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Abstract

Recent advances in sequencing and genotyping technologies are contributing to a data

revolution in genome-wide association studies that is characterized by the challenging

large 𝑝 small 𝑛 problem in statistics. That is, given these advances, many such studies

now consider evaluating an extremely large number of genetic markers (𝑝) genotyped

on a small number of subjects (𝑛). Given the dimension of the data, a joint analysis

of the markers is often fraught with many challenges, while a marginal analysis is

not sufficient. To overcome these obstacles, herein, we propose a Bayesian two-phase

methodology that can be used to jointly relate genetic markers to binary traits while

controlling for confounding. The first phase of our approach makes use of a marginal

scan to identify a reduced set of candidate markers that are then evaluated jointly

via a hierarchical model in the second phase. Final marker selection is accomplished

through identifying a sparse estimator via a novel and computationally efficient max-

imum a posteriori estimation technique. We evaluate the performance of the proposed

approach through extensive numerical studies, and consider a genome-wide applica-

tion involving colorectal cancer.
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1 INTRODUCTION

In genetics, a genome-wide association study (GWAS) is an observational study of a genome-wide set of genetic markers across

individuals with the intent of identifying one or more markers that are associated with a trait of interest. For example, recent

GWAS has led to the identification of common genetic variants that are predictive of a subject’s predisposition toward colorectal

cancer (Peters, Bien, & Zubair, 2015). Regretfully, the field of complex disease genetics has been plagued by irreproducibility

with respect to marker identification and low predictive fidelity; for further discussion, see Zeggini and Ioannidis (2009). There

remains a gap between the estimated genetic component of most complex diseases and the associated genetic variants discovered

so far (Manolio et al., 2009). This “missing heritability” problem cannot be completely solved by association scans on increasing

sample sizes. Methods are needed that acknowledge the inherent complexity of both the genome and these diseases. While new

approaches have emerged that attempt to aggregate results based on linkage disequilibrium patterns (Bulik-Sullivan et al., 2015)

or that use biological knowledge to focus on relevant regions of the genome (Baurley & Conti, 2013), comprehensive genome-

wide analytic approaches are still lacking.

In general, GWAS focuses on measuring and analyzing single-nucleotide polymorphisms (SNPs) across the genome.

Historically, researchers have primarily focused on marginal screening methods (i.e., one at a time analyses of the available

SNPs) for the purpose of detecting associations, while appropriately adjusting for false discoveries. This approach tends to be
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conservative and has the propensity to miss important joint behavior. As a solution, the current research paradigm is shifting to

SNP assessment via joint models. This new direction also poses significant challenges; that is, given the advances in sequencing

and genotyping technologies, modern GWAS considers millions of SNPs. From a statistical point of view, this is the classic

large 𝑝 small 𝑛 problem (i.e., 𝑝 ≫ 𝑛) encountered in high-dimensional regression. In general, high-dimensional regression

techniques leverage the bias–variance trade-off by imposing penalties on the regression coefficients. For a continuous outcome,

through specifying an 𝐿1 penalty, Tibshirani (1996) proposed the least absolute shrinkage and selection operator (LASSO)

that is able to identify a sparse estimator of the regression coefficients, thus completing model fitting and variable selection

simultaneously. Following the seminal work of Tibshirani (1996), many other proposals have been developed under other

penalization schemes; for example, see Fan and Li (2001), Zou and Hastie (2005), Zou (2006), and Candes and Tao (2007).

Extensions of penalized regression methods have been made to generalized linear models (GLMs), for example, Wu, Chen,

Hastie, Sobel, and Lange (2009) and Friedman, Hastie, and Tibshirani (2010), incorporated the LASSO and elastic net penalties,

respectively, when fitting the logistic regression model. Interestingly, many of these frequentist-based techniques have Bayesian

analogs that make use of shrinkage priors; for example, the Bayesian LASSO (Park & Casella, 2008). In many instances,

analytic and computational tractabilities are aided by the fact that shrinkage priors can be represented as scale mixtures of

normals; for example, see Park and Casella (2008) and Armagan, Dunson, and Lee (2013). Though theoretically justified in

the case of high-dimensional data, the aforementioned techniques are known to struggle and provide inaccurate results when 𝑝

is large relative to 𝑛, which is unarguably the norm in GWAS. To pointedly address this feature, Yazdani and Dunson (2015)

proposed a hybrid Bayesian approach for quantitative traits that combined the marginal scan and joint modeling paradigms.

Motivated by the work of Yazdani and Dunson (2015) and a recent colorectal cancer study, herein we develop a two-phase

Bayesian methodology that can be used to identify significant polygenic effects in genome-wide association studies of binary

traits. Like Yazdani and Dunson (2015), we advocate for the use of a preliminary scan, via Bayes factors, of the available SNPs

in an effort to form a reduced set of promising markers. These markers are then analyzed by a joint model along with other

confounding variables. The generalized double Pareto shrinkage prior of Armagan et al. (2013) is specified for the regression

coefficients in the joint model and a sparse estimator of these quantities is obtained via a novel maximum a posteriori (MAP)

estimation technique. For finding the MAP estimator, an expectation-maximization (EM) algorithm is derived by introducing

carefully constructed latent variables. In particular, through the introduction of these latent variables, both the data model and

shrinkage prior are decomposed into a convenient hierarchical form. The proposed methodology is thoroughly vetted through

an extensive numerical study, and is further illustrated through an analysis of a GWAS of colorectal cancer in Indonesia.

