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Abstract
We optimize the full-response diagnostic fault dictionary

from a given test set. The smallest set of vectors is selected
without loss of diagnostic resolution of the given test set.
We give an integer linear program (ILP) formulation using
a fault diagnostic table. The complexity of the ILP is
made manageable by two innovations. First, we define
generalized fault independence. This property identifies
many fault pairs that are guaranteed to be distinguished,
significantly reducing the number of ILP constraints. Sec-
ond, we propose a two-phase ILP approach. An initial
phase, which uses existing procedures, selects a minimal
detection test set. In a final phase, additional tests are
then selected for the undiagnosed faults using a new
diagnostic ILP. The overall minimized test set may be only
slightly longer than that obtained from a one-step ILP
optimization, but has advantages of significantly reduced
computation complexity and reduced test time. Benchmark
results show potential for very small diagnostic test sets.

Keywords - Fault diagnosis, integer linear programming,
generalized fault independence, fault dictionary, test min-
imization.

1. Introduction

The process of determining the cause of a failure in a
chip is known as failure analysis. Failure analysis often
leads to improvement in the design of the chip and/or
the manufacturing process. Fault diagnosis is the first step
in failure analysis, which by logical analysis gives a list
of likely defect sites or regions. Basically, fault diagnosis
narrows down the area of the chip on which physical
examination needs to be done to locate defects.

Diagnosis algorithms are broadly classified into two
types: effect-cause fault diagnosis and cause-effect fault
diagnosis. As the name suggests the effect-cause algorithm
directly examines the response of the failing chip and
then derives the fault candidates [1] using path-tracing
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algorithms. The fault candidate here usually is a logical
location or area of the chip.

On the other hand, the cause-effect algorithm starts with
a particular fault model and compares the signature of the
observed faulty behavior with the simulated signatures for
each fault in the circuit. A fault signature or syndrome is
a list of failing vectors and outputs at which errors are
detected [4]. Cause-effect algorithms can be classified as
either static in which fault simulation is done in advance
and all fault signatures are stored in a fault dictionary, or
dynamic where simulation is performed only as needed
during the diagnosis process. A cause-effect algorithm is
based on a fault model and real defects on the chip may
not behave similar to the fault model used; the observed
signature may not match with any of the simulated sig-
natures. In such cases sophisticated techniques are used
to select a set of signatures that best match the observed
signature [4], [11].

Despite its overwhelming data requirements, the fault
dictionary based diagnosis has been popular as it facili-
tates faster diagnosis by comparing the observed behavior
with pre-computed signatures in the dictionary [4]. The
most detailed form of fault dictionary that considers fault
detection at multiple outputs of a circuit is a full-response
dictionary. It consists of all output responses for each fault
by each test. On the other hand, the most compact form
of fault dictionary is a pass-fail dictionary, which stores a
single pass or fail bit for a fault-vector pair, ignoring de-
tections at separate outputs of the circuit. The disadvantage
with a pass-fail dictionary is that since the failing output
information is ignored, faults that fail same set of tests
but at different outputs cannot be distinguished [12]. Thus
pass-fail dictionaries are less effective in fault diagnosis.

There has been a lot of work done to reduce the size of
the full-response dictionary [5], [12], [15]. Most of these
techniques concentrate on reducing the size by managing
the organization and encoding of the dictionary. Dictionary
organization is the order and content of the information,
and dictionary encoding is the data representation format in
the dictionary. Very little work has been done on reducing
the size of the dictionary by compaction of the diagnostic
test set [8]. In this work we explore the idea of using a
minimal test set for fault diagnosis.
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We give an integer linear program (ILP) formulation
to minimize test sets for a full-response dictionary based
diagnosis. The ILP solution is a test set with diagnostic
characteristics identical to that of the original unoptimized
test set. Having a smaller test set not only reduces the
dictionary size, but also reduces the time for debugging
the faulty chip. An ideal test set for diagnosis is one which
distinguishes all faults. Thus during diagnostic test set
minimization it should be ensured that the resulting test set
consists of at least one vector to distinguish every pair of
faults. Notice that the number of fault pairs is proportional
to the square of the number of faults. This results in a
very large number of constraints in the ILP. We define a
new generalized fault independence relation to reduce the
number of fault pairs to be considered. We then propose a
two-phase method for generating a minimal diagnostic test
set from any given test set. In the first phase we use exist-
ing ILP minimization techniques [17] to obtain a minimal
detection test set and find the faults not diagnosed by that
test set. In the second phase we use the diagnostic ILP to
select a minimal set of vectors capable of diagnosing the
undiagnosed faults from Phase-1. The resulting minimized
test set combined with the minimal detection test set of
Phase-1 serves as our complete diagnostic test set.

