, which begins after negotiations have broken down.

Let 0 = ( G‘l , (}'"2),. G“l ={0’lt}f=ol (i=1,2), be a strategy pair in [ / , and let
q't =( g lt , T 2t ) for each t. Given a subgame [7 ' of 77, { induces a unique strategy

pair on r7 ', denoted by (0~ | [7' . We also denote by §~t, _, the behavior for piavers which J

K
( or G-t ) induces on the period t-game of [7 . In the same manner as ( 3.4 ), we can define
the payoff of plaver i in the subgame "7' when ‘|_7v is employed. This payoff is denoted by

Fi(G" )‘Pv .

Definition 3.2. An equilibrium point O * = ( (Ti * Q“‘Z* ) in r7 is said to be subgame

perfect if, for any subgame " of , %, _, is an equilibrium point in .
perfect T r

Subgame perfectness, introduced by Selten [10], excludes " irrational " moves of plavers
in subgames off the equilibrium path. Especially it excludes incredible threats by players

such as the permanent play of the minimax strategies.

As we have mentioned in the Introduction, the equilibrium outcomes of the repeated
game depends crucially on what kind of punishments two players incorporate into their

equilibrium strategies. In order to investigate the role of punishments in our repeated
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bargaining game |—7 , we introduce the concept of memory for strategies in the following.

Definition 3.3. Let 0 =( Ty, T,) G‘i - {Q“it }t:) (i=1,2), be a strategy

pair in r’ , and let M be defined by

M -{m | mc{t,.,t-13, t=23 .. 73.
(J is said to have memory M if the following condition holds for every t = 2, 3, ... : Let
1_7t

the histories of both subgames are identical in all periods k & MU . Then, O t| Wt =T t l ﬁt.

a4
and r7t be any two subgames of [7 starting with the first move in period t such that

Definition 3.3 says that, when two plavers employ strategies with memory M , their behavior
in every period t depend on history only in previous periods k € MU . In this case, they do
not punish each other for their past behavior in all other periods 1 5,": Mt . The set of all

strategy pairs with memory M in |7 is denoted by ZM .

Let Mf ={ MU [ t=23 ..F and (' ={Mt | t=23 .7. We say that
memory /4 is larger than memory M’ if Mt D M'l for ail t = 2. Then, the largest memory
is M* ={_ Mt | MU = {1,.,t-13 forallt>2 } , and the least memory M0=
{ Mt l Mt. 9{; for all t > 2. } . If M is larger than M' , then ZM DZM'
Note that Z/‘f* =) .

Definition 3.4. A strategy pair " - ( Q7 . Q“z yin >7M is said to have unlimited

memory if Af = M *, and limited memory otherwise. In particular, (J° is said to have zero-

memory if M =M0 )

When players employ strategies with unlimited memory, any restriction is not imposed en
their behavior. On the other hand, when they employ strategies with zero-memory, their
behavior in each period is independent of history in all past periods. Therefore, strategy

pairs with zero-memory prevent them from punishing each other over periods.
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4. Characterizations of Equilibria with Memory M in r7

We will characterize Nash and subgame perfect equilibria with memory M in l'7. in
what follows, we consider only stationary equilibrium points. The proofs of all theorems are

given in Section 5.

Theorem 4.1. There exists a Nash equilibrium point % = ( 0‘1*, a 2* = Z in [/

such that a(g-¥ ) = ( s¥, s¥, ... ) if and only if s¥¢ S is individually rational.

Theorem 4.1 shows that the stationary outcomes of all Nash equilibrium points with
unlimited memory in the repeated bargaining game ,_’ are identical to those of the supergame
of G, in which no explicit negotiations are allowed between two players. This means that,
as long as we adopt the Nash equilibrium point as a noncooperative solution concept for f7,
the possibility of negotiations and binding agreements does not help players to improve their
average payoffs in the supergame of G. This disappointing result comes from the fact that
a Nash equilibrium point in f7 may contain a kind of threat by each player, i.e., to refuse
any proposal by the other if it is not equal to his proposed one, and also to choose a minimax
strategy against the other whenever negotiations break down. In many Nash equilibrium
points of [7, player 1 proposes a non-Pareto-optimal action pair with a threat to reject all
other proposals by player 2 even if the proposals are more profitable for both of them.

Clearly, such a threat is irrational and incredible.