The remainder of this article is organized as follows. Section 2 provides the details of the proposed methodology to include

the data augmentation steps and EM algorithm development. Section 3 provides the results of an extensive numerical study

conducted to assess the performance of the proposed methodology. Section 4 presents the results of the analysis of the motivating

colorectal cancer data. Section 5 concludes with a summary discussion.

2 METHODOLOGY

In the context of the motivating example, we wish to relate a binary trait (e.g., presence/absence of colorectal cancer) to genetic

markers. Let 𝑌𝑖 encode the binary trait for the 𝑖th individual, for 𝑖 = 1,… , 𝑛, with the event 𝑌𝑖 = 1, denoting that the individual

is a case and 𝑌𝑖 = 0 otherwise. Similarly, we let 𝐸𝑖𝑞 , for 𝑞 = 1,… , 𝑞1, denote the 𝑞th confounding variable (e.g., age, BMI,

smoking status, etc.) measured on the 𝑖th individual. For notational ease, we aggregate these variables as 𝐄𝑖 = (𝐸𝑖1,… , 𝐸𝑖𝑞1
)′.

Finally, let 𝑆∗
𝑖𝑞

, for 𝑞 = 1,… , 𝑞∗
2
, denote the 𝑞th SNP genotype of the 𝑖th individual. To evaluate both the confounding variables

and genetic markers, we propose the following two-phase methodology.

2.1 Phase 1

In Phase 1 of our approach, the genetic markers undergo a preliminary scan to identify a promising set of possible significant

genotypes, while controlling for confounding variables. More specifically, in this phase, we seek to rank order each of the SNPs

via Bayes factors. Briefly, a Bayes factor is a summary of the evidence provided by the data for a model relative to another

model. This evidence is computed as

𝐵𝑞0 = ∫
𝚯𝑞

𝑝𝑞(𝐘 ∣ 𝜽𝑞)𝜋𝑞(𝜽𝑞)𝑑𝜽𝑞

{

∫
𝚯0

𝑝0(𝐘 ∣ 𝜽0)𝜋0(𝜽0)𝑑𝜽0

}−1

, for 𝑞 = 1,… , 𝑞∗
2
, (1)
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where 𝑝0 and 𝑝𝑞 are binary data models (e.g., logistic or probit regression models) for the observed data 𝐘 = (𝑌1,… , 𝑌𝑛)
′, 𝜽0

and 𝜽𝑞 denote collections of regression coefficients, and 𝜋0 and 𝜋𝑞 are prior distributions. Here, the baseline model (𝑝0) makes

use of a linear predictor consisting of only linear effects in the confounding variables, while 𝑝𝑞 considers the same and adds a

linear effect associated with 𝑆∗
𝑖𝑞

, for 𝑞 = 1,… , 𝑞∗
2
. If 𝐵𝑞0 is large, then there exists strong evidence in favor of 𝑝𝑞 when compared

to 𝑝0; for example, 𝐵𝑞0 > 20 and 𝐵𝑞0 > 150 offer strong and very strong evidence, respectively. In addition to comparing various

models to the baseline model, one may rank order models without the need to recompute Bayes factors. For example, the event

𝐵𝑞′0 > 𝐵𝑞0 suggests that 𝑝𝑞′ is favorable when compared to 𝑝𝑞 , given the available data. To avoid prior influence, it is standard

to specify noninformative or vague priors that are often improper. It is well known that Bayes factors should not be computed

using improper priors (Wasserman, 2000), and thus we suggest the use of vague independent normal priors for the regression

coefficients; that is, 𝜽0 ∼ 𝑁(𝟎, 𝜎2𝐈𝑞1+1) and 𝜽𝑞 ∼ 𝑁(𝟎, 𝜎2𝐈𝑞1+2), where 𝐈𝑞 denotes a 𝑞 × 𝑞 identity matrix.

The multidimensional integrals depicted in the numerator and denominator of (1) are analytically intractable and therefore

have to be approximated. Many techniques for approximating such integrals have been proposed; for example, see Raftery

(1996). Herein, we proceed to approximate the necessary integrals through the following Laplacian approximation:

𝑝𝑞(𝐘) = 𝑝𝑞(𝐘 ∣ �̃�𝑞)𝜋𝑞(�̃�𝑞)|𝐂|1∕2(2𝜋)dim(�̃�)∕2 ≈ ∫
𝚯𝑞

𝑝𝑞(𝐘 ∣ 𝜽𝑞)𝜋𝑞(𝜽𝑞)𝑑𝜽𝑞 , for 𝑞 = 0,… , 𝑞∗
2
, (2)

where �̃�𝑞 is the minimizer of ℎ(𝜽𝑞) = − log{𝑝𝑞(𝐘 ∣ 𝜽𝑞)𝜋𝑞(𝜽𝑞)}, 𝐂 is the inverse of the hessian of ℎ(⋅) evaluated at �̃�𝑞 , and the

function dim(⋅) provides the dimension of the vector argument. Thus, an approximation to 𝐵𝑞0 can be constructed as 𝐵𝑞0 =

𝑝𝑞(𝐘)∕𝑝0(𝐘). After computing this approximate Bayes factor for each of the genetic markers, Phase 1 of our methodology

concludes by rank ordering the SNPs based on 𝐵𝑞0 and retaining the top 𝑞2 as promising markers. Let the 𝑞2-dimensional

vector 𝐒𝑖 = (𝑆𝑖1,… , 𝑆𝑖𝑞2
)′ aggregate the SNP genotypes that were identified as promising markers. In Section 3, we discuss a

pragmatic approach that can be used to choose the value of 𝑞2.