The rest of the paper is organized as follows. Section 2
gives the diagnostic ILP formulation and illustrates its
complexity. Section 3 introduces a new generalized fault
independence relation to reduce the number of constraints
in the diagnostic ILP. Section 4 describes the two-phase
method for generating a minimal diagnostic test set. Sec-
tion 5 gives the results and Section 6 gives the conclusion.

2. ILP for Diagnostic Test Minimization

Integer linear programming (ILP) is an effective math-
ematical method for test optimization. It gives global
optimization and has been used for both combinational
and sequential circuits [6], [7] as well as for minimizing
N-detect tests [9]. These ILP formulations use a fault
detection table which contains information about faults de-
tected by each vector. The fault detection table is obtained
by fault simulation without fault dropping. Note that the
information in a fault detection table is similar to that in
a pass-fail dictionary.

2.1. Fault Diagnostic Table for Diagnostic ILP

The ILP formulation for minimizing test sets used for
full-response dictionary based diagnosis requires a matrix
representation that not only tells which tests detect which
faults, but also at which outputs the discrepancies were
observed for each fault-test pair. For this reason we define
a new fault diagnostic table. We illustrate the construction
of this table with the following example.

t1 t2 t3 t4 t5
o1 o2 o1 o2 o1 o2 o1 o2 o1 o2

f1 1 0 1 0 1 0 1 0 0 0
f2 1 1 1 1 1 0 1 1 0 0
f3 1 1 1 1 1 0 0 0 0 0
f4 0 1 0 1 0 0 0 1 0 0
f5 0 0 0 0 0 1 0 0 1 1
f6 0 0 0 0 0 1 0 0 0 0
f7 0 0 0 0 0 1 0 0 0 1
f8 0 0 1 0 1 0 1 0 0 0

Figure 1. Full-response fault dictionary.

t1 t2 t3 t4 t5
f1 1 1 1 1 0
f2 2 2 1 2 0
f3 2 2 1 0 0
f4 3 3 0 3 0
f5 0 0 2 0 1
f6 0 0 2 0 0
f7 0 0 2 0 2
f8 0 1 1 1 0

Figure 2. Fault diagnostic table.

Let us consider a circuit with 2 outputs, having 8
faults detected by 5 test vectors. A sample full response
dictionary for this circuit is shown in the Figure 1. Here
‘0’ stands for pass and ‘1’ stands for fail.

We use integers to represent the output response for
each test vector. As faults detected by different test vectors
are already distinguished, there is no need to compare the
corresponding output responses. Hence we assign indices
for the failing output responses for each test vector. In the
example, for test t1 the 3 different failing output responses
(“10”, “11”, and “01”) are indexed by integers 1, 2 and
3, respectively, in the fault diagnostic table as shown in
Figure 2. The largest integer needed to index an output
response is minimum { 2No. of primary outputs−1, highest
number of faults detected by any test vector}. However,
it should be noted that output responses to a particular
vector are likely to repeat across a fault set as faults in the
same output cone can have identical output responses for a
particular test. For this reason the largest integer needed to
index an output response observed in our experiments was
much smaller than the highest number of faults detected
by any test vector.

2.2. Diagnostic ILP Formulation

Suppose a combinational circuit has K faults. We are
given a vector set V of J vectors and we assign a [0, 1]
integer variable vj , j = 1, 2, . . . , J to each vector. The
variables vj have the following meaning: If vj = 1, then
vector j is included in the selected vector set. If vj = 0,
then vector j is discarded.

Without loss of generality, we assume that all K faults
are detected by vector set V and are also distinguishable

116

Authorized licensed use limited to: Auburn University. Downloaded on December 7, 2009 at 13:46 from IEEE Xplore.  Restrictions apply. 



from each other. Our problem then is to find the smallest
subset of these vectors that distinguish all fault pairs. We
simulate the fault set and the vector set without dropping
faults and the fault diagnostic table is constructed as
explained in the previous section. In this table, an element
akj ≥ 1 only if fault k is detected by vector j. The
diagnostic ILP problem is stated as follows:

Minimize

J∑

j=1

vj (1)

subject to,

J∑

j=1

vj aij ≥ 1; for i = 1, 2, ...,K (2)

J∑

j=1

vj |akj − apj | ≥ 1 (3)

for, k = 1, 2, ..,K − 1 and p = k + 1, ..,K

vj ∈ integer[0, 1], j = 1, ..., J (4)