Theorem 4.2. For s* € S, the following conditions are equivalent.
(1) s* is individually rational.
(2) There exists a Nash equilibrium point g% = ( Q‘l* , Q‘Z* ) with zero-memory M 0

in 7 such that a( O*)=(s% s ...).
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(3) There exists a Nash equilibrium point G % = ( U‘l* . T 2* ) with any limited

memory M in |7 such that a( g% ) = ( s¥, s¥, ... ).

Theorem 4.2 shows that the memory of strategies has no influence on the set of all Nash
equilibrium outcomes in [7. This is in contrast to the fact that any Nash equilibrium point
with zero-memory in the supergame results in an infinite sequence of a Nash equilibrium point
in the component game G. This result, of course, comes from the special rule of our repeated
bargaining game [7 During one period of r’ two players can negotiate with each other
before they select their own actions independently. Therefore, even a strategy with zero-

"

memory enables each player to inflict an " intra-period " punishment on the other, i.e., he can

punish the other by using a minimax strategy immediately after negotiations break down.

Next, we will characterize subgame perfect equilibria with memory /{ in [7.

Theorem 4.3. There exists a subgame perfect equilibrium point J-* with zero-memory
MO in [7 such that a( ¢* ) = ( s*, s* ... ) if and only if s* is both Pareto optimal and

individually rational.

By introducing subgame perfectness and zero-memory, we can eliminate non-Pareto-
optimal action pairs from the set of equilibrium outcomes of l'7 The essense of the proof
is very simple. Assume that the two players agree to play a non-Pareto-optimal action pair
s* infinitely many times in a subgame perfect equilibrium point g% = ( Crl* , Q‘z* ) with
zero-memory M O Since s* is not Pareto optimal, there exists an action pair S more
profitable to both of them than s*. Suppose that player 2 makes the new proposal that they
should play § infinitely many times. If player 1 accepts it, they will play S forever and thus
player 1 will obtain the average payoff f 1( T).  On the other hand, even if he rejects it,
the equilibrium point ¢ * will lead players 1 and 2 to reach the original agreement again in

the next period because g * has zero-memory. Hence, to accept player 2's proposal is the



- 14 -

optimal behavior of player 1, and thus player 2 can increase his average payoff by proposing
the eternal play of S.  This shows that any equilibrium point with a non-Pareto-optimal

stationary outcome can not be subgame perfect if it has zero-memory.

Furthermore, Theorem 4.3 shows that in our repeated bargaining game (7 a very simple
strategy with zero-memory /’f 0 is sufficient for attaining every Pareto optimal and individually
rational outcome as the stationary play of a subgame perfect equilibrium point. A strategy

" inter-period " punishment on the

with zero-memory prevents each player from inflicting a
ther, i.e., he can not punish the other over periods. Only the " intra-period " punishment
which we have already mentioned is necessary for the players to reach a Pareto optimal and

individually rational outcome.

We can weaken the condition of zero-memory in Theorem 4.3 as follows.

Theorem 4.4. Let M = { Mt | Mt C {1,.,t-1}, t=2,3 ..} satisfy the
following condition : there exists at least one period t¥* ( > 2 ) such that
Mt {5 t-1F, Ntk (4.1)

Then, there exists a subgame perfect equilibrium point @~ * with memory M in r, such that

a(g* ) = (s% g% ... ) if and only if s* is both Pareto optimal and individually rational.

( 4.1 ) means that the behavior of both plavers in every period t ( > t* ) does not depend on
any history of the game from period 1 to period t* - 1. The essential point of this condition
is that, even if negotiations broke down before period t¥*, both players’ behavior in period t* and
in all succeeding periods does not depend on how negotiations broke down. Therefore, they do not
inflict punishments on each other for their past behavior before period t¥*. Theorem 4.4 shows

" inter-period " punishment mentioned above, they can

that, if the two plavers do not make the
always attain a Pareto optimal and individually rational outcome by a subgame perfect equilibrium

point.



Finally, we investigate what kind of action pairs will be stationary outcomes of subgame

perfect equilibria if players are free to punish each other over periods.