2.2 Phase 2

In this phase, we build a joint model that relates the confounding variables and all SNPs selected in Phase 1 to the binary trait.

To this end, we proceed under the following GLM:

𝑔−1{𝑃 (𝑌𝑖 = 1 ∣ 𝛽0,𝜷1,𝜷2)} = 𝛽0 + 𝐄
′
𝑖𝜷1 + 𝐒

′
𝑖𝜷2, (3)

where 𝑔(⋅) is the link function. For the purposes of this work, we allow 𝑔(⋅) to take on two forms (i.e., logistic and probit)

and provide details of implementation under each. The regression coefficients 𝜷1 = (𝛽11,… , 𝛽1𝑞1 )
′ and 𝜷2 = (𝛽21,… , 𝛽2𝑞2 )

′

are covariate and genetic marker effects, respectively, with 𝛽0 denoting the usual intercept. Throughout, it is assumed that the

independent variables (i.e., 𝐄𝑖 and 𝐒𝑖) have been standardized.

To complete the proposed Bayesian GLM and to induce sparsity into the estimation of the effects (i.e., 𝛽𝑙𝑞), we impose

a vague-independent normal prior on 𝛽0 and independent shrinkage priors on the other regression coefficients through the

following specifications:

𝛽0 ∣ 𝑇0 ∼ 𝑁(0, 𝑇0),

𝛽𝑙𝑞 ∣ 𝛼, 𝜂 ∼ GDP(𝜓 = 𝜂∕𝛼, 𝛼), for 𝑞 = 1,… , 𝑞𝑙 and 𝑙 = 1, 2,

where GDP(𝜓, 𝛼) refers to the generalized double Pareto distribution outlined in Armagan et al. (2013). Under these prior

choices, setting 𝑇0 to be large provides a vague prior on 𝛽0, while the hyperparameters 𝛼 > 0 and 𝜂 > 0 govern the amount

of shrinkage that is imparted on the regression coefficients. In particular, the density of the generalized double Pareto distri-

bution becomes more peaked with lighter tails as 𝛼 is increased, while larger values of 𝜂 provide for less shrinkage through

a flatter density. Armagan et al. (2013) suggest a default setting of 𝛼 = 𝜂 = 1, leading to a prior density similar to that of a

Cauchy distribution. However, given the computationally efficient nature of our approach, one may explore multiple settings for

these hyperparameters and make use of model selection criteria (e.g., akaike information criterion (AIC), Bayesian information

criterion (BIC), cross-validation, etc.) to choose the “optimal” configuration.

To avoid the computational burden of Markov chain Monte Carlo in high dimensions and to identify a sparse estimator of the

regression coefficients, we develop a computationally efficient EM algorithm that can be used to compute the MAP estimator.

To develop this algorithm, we introduce two different sets of latent variables that allow us to decompose both the proposed
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data model and shrinkage priors into a convenient hierarchical representation. In particular, a hierarchical representation of the

proposed data model is formed by introducing latent random variables 𝜔𝑖, for 𝑖 = 1,… , 𝑛. The specific structure of these random

variables is inherently tied to the chosen link function, with the distribution of 𝜔𝑖 being normal or Pólya gamma if one proceeds

under the probit or logistic link, respectively; for further details, see Albert and Chib (1993) and Polson, Scott, and Windle

(2013). Under either specification, the joint density of the observed and latent data is given by

𝜋(𝐘,𝝎 ∣ 𝜷) ∝ exp
{
−
1

2
(𝐡 − 𝐗𝜷)′𝛀(𝐡 − 𝐗𝜷)

} 𝑛∏

𝑖=1

𝜉(𝜔𝑖), (4)

where 𝝎 = (𝜔1,… , 𝜔𝑛)
′, 𝜷 = (𝛽0,𝜷

′
1
,𝜷′

2
)′, 𝐗 = (𝐗1,… ,𝐗𝑛)

′, and 𝐗𝑖 = (1,𝐄′
𝑖
,𝐒′

𝑖
)′. Under the probit link, 𝐡 = (𝜔1,… , 𝜔𝑛)

′,

𝛀 = 𝐈, and 𝜉(𝜔𝑖) = 𝐼(𝜔𝑖 ≥ 0, 𝑌𝑖 = 1) + 𝐼(𝜔𝑖 < 0, 𝑌𝑖 = 0), where 𝐼(⋅) denotes the usual indicator function. In contrast, under the

logistic link, 𝐡 = (𝜅1∕𝜔1,… , 𝜅𝑛∕𝜔𝑛)
′, 𝜅𝑖 = 𝑌𝑖 − 1∕2, 𝛀 = diag(𝝎), and 𝜉(𝜔𝑖) = 𝑓 (𝜔𝑖 ∣ 1, 0) exp{𝜅

2
𝑖
∕(2𝜔𝑖)}, where 𝑓 (𝜔𝑖 ∣ 𝑎, 𝑏)

denotes the Pólya-Gamma density with parameters (𝑎, 𝑏); see Polson et al. (2013).