The inequality set (2) consists of K constraints, called
detection constraints, which ensure that every fault is
detected by at least one vector. The inequality set (3)
consists of K(K − 1)/2 constraints - one constraint for
every fault pair. These are called the diagnostic con-
straints. A diagnostic constraint consists of vector variables
corresponding to non-zero |akj − apj |, i.e., the vectors
that produce different output responses for the kth and
pth faults. It forces at least one of those vectors to be
selected since the inequality is greater than or equal to 1.
Thus the diagnostic constraint set insures that kth fault is
distinguished from the pth fault by at least one vector in the
selected vector set. Additionally, the provable ability of this
ILP to find the optimum provided its execution is allowed
to complete guarantees the smallest size test set. Note that
the total number of constraints here is K(K +1)/2, which
is proportional to the square of the number of faults.

3. Generalized Fault Independence

One clear disadvantage of the diagnostic ILP is that the
number of constraints is a quadratic function of the number
of faults. Thus, for large circuits the number of constraints
would be unmanageable. To overcome this, we define a
relation between a pair of faults which allows us to drop
the diagnostic constraints in the ILP corresponding to many
fault pairs. We have generalized the conventional fault
independence relation given in the literature by considering
the detection of faults at different primary outputs and
relative to a vector set. Conventionally [3], a pair of faults
is called independent if the faults are not detected by
any common vector. This definition does not account for

t1 t2 t3 t4
f1 1 0 1 0
f2 1 1 0 0
f3 0 0 1 1

Figure 3. Fault detection table.

Table 1. Independence relation.
Fault pair Independence relation Reason

f1, f2 NO Both faults
detected by t1

f1, f3 NO Both faults
detected by t3

f2, f3 YES No vector detects
both faults

the detection of the faults at specific outputs. Also, it
implies “absolute” independence, which is with respect to
the exhaustive vector set. We generalize the definition of
fault independence by saying that two faults detected by
the same vector can still be called independent, provided
the output responses of the two faults to that vector are
different.

Definition: Generalized Fault Independence - Two faults
detectable by a vector set V are said to be independent
with respect to vector set V, if there is no single vector
that detects both the faults and produces identical output
responses.

The conventional independence can be viewed as a
special case of the generalized independence, for a single
output circuit and conditional to an exhaustive vector set.

Example: Consider a fault detection table with 3 faults and
4 test vectors as shown in Figure 3. The independence
relation between every fault pair is given in Table 1. Now
consider a fault diagnosis table for the same set of faults
and vectors as shown in Figure 4. Recall that the fault
diagnosis table takes into account the output responses
for each fault-vector pair. It is constructed as explained
in Section 2.1. The generalized independence relations for
all pairs of faults are given in Table 2.

In the context of the diagnostic ILP, the generalized
independence relation plays an important role in reducing
the number of constraints to be used in the formulation.
When two faults are independent, any vector that detects
either of the faults will be a distinguishing vector for the
two faults. Thus, in the constraint set (3), a constraint
for an independent fault pair will have vector variables
corresponding to all the vectors that detect any one or both
faults. In the presence of detection constraints (2), which
guarantee a test for every fault, a diagnostic constraint
for an independent fault pair is redundant. Also, such a
constraint will be covered by other diagnostic constraints
corresponding to non-independent fault pairs containing a
fault from the independent fault pair.
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t1 t2 t3 t4
f1 1 0 1 0
f2 2 1 0 0
f3 0 0 1 1

Figure 4. Fault diagnostic table.

Table 2. Generalized independence relation.
Fault Generalized Reason
pair indep. relation

f1, f2 YES Different output responses
for t1 detecting both faults

f1, f3 NO Identical output responses
for t3 detecting both faults

f2, f3 YES No vector detects
both faults

Table 3 shows the reduction in the constraint set sizes
by considering diagnostic independent faults for a 4 bit
ALU and several ISCAS85 benchmark circuits. We ob-
serve that there is an order of magnitude reduction in the
constraint set sizes due to the elimination of constraints
corresponding to generalized independent faults. However,
the constraint set sizes still are large and need to be reduced
to manageable proportions.

4. Two-Phase Minimization

Given an unoptimized test set, we proceed as [16]:
Phase 1: Use existing ILP minimization techniques [17]
to obtain a minimal detection test set from the given
unoptimized test set. Find the faults not diagnosed by the
minimized test set.
Phase 2: Run the diagnostic ILP on the remaining unopti-
mized test set to obtain a minimal set of vectors to diagnose
the undistinguished faults from Phase-1. The resulting
minimized test set combined with the minimal detection
test set of Phase-1 serves as a complete diagnostic test
set.