Theorem 4.5. There exists a subgame perfect equilibrium point (J % = ( a, * (}‘72* ) with

the unlimited memory M * in [/ such that a ( % ) = ( s*, s*, ... ) if

f(s¥) > wy , Vi=12 (4.2)

When no limitations are imposed on the memory of strategies in '7 each player is free to
punish the other for the behavior in previous periods. In any subgame perfect equilibrium
point of P , such punishments themselves also must be subgame perfect equilibrium points of
the relevant subgames. The essense of Theorem 4.5 is in that the players can employ as the
punishments subgame perfect equilibrium points with zero-memory constructed in Theorem 4.3 of
which stationary outcomes are both Pareto optimal and individually rational. The punishment
level on player i (1 = 1, 2 ) is his least payoff wi in all Pareto optimal and individually rational
payoffs. For every action pair s* € S satisfying ( 4.2 ), we can construct a subgame perfect
equilibrium point J * = ( G * | 0'2* yin |7 such that a G *) = (s¥ s¥% ...) by incorporating
the punishments above. If plaver 1 does not propose s*, then he will be punished by player 2
from the next period so that his average payoff will be wy. On the other hand, if player 2
rejects player 1's proposal s*, then he will be punished by player 1 so that his average payoff
will be Wo. These types of punishments cause that the two players agree to the eternal play
of a non-Pareto-optimal action pair. @ We remark that the punishment mentioned above is not

possible if the strategies have memory M satisfying ( 4.1 ).



- 16 -

S.  Proofs

In this section, the proofs of all theorems in the last section are given.

Proof of Theorem 4.1. if-part. Define a strategy G'i* = {O‘i*t}g < Zi for
player i in [ 7 as follows : for each t = 1, 2, ... ,

(1)  Propose ( s* , 00 ) to player j (j f i)

(2) When player j proposes ( s, T ), accept it if s = s%, and reject it otherwise.

(3) When negotiations break down, choose a minimax strategy si"‘j against plaver j.

Clearly, a( T* ) = ( s¥, s%, ... ) and thus F.( T*) = At s ) fori=1,2.

We show that T*is a Nash equilibrium point of [7. Fir_‘st, consider the case that
player 1 deviates from ¢ *. Suppose that player 1 changes his proposal to (s, T ), s #+ s¥,
at period 1. Then, player 2 rejects it and in turn proposes ( s*, oQ) to player 1. If
player 1 accepts it, s¥ is played forever. If he rejects it, his payoff in period 1 will be at
most the minimax payoff vy (<f 1( s* ) ) because player 2 chooses a minimax strategy s 2*1
against him when negotiations break down. Since player 2's strategy q 2*t in period t ( t>2)
does not depend on any past history, player 1's payoff will be at most fl( s* ) in every period.
Hence, player 1 can not increase his average payoff in P by deviating unilaterally from .

The similar arguments hold for player 2.

only if-part. let T% = ( @ 1*, T ;‘ )E Z be a Nash equilibrium point of {7 such
that a( g% ) = (¥ &% ...). Assume that f ( s¥* )< v, for some i. Without loss of
i

generality, we can let i = 1. We denote by by( Sy )& S1 a best response of player 1 to

2
as follows : for each period t = 1, 2, ...

. . '
S 682’ Remark that fl( bl(sz), S, )2v1 for any SZ Define a strategy (Tl for player 1

(1)  Propose ((bl(so* ), sz* ), 0Q ) to player 2.
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(2) Reject any proposal by player 2.

(3) When negotiations break down, choose a best response b 1(82) to the strategy s 9
for player 2 assigned by 5.

From the remark above, if the strategy pair ( Q‘l', a 2* ) is played, player 1's payoff will

be at least v in every period. Hence,
FIC Ty, ¢ >v, S>H(s*) -F(a*),

which contradicts that G-¥* is an equilibrium point of [7. Q.E.D.

Proof of Theorem 4.2. (1)=(2) : The equilibrium point g * in [7 constructed in the

proof of if-part of Theorem 4.1 has zero-memory. (2)=(3) : This is clear from the

definition of memory. (3)=»(1) : We can prove this from only-if part of Theorem 4.1. Q.E.D.