Attention is now turned to constructing a hierarchical representation of the joint prior distribution. As noted by proposition 1

in Armagan et al. (2013), the generalized double Pareto shrinkage prior can be represented as a scale mixture of normal distribu-

tions. Thus, for the regression coefficients, the following hierarchical representation provides for the same prior specifications

as those given above:

𝜷 ∣ 𝐓 ∼ 𝑁(𝟎,𝐓),

𝑇𝑙𝑞 ∣ 𝜆𝑙𝑞 ∼ Exponential(𝜆2
𝑙𝑞
∕2), for 𝑞 = 1,… , 𝑞𝑙 and 𝑙 = 1, 2,

𝜆𝑙𝑞 ∣ 𝛼, 𝜂 ∼ Gamma(𝛼, 𝜂), for 𝑞 = 1,… , 𝑞𝑙 and 𝑙 = 1, 2,

where 𝐓 = diag(𝑇0,𝐓
′
1
,𝐓′

2
) and 𝐓𝑙 = (𝑇𝑙1,… , 𝑇𝑙𝑞𝑙 )

′. Here, the rate parameterization of both the exponential and gamma distri-

butions are utilized.

Given these hierarchical representations, our proposed EM algorithm can be derived viewing 𝝎, 𝐓, and 𝜆𝑙𝑞 , for 𝑞 = 1,… , 𝑞𝑙
and 𝑙 = 1, 2, as missing data. The E-step of our algorithm identifies the function 𝑄(⋅, ⋅) as the conditional expectation of the

natural logarithm of the posterior distribution, given the observed data (denoted as ) and the current set of parameter estimates

(denoted as 𝜷(𝑑)). This yields

𝑄(𝜷,𝜷(𝑑)) = −
1

2
𝐸{(𝐡 − 𝐗𝜷)′𝛀(𝐡 − 𝐗𝜷) ∣ , 𝜷(𝑑)}

−
1

2
𝛽2
0
𝑇 −1
0

−
1

2

2∑

𝑙=1

𝑞𝑙∑

𝑞=1

𝛽2
𝑙𝑞
𝐸(𝑇 −1

𝑙𝑞
∣ , 𝜷(𝑑)) +𝑄𝑟(𝜷

(𝑑)), (5)

where 𝑄𝑟(𝜷
(𝑑)) is a function that is free of 𝜷. The M-step of the algorithm then updates the set of unknown parameters as the

maximizer of 𝑄(⋅, ⋅). Given the form of (5), the maximizer obtained in the M-step of the algorithm is given by

𝜷(𝑑+1) = (𝐗′
𝛀

(𝑑)
𝐗 + 𝐃

(𝑑))−1𝐗′
𝛀

(𝑑)
𝐡
(𝑑) = argmax𝜷𝑄(𝜷,𝜷(𝑑)), (6)

where 𝐃(𝑑) = 𝐸(𝐓−1 ∣ , 𝜷(𝑑)) and 𝐸(𝑇 −1
𝑙𝑞

∣ , 𝜷(𝑑)) = (𝛼 + 1)∕{|𝛽(𝑑)
𝑙𝑞

|(|𝛽(𝑑)
𝑙𝑞

| + 𝜂)}. The forms of 𝛀(𝑑) and 𝐡(𝑑) in (6) are link

function dependent. In particular, under the probit link 𝛀(𝑑) = 𝐈 and 𝐡(𝑑) = 𝐸(𝝎 ∣ , 𝜷(𝑑)), where

𝐸(𝜔𝑖 ∣ , 𝜷(𝑑)) = 𝐗
′
𝑖𝜷

(𝑑) + 𝑌𝑖𝜙(𝐗
′
𝑖𝜷

(𝑑)){Φ(𝐗′
𝑖𝜷

(𝑑))}−1

− (1 − 𝑌𝑖)𝜙(𝐗
′
𝑖𝜷

(𝑑)){1 − Φ(𝐗′
𝑖𝜷

(𝑑))}−1,

with 𝜙(⋅) and Φ(⋅) denoting the density and cumulative distribution functions of the standard normal distribution, respectively.

Under the logistic link 𝛀(𝑑) = 𝐸(𝛀 ∣ , 𝜷(𝑑)) and 𝐡(𝑑) = (𝛀(𝑑))−1𝜿, where 𝜿 = (𝜅1,… , 𝜅𝑛)
′ and

𝐸(𝜔𝑖 ∣ , 𝜷(𝑑)) = {𝑃 (𝑌𝑖 = 1 ∣ 𝜷(𝑑)) − 0.5}(𝐗′
𝑖𝜷

(𝑑))−1.