In the context of diagnostic ILP of Phase-2, the Phase-1
along with the generalized independence relation helps in
reducing the number of constraints to manageable levels.
This is because diagnostic constraints are now needed only
for the undiagnosed fault pairs of Phase-1. Also, there
will be a further reduction in the number of diagnostic
constraints due to independent fault pairs that could be
present. We can also drop the detection constraints as we
have started with a minimal detection test set that detects
all targeted faults.

There is an additional benefit of the two-phase ap-
proach [16]. For all good chips, testing can be stopped at
the end of the Phase-1 detection test set, which is minimal.
Only for bad chips whose number will depend on the yield,
we need to apply the remaining tests for diagnosis.

Table 3. Constraint set sizes.
Initial No. of Final

Circuit No. of constraint generalized constraint
faults set size independent set size

fault pairs
4 alu 227 25,651 22,577 3,074
c17 22 231 170 61
c432 520 125,751 111,589 14,162
c499 750 271,953 138,255 133,698
c880 942 392,941 344,180 48,761
c1908 1870 1,308,153 1,201,705 106,448

5. Results

In our experiments we have used the ATPG ATA-
LANTA [13] and fault simulator HOPE [14]. We have used
AMPL package for ILP formulation.

Table 4 gives the results of Phase-1 and Phase-2 of the
two-phase minimization approach. First column lists the
names of the ISCAS85 circuits. The second column gives
the number of faults in the target fault list. These faults
are equivalence collapsed single stuck-at faults, excluding
those identified as redundant or aborted by the ATPG
program. We have used the minimal detection test sets
obtained using the primal-dual ILP algorithm [16], [17].
The primal-dual ILP algorithm creates unoptimized test
sets, which essentially consist of N-detect tests, and then
minimizes them to give the minimal detection test sets.
The sizes of the unoptimized and minimized vector sets
are given in columns 3 and 4 of the table. The column
Undiag. Faults gives the number of faults not diagnosed
by the minimal detection vectors. A fault whose syndrome
is shared by other faults is said to be undiagnosed. The
undiagnosed faults obtained in this phase are the target
faults for Phase-2 of our algorithm. The next 3 columns
give the results from Phase-2 in which diagnostic ILP
is used to minimize the tests for the undistinguished
fault pairs of Phase-1. The diagnostic ILP is run on the
unoptimized test sets (excluding the minimal detection
tests) of Phase-1. The next column gives the number
of constraints generated during the ILP formulation. It
can be seen that the constraint set size is very small
even for the larger benchmark circuits like c7552 and
c6288. The column Minimized additional vectors gives the
result of the diagnostic ILP. These vectors combined with
the minimal detection vectors of Phase-1 constitute the
complete diagnostic test set. The last column gives the
sizes of the complete diagnostic test sets obtained by the
two-phase approach. Notice that these test sets are just a
little bigger than the minimal detection test sets of Phase-
1. Thus failed chips can be diagnosed very quickly as the
detection tests would have already been applied during
testing.

Table 5 gives the results and statistics of the fault

118

Authorized licensed use limited to: Auburn University. Downloaded on December 7, 2009 at 13:46 from IEEE Xplore.  Restrictions apply. 



Table 4. Results of two-phase minimization.
Phase-1 Phase-2 Complete

Circuit Total Original Minimal Undiag. No. of No. of Minimized diagnostic
faults unoptim. detection faults unoptim. constraints additional test set

vectors tests vectors vectors
4b ALU 227 270 12 43 258 30 6 18

c17 22 32 4 6 28 3 2 6
c432 520 2036 30 153 2006 101 21 51
c499 750 705 52 28 652 10 2 54
c880 942 1384 24 172 1358 41 7 33
c1355 1566 903 84 1172 1131 12 2 86
c1908 1870 1479 107 543 819 186 21 127
c2670 2630 4200 70 833 4058 383 51 121
c3540 3291 3969 95 761 3874 146 27 122
c5315 5291 1295 63 1185 1232 405 42 105
c6288 7710 361 16 2416 345 534 12 28
c7552 7419 4924 122 1966 4802 196 31 153