Proof of Theorem 4.3. only if-part. Let g% = ( O‘l*, 0‘2* ) be a subgame perfect

equilibrium point with zero-memory in [7 such that a( g * )y = (g% s¥% ...). From Theorem
4.2, % must be individually rational. Assume that s* is not Pareto optimal. Then, there
exists some ’§'eS such that fi( %") > fi( s* ) for all i =1, 2. Consider the subgame

['71‘{52, T2) for any t and any (s2, T2). By the " backward argument " we can examine the
equilibrium condition of player 1's response to player 2's proposal (s2, T2). If player 1
rejects it, the sequence ( s*, s¥, ... ) of strategy pairs will be played from the next period
t + 1 by % since T* has zero-memory. Then, his average payoff in ’7lt(52, T2) will be
f l( s* ). If he accepts (32, T2), his average payoff in |—71t(52, T2) will be f 1( s* ) when
T2 00 ,and f 1( 52 ) when T2 - 00 . Hence the equilibrium condition of player 1's

response is as follows.
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accept if T2 =00 and fl( s2) >f1( s¥ )
f accept or reject if T2 < 0O or f s2 )y = fl( s* )

reject if ¢ - 00 and f4( 32 )< fl( s¥ ).

t . .
In the subgame '-7 , if player 2 rejects player 1's proposal and counter-proposes (gl, oJ) to
player 1, player 1 will accept it from the equilibrium condition above. Then, player 2's average
payoff in I_"t increases from f2( s¥ ) to f5( ’§'). This contradicts that *! Wt 1s a Nash

equilibrium point of |_'t .
if-part. Define a strategy Q‘l * for player i in F7 as follows. For each period t,

(1) Propose ( s* , Q) to player j ( + i ).
(2) When player j proposes ( s , T ), accept it if s = s* or fi( s) > fi( sk )
and reject it otherwise.

(3) When negotiations break down, choose a minimax strategy si*j against player j.

Clearly, ¢ * has zero-memory and a( g% ) = ( s¥, s¥, ... ). We will first show that for

each subgame ’—7 t starting with the first move in period t  * 1s a Nash equilibrium point

7t
of [7'. Ssince A TH| ) = (% % ) F(TH) | ge = (%) foralli=1, 2

Assume that player i ( i = 1, 2 ) alone deviates from (G *. At each period t' ( >t), any

proposal ( s, T ) of player i with fi( s)>1.( s* ) is rejected by player j since fj( g¥ )Zf].( s)
from the Pareto optimality of s*. Moreover, when negotiations break down, player i's payoff will

be at most vi because player j chooses a minimax strategy sj*i against player i. Since f i( gk ) > v
from the individual rationality of s*, player i can not increase his payoff in period t'by deviating
from G *. Since player j's strategy 0“3 * has zero-memory, player i can not increase his payoff

in all succeeding periods by the same reason as above. Therefore, *l F’t is a Nash equilibrium

point of [7%.

Next, we will show by the backward argument that (J * also induces Nash equilibrium points

in the other four types of subgames of l"’ starting in period t.
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(a) [_710'(: In ¢ *, the two players choose minimax strategies against each other if

negotiations break down in period t, and they will play s* forever from period t+1. Hence,

F.(Q'*)| t = f.(s%). NotethatFi(Q‘*)! '(=F.(Q-*)l tsl where r7t+lis
: My M, I
the subgame of r712t starting with the first move in period t+l. From the zero-memory of

aT ; * and the definition of F, , we have

. * = F. . . Xk
F(T, . T, )”_712t FOG . O )lr7t+l , Y@ el .

t+l

On the other hand, since *1 l.7 t+1 is a Nash equilibrium point of r7 ,
. % . *
Fit ¢ )lrit*l z FCG G; )lt-;m ’ VG; EZi .

Therefore, we have

FOC*) a2 KOG G %) o, e,
12

——
[

which implies that *g t 1s a Nash equilibrium point of |
12
t = t >
(b) r_71 (s2, T2) :  For simplicity, let r7 = Pl (s2, T2 ). In r7 , player 1

12

first has to decide whether he accepts player 2's proposal ( 52 , T2 ) or not. In order to see
nv

that (J~ *| ‘-"-; 1s a Nash equilibrium point of l—’ , 1t suffices to show that the response indicated

in (2) is optimal for player 1, provided that (- * = ( 1 *, ) * ) is employed after player 1

makes any response. From the definition of (J7 * , we have

f s2) if 1 52)>f1( %) and T2 = 00
F (r* ~s =

(%) i f(s2)<f(s*¥) or T2 < 00,

When fl( s2)> fl( %) or s2= g%, player 1 accepts the proposal ( s2 , T2 ) of player 2

if he obeys U‘l*. Then F ( @ * )I/ﬁ' is equal to i s2)if T2= 00 , and to fl( %) if