Thus, the proposed EM algorithm continues to update 𝜷(𝑑) via these two steps until convergence is attained; see Abbi, El-Darzi,

Vasilakis, and Millard (2008) for a discussion on convergence criterion. At the point of convergence, the final update of 𝜷(𝑑) is
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our sparse MAP estimator. For computational reasons, it is important to note that due to the carefully constructed hierarchical

representations provided above, we are able to identify closed-form expressions for all of the necessary expectations in (5) as

well as to compute closed-form updates of the regression coefficients in the M-step given in (6).

From a computational perspective, the proposed approach has a few key attributes that are worth outlining. First, due to

the nature of the penalty arising from the GDP prior, once a regression coefficient is dropped from the model (i.e., is set to

zero), it cannot return. This fact can be exploited to reduce the number of computational steps required to compute 𝜷(𝑑), thus

alleviating a computational bottle neck. Second, in scenarios where 𝑝 ≫ 𝑛, with 𝑝 = 1 + 𝑞1 + 𝑞2, which are common among

GWAS, the computationally expensive aspect of the proposed EM algorithm involves the inversion of a 𝑝 × 𝑝 dense matrix

to compute 𝜷(𝑑). This computational burden can be avoided by exploiting the Sherman–Morrison–Woodbury formula, which

allows one to effectively compute the inversion of the 𝑝 × 𝑝 matrix at the same computational expense as inverting an 𝑛 × 𝑛

matrix. Specifically, we may compute the necessary inversion in (6) as

(𝐗′
𝛀

(𝑑)
𝐗 + 𝐃

(𝑑))−1 = 𝐃
(𝑑)−1 − 𝐃

(𝑑)−1
𝐗
′(𝛀(𝑑)−1 + 𝐗𝐃

(𝑑)−1
𝐗
′)−1𝐗𝐃(𝑑)−1 ,

where the inversion of 𝐃(𝑑) and 𝛀(𝑑) are trivial since they are diagonal matrices and the other matrix inversion step on the

right-hand side involves only an 𝑛 × 𝑛 matrix. Lastly, the proposed EM algorithm can easily, through the point of initialization,

accommodate warm starts (Koh, Kim, & Boyd, 2007) when fitting models for multiple specifications of the hyperparameters 𝛼

and 𝜂.

3 NUMERICAL STUDIES

To evaluate the finite sample performance of the proposed approach, the following simulation study was conducted. Given

that Bayes factors are a common tool and have been well vetted, this study focuses on assessing the performance of the MAP

estimator developed in Section 2.2. The assessed characteristics include the method’s ability to (a) identify significant covariates

under various signal strengths, (b) accurately estimate the effect size of significant covariates, (c) classify covariates not related

to the response as such, and (d) capably handle the complex data structures that are ubiquitous in GWAS. To accomplish this,

data sets were simulated to mimic our motivating application; that is, we consider simulating data for 𝑛 individuals, where

𝑛 ∈ {200, 500}. For each individual, we simulate the collection of confounding variables 𝐄𝑖 = (𝐸𝑖1, 𝐸𝑖2), where 𝐸𝑖1 and 𝐸𝑖2

are standardized draws that were sampled independently from a 𝑁(0, 1) and Bernoulli(0.5) distribution, respectively. For this

study, we consider SNP vectors of various lengths for the different sample sizes; specifically, we consider 𝑞2 ∈ {100, 200, 500}.

Rather than randomly generating these variables, we make use of the SNP data from our motivating example. Proceeding in this

fashion allows us to capture the complex SNP relationships that naturally exist and would be hard to simulate. To have adequate

representation with respect to minor allele frequency, SNPs were first classified according to their minor allele frequency into

one of two categories: low (0.20–0.35) and high (0.35–0.50). Then, at random, the 𝑞2 SNPs used in this study were selected

from the two categories, with equal representation being taken from each. Let 𝐒𝑖 denote the vector of selected SNPs for subject

𝑖, after standardization. The individuals’ statuses were then simulated according to the following model:

𝑔−1{𝑃 (𝑌𝑖 = 1 ∣ 𝛽0,𝜷1,𝜷2)} = 𝛽0 + 𝐄
′
𝑖𝜷1 + 𝐒

′
𝑖𝜷2,

where 𝛽0 = −1, 𝜷1 = (1, 1)′, 𝜷2 = (𝜷∗,𝜷∗, 𝟎′
𝑞2−12

)′, 𝜷∗ = (0.25, 0.25, 0.5, 0.5, 1.0, 1.0), 𝟎𝑞 is a 𝑞-dimensional vector of zeros,

and 𝑔(⋅) is the logistic link. This data generating process was used to create 500 independent data sets.

A few comments on the design of this study are warranted. First, the SNPs 𝑆𝑖1 through 𝑆𝑖6 were selected from the low minor

allele frequency category and SNPs 𝑆𝑖7 through 𝑆𝑖12 were selected from the high-frequency category. This allows us to examine

the ability of the proposed approach to identify small (0.25), medium (0.50), and large (1.00) effects across these different allelic

frequencies. Second, this study focuses on the logistic link. Complementary studies were performed under the probit link and

resulted in a practically identical conclusion and are therefore omitted for purposes of brevity.