Table 5. Diagnosis with complete diagnostic test set.
1 2 3 4 5 6 7 8 9

Total No. of Uniquely No. of Undiagnosed No. of Maximum Diagnostic
Circuit diagnostic faults diagnosed CEFS faults syndromes faults per resolution

vectors faults (3 - 4) (4 + 5) syndrome (3 / 7)
4b ALU 18 227 227 0 0 227 1 1

c17 6 22 22 0 0 22 1 1
c432 51 520 488 16 32 504 2 1.032
c499 54 750 726 12 24 738 2 1.016
c880 33 942 832 55 110 887 2 1.062
c1355 86 1566 397 532 1169 929 3 1.686
c1908 127 1870 1380 238 490 1618 8 1.156
c2670 121 2630 2027 263 603 2290 11 1.149
c3540 122 3291 2720 313 571 3033 8 1.085
c5315 105 5291 4496 381 795 4877 4 1.085
c6288 28 7710 5690 1009 2020 6699 3 1.151
c7552 153 7419 5598 848 1821 6446 7 1.151

dictionary obtained by using the complete diagnostic test
set. The total diagnostic vectors are the combined vector
sets from Phases 1 and 2. Column 3 gives the number of
faults in the target fault list. Column 4 gives the number of
uniquely diagnosed faults. A fault is uniquely diagnosed
if it has a unique syndrome [4]. Faults with identical syn-
dromes are grouped into a single set called an equivalent
fault set. Note that such an equivalent fault set is dependent
on the vector set used for diagnosis, thus it is called a
Conditional Equivalent Fault Set (CEFS). The column,
No. of CEFS gives the number of such sets. There is one
CEFS for every non-unique syndrome, consisting of the
undiagnosed faults associated with that syndrome. Thus,
the total number of syndromes listed in column 7 is the
sum of the number of uniquely diagnosed faults and the
number of CEFS. Maximum faults per syndrome is the
largest number of faults associated with any syndrome.
Diagnostic resolution (DR) has been defined [2] as the
average number of faults per syndrome. It is obtained by
dividing the total number of faults by the total number

of syndromes. These two parameters quantify the effec-
tiveness of diagnosis since DR indicates how well faults
are distributed among all syndromes and the maximum
faults per syndrome indicate the worst distribution among
all syndromes.

The unoptimized test sets used in our experiments are
essentially N-detect tests. It should be noted that using
an unoptimized test set consisting of diagnostic ATPG
vectors [18] will be more effective in achieving a good
DR, as these vectors are generated for the sole purpose of
distinguishing pairs of faults. Also, it is recognized that the
complexity of ILP would be too high even for medium size
circuits. This problem can be overcome by using reduced-
complexity approximate solutions of ILP [10].

Table 6 gives a comparison between the two-phase
minimization and another test compaction algorithm for
pass-fail dictionary [8]. For both algorithms an initial
unoptimized set of 1024 random vectors is used. The
authors of [8] measure the diagnostic effectiveness of the
compacted test set in terms of number of undiagnosed
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Table 6. Two-phase minimization versus previous work [8].
Pass-fail dictionary compaction [8] Two-phase approach (this work)

Circuit Fault Minim. Undist. CPU* Fault Minim. Undist. CPU**
coverage vectors fault s coverage Vectors Fault s

% pairs % pairs
c432 97.52 68 93 0.1 98.66 54 15 0.94
c499 - - - - 98.95 54 12 0.39
c880 97.52 63 104 0.2 97.56 42 64 2.56
c1355 98.57 88 878 0.8 98.6 80 766 0.34
c1908 94.12 139 1208 2.1 95.69 101 399 0.49
c2670 84.4 79 1838 2.8 84.24 69 449 8.45
c3540 94.49 205 1585 10.6 94.52 135 590 17.26
c5315 98.83 188 1579 15.4 98.62 123 472 25.03
c6288 99.56 37 4491 1659 99.56 17 1013 337.89
c7552 91.97 198 4438 33.8 92.32 128 1289 18.57

*Pentium IV 2.6 GHz machine **SUN Fire 280R, 900 MHz Dual Core machine

fault pairs. The pass-fail dictionaries have inherently lower
resolution than the full-response dictionaries. Thus, there
may not be a one-to-one comparison between the two
results. However, we still notice the compactness of the
diagnostic test sets and the computing efficiency of the
two-phase method.

6. Conclusion
We have presented an integer linear program (ILP)

formulation for compaction of the test set used in full-
response dictionary based fault diagnosis. The compaction
is carried out without any compromise on the diagnos-
tic resolution of the initial test set. The newly defined
generalized independence, which identifies fault pairs that
need not be distinguished, is very effective in reducing
the number of constraints in the diagnostic ILP. The two-
phase approach further improves the efficiency of the
procedure. These diagnostic test sets are very small and
lead to significant reductions in the fault dictionary size
and diagnosis time. Also, the minimized fault dictionary
can be further compacted by other compaction techniques
that employ encoding of the data in the dictionary.
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