T2 < 0. If he rejects ( s2, T2), he can obtain at most FOa * )”7 t =1 s* ) in the
1

next subgame r,lg , as we have shown in (a). Hence, to accept ( s2, T¢ )
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is his optimal behavior in this case. When f 1( sz) < f 1( s* ) and s?  s*, player 1 rejects
the proposal (s2 , T2) if he obeys (]'1*. Then, Fl( q* )lfl_\,f is equal to f 1( ¥ ). If he accepts
it, he will obtain the lower payoff f 1( 52) than f 1( s* ) for Tz-periods. From period t + T2

he will obtain at most f( s* ) from the zero-memory of (*. Hence, to reject (s2, T2)

is his optimal behavior in this case.

(©) |'72t : In @ %, player 2 proposes (s* , 00) to player 1, and then player 1
accepts it. Hence, F 2( a*) | B t =1 2( s* ).  Assume that player 2 proposes (s , T) with
f2( s) > fz( s* } in order to increase his payoff. Since fl( s)< fl( s* ) from the
Pareto-optimality of s*, player 1 rejects it. Player 2 will obtain at most f2( s* ) in the

next subgame [71t(s , T). This means that { * | I_'t 1s a Nash equilibrium point of [_;_ t
2

(d) r7t (sl s Tl) :  Similarly to (b), we can show that ¢~ induces a Nash equilibrium
2

point in [7':(51 , T1) for any pair sl , T1).
2

By the discussion above, we have shown that (% induces a Nash equilibrium point in

every type of subgames of [_, . Q.E.D.

Proof of Theorem 4.4. Since the zero-memory M 0 clearly satisfies ( 4.1 ), it is sufficient

from Theorem 4.3 to prove the only-if part. Let (% = ( Q‘l* R (Tz* ) be a subgame perfect
equilibrium point with the memory M satisfying ( 4.1 ) such that a (q-* ) = ( s¥, s*, ... ).

Assume that s¥ is not Pareto optimal. Then, there exists some ’;ES such that f i(’§') >f i s¥ )
for all i = 1, 2. Now, suppose that player 2 unilaterally deviates from " * in a way that he
rejects player 1's any proposal and counter-proposes ( Y, 00) from period 1 to period t*-1. T
playver 1 accepts player 2's proposal in some period t (< t*-1 ), then player 2 can increase his
average payoff from f s s* ) to f2( '5'). This contradicts that (% is a subgame perfect equilibrium
point in [ 7. Therefore, it suffices us to consider a case that negotiations broke down in all
periods before period t*-1, We examine the equilibrium condition for player 1's response to

N
(s, 00) in period t%-1.
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If plaver 1 accepts it, his average payoff will be f( T ). Otherwise, his average payoff
will be Fea * )| Wt* , which is independent of history in all past periods since the memory M

v .
of ( * satisfies ( 4.1 ). Thus, the equilibrium condition for player 1's response to ( s, 00) is

accept it f0S) > F(q x|tk
accept or reject if f( s) - Fieq* )||7t*

reject it (S < R otk

First consider the case that fy( ?,/) > Fl( q-* )||7t* . From the equilibrium condition above,
player 1 will accept player 2's proposal (’5’, Q) and thus player 2 will obtain the average pavoff
f 2( (s\,') greater than f2( s* ).  This contradicts that " * is a subgame perfect equilibrium point in
r7 . Next, consider the case that f 1( ,§’) < Fl( g * )| [—,t* . Assume that player 1 deviates
from (J * in the same manner as player 2, i.e., from period 1 to period t¥* - 1, he proposes

( "sv, Q) and , if it is rejected by player 2, then he also rejects any proposal of player 2.

By the same reason as above, it suffices us to assume that negotiations broke down in all periods
before period t* - 1. Then, the average payoff of plaver 1 in r’ will be f 1( '§') if player 2
accepts ('S, OC ) in period t* - 1, and Fy( g * )|r7t>l< otherwise since A{ satisfies ( 4.1 ).
Whichever happens, player 1 will obtain his average payoff greater than f 1( s* ). This also

contradicts that (J°* is a subgame perfect equilibrium point in [7 . Q.E.D.