The proposed methodology was used to analyze each of the generated data sets. In this implementation, a vague prior was

placed on the intercept by specifying 𝑇0 = 1,000 and we considered different values of the penalty parameters; that is, 𝛼 ∈

{0.1, 0.2,… , 1.0} and 𝜂 ∈ {0.1, 0.2, 0.3}. These choices were made based on prior experience that showed that 𝜂 should be set

to a small value and that values of 𝛼 ∈ (0.1, 1) perform well for binary outcomes. It is important to note that a MAP estimator

is computed under each of these hyperparameter configurations. Thus, to choose the “best” from among them, we make use of
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T A B L E 1 Simulation results when 𝑛 = 200 and 𝑞2 ∈ {100, 200, 500}. The summary includes the empirical bias (Bias) and standard deviation

(SD) of the MAP estimates, as well as the percent of times the significant variable remained in the model (Perc). The SNP coefficients are

categorized according to their allelic frequencies (AF). The empirical false discovery proportion (FDP) for the truly unrelated variables is also

included. The average times required to analyze each data set were 9.1, 12.6, and 46.9 s when 𝑞2 = 100, 200, 500, respectively. This time includes the

grid search over the various (𝛼, 𝜂) settings

𝒒
𝟐
= 𝟏𝟎𝟎 𝒒

𝟐
= 𝟐𝟎𝟎 𝒒

𝟐
= 𝟓𝟎𝟎

AF Parameter Bias SD Perc Bias SD Perc Bias SD Perc

Non-SNP coefficients

𝛽0 = −1 0.00 0.28 100% −0.05 0.31 100% −0.16 0.36 100%

𝛽1,1 = 1 −0.09 0.32 99% 0.03 0.36 99% 0.13 0.45 99%

𝛽1,2 = 1 −0.06 0.32 99% 0.02 0.34 99% 0.11 0.41 99%

SNP coefficients

Low 𝛽2,1 = 0.25 −0.22 0.15 6% −0.24 0.09 3% −0.25 0.02 1%

𝛽2,2 = 0.25 −0.21 0.15 7% −0.23 0.11 3% −0.24 0.14 3%

𝛽2,3 = 0.5 −0.21 0.33 51% −0.22 0.36 45% −0.29 0.35 31%

𝛽2,4 = 0.5 −0.28 0.32 37% −0.31 0.32 30% −0.38 0.28 18%

𝛽2,5 = 1 −0.08 0.32 99% −0.01 0.38 98% 0.04 0.43 97%

𝛽2,6 = 1 −0.10 0.37 96% −0.07 0.43 94% −0.24 0.55 76%

High 𝛽2,7 = 0.25 −0.16 0.23 16% −0.19 0.18 11% −0.20 0.20 8%

𝛽2,8 = 0.25 −0.13 0.25 22% −0.17 0.22 13% −0.19 0.20 10%

𝛽2,9 = 0.5 −0.27 0.32 38% −0.36 0.28 23% −0.46 0.17 8%

𝛽2,10 = 0.5 −0.17 0.35 54% −0.15 0.38 54% −0.19 0.40 43%

𝛽2,11 = 1 −0.21 0.39 92% −0.44 0.53 60% −0.53 0.54 51%

𝛽2,12 = 1 −0.18 0.41 90% −0.25 0.48 80% −0.39 0.57 61%

FDP: 3.6% FDP: 3.2% FDP: 1.8%

the Bayesian information criterion (Neath & Cavanaugh, 2012). The computational expense associated with identifying all of

the MAP estimators under the various configuration of (𝛼, 𝜂) was minimal and scalable.

Table 1 summarizes the MAP estimators that were obtained from analyzing the 500 data sets when 𝑛 = 200. This summary

includes the empirical bias and standard deviation of the MAP estimators of the truly nonzero coefficients, as well as the

percentage of the time that they were identified to be nonzero; that is, the percentage of time that they were found to be related

to the response. We also summarize the false discovery proportion which we define to be the proportion of coefficients that

are truly zero but are identified to be nonzero by the MAP estimator. Table 2 provides an analogous summary when 𝑛 = 500.

From these results, one can see that the proposed approach can be used to reliably identify important explanatory variables as

well as estimate their effects. In general, the observed bias is small and is on the same scale as the bias resulting from the oracle

model (results not shown); that is, the model that is provided the correct set of covariates. Moreover, the bias tends to fade as the

sample size increases and more importantly does not tend to grow rapidly in the number of considered variables; that is, in 𝑞2.

With respect to selection accuracy, for smaller sample sizes (e.g., 𝑛 = 200), the proposed approach can aptly and reliably detect

moderate and strong signals, across different allelic frequencies and values of 𝑞2. The ability to detect smaller signals improves,

as one would imagine, when a larger sample size is available. Further, the small false discovery proportions convey that the

proposed approach is capable of identifying unrelated coefficients as being such. Finally, Tables 1 and 2 also report the average

time required to compute the MAP estimator that minimizes BIC over the considered (𝛼, 𝜂) combinations. From these results,

one can see that the proposed approach is both computationally efficient and scalable. In summary, this study has demonstrated

the strengths of the proposed MAP estimator with regard to identifying coefficients that are truly related to a binary response.

These results also serve to indicate that Phase 1 of our methodology should be used to create a set of candidate SNPs that are

on the same order as the available sample size.

4 COLORECTAL CANCER DATA

Colorectal cancer is one of the most common forms of cancer and is a leading cause of cancer-related deaths (Jemal et al., 2011).

Genetic association studies have previously identified markers associated with colorectal cancer risk, but have predominantly
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T A B L E 2 Simulation results when 𝑛 = 500 and 𝑞2 ∈ {100, 200, 500}. The summary includes the empirical bias (Bias) and standard deviation

(SD) of the MAP estimates, as well as the percent of times the significant variable remained in the model (Perc). The SNP coefficients are

categorized according to their allelic frequencies (AF). The empirical false discovery proportion (FDP) for the truly unrelated variables is also

included. The average times required to analyze each data set were 30.2, 36.1, and 85.8 s when 𝑞2 = 100, 200, 500, respectively. This time includes

the grid search over the various (𝛼, 𝜂) settings

𝒒
𝟐
= 𝟏𝟎𝟎 𝒒

𝟐
= 𝟐𝟎𝟎 𝒒

𝟐
= 𝟓𝟎𝟎

AF Parameter Bias SD Perc Bias SD Perc Bias SD Perc

Non-SNP coefficients

𝛽0 = −1 0.05 0.15 100% 0.04 0.16 100% 0.01 0.15 100%

𝛽1,1 = 1 −0.07 0.15 100% −0.07 0.16 100% −0.04 0.17 100%

𝛽1,2 = 1 −0.07 0.15 100% −0.06 0.15 100% −0.03 0.17 100%

SNP coefficients

Low 𝛽2,1 = 0.25 −0.19 0.14 19% −0.22 0.10 9% −0.24 0.05 2%

𝛽2,2 = 0.25 −0.20 0.13 15% −0.21 0.12 11% −0.23 0.08 4%

𝛽2,3 = 0.5 −0.09 0.20 91% −0.12 0.23 83% −0.18 0.24 70%

𝛽2,4 = 0.5 −0.14 0.22 80% −0.17 0.24 73% −0.26 0.25 53%

𝛽2,5 = 1 −0.10 0.17 100% −0.09 0.19 100% −0.09 0.19 100%

𝛽2,6 = 1 −0.08 0.16 100% −0.07 0.18 100% −0.10 0.19 99%

High 𝛽2,7 = 0.25 −0.17 0.15 28% −0.20 0.13 17% −0.22 0.10 11%

𝛽2,8 = 0.25 −0.10 0.18 45% −0.13 0.18 32% −0.17 0.17 22%

𝛽2,9 = 0.5 −0.14 0.21 82% −0.24 0.23 61% −0.37 0.21 32%

𝛽2,10 = 0.5 −0.09 0.20 90% −0.09 0.20 89% −0.09 0.23 84%

𝛽2,11 = 1 −0.14 0.17 100% −0.26 0.34 86% −0.24 0.28 93%

𝛽2,12 = 1 −0.12 0.19 100% −0.16 0.18 99% −0.17 0.24 98%

FDP: 2.8% FDP: 2.4% FDP: 1.3%

focused on subjects from European ancestory. Given the potential differences between South East Asia and European ancestry,

a recent study conducted in South Sulawesi, Indonesia, was aimed at investigating the genetic and environmental risk factors of

colorectal cancer within this South East Asian population. To aid in the discovery of genetic and environmental risk factors, the

analysis presented herein focuses on data arising from this seminal study.

The data available for this analysis consist of 173 observations that were taken on 84 cases and 89 controls. These participants

were recruited from throughout Makassar, Indonesia, between the years of 2014 and 2016. Environmental risk factor information

was collected via voluntary questionnaires and medical records. This information includes, but is not limited to, demographics,

family history, smoking behavior, alcohol use, and dietary history. To collect genetic information, each participant provided

a blood sample for genotyping. Deoxyribonucleic acid (DNA) was extracted from these samples at Mochtar Riady Institute

for Nanotechnology Laboratory in Tangerang, Indonesia. After extraction, the DNA was sent to RUCDR Infinite Biologics

for genotyping (Piscataway, NJ, USA). Genotyping was completed using the Smokescreen Genotyping Array (BioRealm LLC,

Walnut, California, USA). Analysis of the raw data was performed using Affymetrix Power tools (APT) v-1.16 according to the

Affymetrix best practices workflow. Additional quality control steps were performed using SNPolisher to identify and select

best performing probe sets and high-quality SNPs for analysis. After QC filtering, 495,532 SNPs remained for analysis.