Proof of Theorem 4.5. We define a strategy {~ * - { G‘j*t = ( xit ,v. bt zit )} >0
I ! t t=1
for player i (1 =1, 2 ) in |_7 as follows. Let ht-1 be any history of the first move of player 1

in every period t = 1, 2, ... .

case (i) : No breakdown of negotiations happens in the history ht'1 ( the case that t = 1

is included ).

x}(htly - (s%, 00, (5.1)
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1oif f(s2)>f(m?) and T2 - 00
yitentL sk thy, (s2, 1)) = (52)

0 otherwise,

0 if fi(s2)<f(ml) and T2 = 0O

v teatl sy, (s2 1% - (53)

1  otherwise,

where sl 4 s¥ and

2 ntL (sh, Tl (82, 12)) - 5% 2. (5.4)
We also define

{ (%, 00) if sl=g*
{
L

Rt (sl Thy) - (55)
(ml , 00 ) if sl s¥
1 if sl=s%, or f2(31)>f2(m1)and T1=OO
ytentl, (s, 1l =‘[ (56)
0  otherwise,
z,lht-l, (s, Th, (52, 72)) = sl (5.7)

case (ii) : Negotiations break down in the history ht-1,
Let ’; be the first period of |_7 in which negotiations break down in ht-1. Let ( sl , Tl )

A/
be the proposal of playver 1 in period t. Then, we define

gltim2) if sl-gk
1

%t = 5.8
Q‘i ( )
(rit (ml) if sli ¥
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A B 1‘ ; N foertemi )30
where for j = 1,2 (m )= ( G (m'), Gytm)), @ (md)={ GFCm )}
(i=1,2)is a subgame perfect equilibrium point in [ 7 with zero-memory satisfying a( G~ (mJ ) )

= ( mj , mi , ... ). The existence of such (J( mi ) is guaranteed by Theorem 4.3.

Clearly we have a( ("% ) = ( s%, % ... ). By the backward argument, we will prove that

in every period t (t =1, 2, ... )  * induces a Nash equilibrium point on every type of subgames

of W , i.e., Pt , l_'zt( sl s Tl ), r’zt, I_'lt( s2 , T2 ) and l—ll2t' For all subgames

t
except [_7 , we will prove this in the case that player 1 proposed ( sl , ! ) with sl # sk
The similar proof holds in the case that sl - 9% From the definition of g *, we remark that

it suffices us to consider only case (i).

(a) i /. Consider the deviation of player 1 from (] *. Assume that player 1 proposes

(sl , Tl), sl 4 s* to player 2. By ( 5.6 ), player 2 accepts it only if f( sl ) > 1 ml ) and

T1 = 0, and then player 1's average payoff will be f 1( sl ).  But, since

= ok
fl(sl)_gfl(ml) w, £ fi(s¥)

1

because of ( 4.2 ) and the Pf;reto optimality of ml

, player 1 can not increase his average
payoff in this case. When player 2 rejects ( sl , Tl ), player 2 counter-proposes ( ml , 0Q ) to
plaver 1 by ( 5.5 ). If player 1 rejects it, {J ( ml ) will be played from period t + 1 as shown
in ( 5.8 ). Hence, whether player 1 accepts player 2's proposal or rejects it, his average
payoff will be at most fl( ml) = Wy - Therefore, the deviation from (7 * is not beneficial to
player 1 in either case. The same result holds for player 2.

t
12

period t + 1 independent of the outcome in period t as shown in ( 5.8 ). Since the payoffs

b) When negotiations break down in period t, (G ( ml ) will be employed from

in period t does not influence the average payoffs for players, (7 * induces a Nash equilibrium

point on the subgame l_llzt'



© mt(sz, T3 : We prove that ( 5.3 ) is the optimal response for p.layer 1 to
player 2's proposal (32, TZ). If player 1 rejects (32, Tz), then his average payoff will be
fl( m1 ) = wq from ( 5.8 ). Therefore, when fl( 52 )< fl( m1 ) and T2 = 0Q , his optimat
response is to reject (s2, T2). In other cases, if he accepts (sz, T2), then his average payoff
will be £;( s2) (> f,(ml )) when % = 00, and f0s%) (21 (ml)) when 12< 00 .

Therefore, in these cases, to accept (s2, T2) is the optimal response for player 1.

(d) Pzt :  Suppose that player 2 proposes (s2, T2) to player 1. We consider the
three cases ; (1) f ( s2)< f e ml)and T2 = 00, (2) f( s2) >, ml ) and T2 - 00,
®))] T2 < o0 . In the case (1), player 1 rejects (sz, T2) from ( 5.3 ), and player 2's average
payoff will be f2( ml ). In the case (2), player 1 accepts ( 2, T from ( 5.3 ). If fl( s2) >
fl( ml ), then we have f2( s2 )< f2( ml ) since ml is Pareto optimal. If fl( 32 ) = fl( ml ),
then we have f2( s2 )gfz( ml ) from ( 2.3 ), too. In the case (3), player 1 accepts
(32, T?') from ( 5.3 ), and player 2's average payoff will be f2( s¥) (<L f2( ml)). Therefore

( ml , 00) Is the optimal proposal for player 2.

(e) |r72 t(sl, Tl) :  Similarly to (c), we can prove that ( 5.6 ) is the optimal response

for player 2 to (s!, Th. Q.E.D.



6. Conclusion

From the results in Section 4, we can answer the questions posed in the Introduction.
One may think that the introduction of negotiations and binding agreements trivially leads players
to cooperation, i.e., Pareto optimal outcomes, in a supergame. However, this is not the case
as shown in Theorems 4.1, 4.2 and 4.5. Theorems 4.1 and 4.2 show that, if we employ the Nash
equilibrium point as a noncooperative solution concept, the multiplicity of equilibrium outcomes
still remains even in our repeated bargaining game. Theorem 4.5 shows that even if we employ
the subgame perfect equilibrium point, Pareto optimal outcomes are not necessarily attained
if players punish each other severly over periods. Theorems 4.3 and 4.4 show that, in order to
reach cooperation, it is important for players to forget each other's behavior in previous periods,

or, in other words, to have a kind of " forgiveness "

against each other. We can find similar
observations in the results of computer tournaments of iterated Prisoner's Dilemma performed by

Axelrod [2].

We conclude the paper with a few remarks. We have restricted our attention to
stationary equilibrium points, and have allowed players to reach only the agreements that they
should jointly choose the identical action pairs for finitely or infinitely many periods.
If they are allowed to agree to any sequence of action pairs, payoffs by jointly-mixed strategies
in the component game can be realized as the average payoffs of non-stationary equilibrium points

in the repeated game. See Benoit and Krishna [3].

The rule of our bargaining game allows players to agree that they should play a certain
action pair forever. In practice, it may be considered unnatural that they bind themselves
to keep such an eternal agreement. The eternal contracts are caused by the use of the
average payoff because any sequence of payoffs in finitely many periods are negligible. If we
adopt the discounted payoff as the preference of a player and the discount factor is sufficiently

close to 1, they could be replaced by contracts with finitely but sufficiently long terms.
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Among many repeated bargaining games appeared in the literature, the multistage unanimity
game introduced by Kalai and Samet {4] is closely related to our model. In order to compare
both models, we interpret the multistage unanimity game as follows. The n players propose
simultaneously their preferred action combinations in the component game. If their proposals
coincide, they can reach the binding agreement that they will take the agreed upon action
combination forever. Otherwise, they can make proposals again. When no agreement is reached
after a given number of repetitions, negotiations end in failure and the players will choose their
( presupposed ) noncooperative actions forever. We can say that our repeated bargaining game
describes in more detail how players reach a binding agreement than the unanimity game. The
major merit of such detailed description of negotiations is in that a subgame perfect equilibrium
point is sufficient to assure a Pareto optimal and individually rational outcome through players'
noncooperative behavior while the multistage unanimity game needs a stronger solution concept
like a persistent equilibrium point. On the other hand, the condition of zero-memory for

strategies ( corresponding to subgame symmetry in Kalai and Samet [4] ) is essential in both models.

Finally, the present paper is an attempt to reduce the multiplicity of equilibrium outcomes
in a supergame by introducing the possibility of negotiations. If we make more elaborate repeated
bargaining game models, we may be able to narrow down further the set of equilibrium outcomes,
and at last to select a unique bargaining solution such as the Nash bargaining solution. For

these attempts, see Moulin [7] and Rubinstein [9].
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