To reduce the number of candidate SNPs, Phase 1 of our methodology was used to conduct a preliminary scan of the SNP

data, while accounting for environmental risk factors. In this analysis, we control for gender (1=male, 0=female), age (in years),

body mass index (BMI), and smoking status (1=Yes, 0=No). In the specification of the Bayes factors, the prior variance (i.e., 𝜎2)

was set to be 100 to provide a vague, yet proper, prior on the regression coefficients. Figure 1 provides a histogram of the Bayes

factors associated with the 495,532 SNPs and Figure 2 provides a plot of the same across chromosomes. From this initial phase,

and the results obtained in Section 3, we decided to focus attention on the top 200 SNPs; that is, the SNPs with largest associated

Bayes factors. The sets of candidate SNPs are denoted as triangles in Figure 2. In Phase 2, we fit the following first-order model

to the data:

logit{𝑃 (𝑌𝑖 = 1 ∣ 𝛽0,𝜷1,𝜷2)} = 𝛽0 + 𝐄
′
𝑖𝜷1 + 𝐒

′
𝑖𝜷2,
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Log of Bayes factors
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F I G U R E 1 Histogram depicting the natural logarithm of the Bayes factors that were computed for each of 495,532 SNPs available in the CRC

data

F I G U R E 2 Plot of the natural logarithm of the Bayes factors that were computed for each of 495,532 SNPs verses their position in the

genome. Each shade change represents the transition to a new chromosome and the black triangles above the horizontal line depict the 200 SNPs

with the largest Bayes factors
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T A B L E 3 Summary of the analysis of the colorectal cancer data. Presented results include the chromosome number (Chr) and coordinate

(Coordinate) of the identified SNPs, the gene they lie on (Gene), reference allele (Ref), minor allele frequency (MAF), and estimated effect (Estimate)

Description Chr Coordinate Gene Ref MAF Estimate

Intercept 0.90

Gender 0.00

Age −3.75

BMI 0.00

Smoking 1.32

𝑆3 3 57086348 ARHGEF3 G 0.07 2.40

𝑆19 16 81947156 PLCG2 C 0.08 0.85

𝑆27 10 129963848 Intergenic C 0.34 −1.32

𝑆51 5 98125016 RGMB G 0.05 1.95

𝑆58 18 59822981 PIGN TC 0.19 −1.39

𝑆118 5 164113078 Intergenic T 0.12 1.65

𝑆128 6 77328692 Intergenic A 0.04 1.22

𝑆154 17 45800299 Intergenic T 0.36 1.32

𝑆172 16 13018917 SHISA9 C 0.11 1.67

𝑆200 3 12816282 Intergenic A 0.03 2.13

where 𝐄𝑖 is the vector of environmental risk factors, and 𝐒𝑖 is the vector of top SNPs identified in Phase 1 for the 𝑖th participant.

Note that all variables in 𝐄𝑖 and 𝐒𝑖 were standardized. Here, 𝐄𝑖 = (𝐸𝑖1,… , 𝐸𝑖4)
′, where 𝐸𝑖1 denotes standardized gender, 𝐸𝑖2

denotes standardized age, 𝐸𝑖3 denotes standardized BMI, and 𝐸𝑖4 denotes standardized smoking status. The proposed EM algo-

rithm was used to fit this model and identify the hyperparameter-dependent MAP estimator for each considered configuration of

(𝛼, 𝜂), where 𝛼 ∈ {0.1, 0.2,… , 1.0} and 𝜂 ∈ {0.1, 0.2, 0.3} with 𝑇0 = 1, 000. Final model selection, as in Section 3, was guided

by the Bayesian information criterion.

Table 3 presents the results of this analysis. These results include the chromosome number, coordinate, reference allele, minor

allele frequency, and estimated effect for all SNPs identified by the proposed MAP estimator to be the related to colorectal cancer.

Also included are effect estimates for the considered environmental risk factors. First, the interpretation of the results pertaining

to the environmental risk factors should be made cautiously. That is, by design, the study at enrollment frequency matched cases

and controls based on age, sex, and ethnicity. Thus, the interpretation of the findings associated with the various environmental

risk factors is limited but important to take account of when assessing genetic risk factors. Second, this analysis identified

10 SNPs that appear to have a relatively strong association (i.e., large effect size) with the risk of developing colorectal cancer.

Four of these SNPs lie in intergenic regions; four lie in introns of ARHGEF3, PLCG2, RGMB, and CTC-340A15.2; one is a

deletion in PIGN; and one is an insertion in SHISA9. ARHGEF3 has been implicated in promoting nasopharyngeal carcinoma

in Asians Liu et al. (2016). RGMB has been shown to promote colorectal cancer growth Shi et al. (2015).

5 DISCUSSION

Motivated by a recent study aimed at assessing environmental and genetic risk factors associated with colorectal cancer, we

have proposed a Bayesian two-phase methodology for the analysis of binary phenotypes in GWAS. Phase 1 of our methodology

makes use of a preliminary scan, via Bayes factors, of the available SNPs. The primary goal of this phase is to render a reduced

set of promising markers. These markers are then analyzed via a joint model along with other confounding variables in Phase 2.

Through utilizing the generalized double Pareto shrinkage prior and constructing a novel EM algorithm, we are able to develop

a computationally efficient approach to identifying a sparse MAP estimator. The performance of the proposed methodology

has been illustrated through an extensive numerical study, and was used to analyze the motivating cancer data. Through this

application, 10 SNPs were identified to be associated with colorectal cancer via the proposed approach. To further disseminate

this work, scripts written in R that implement all aspects of these techniques have been developed and are available in the

Supporting Information accompanying this work, while the motivating colorectal cancer data are available either from the

corresponding author upon request or from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO).
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Given statistical limitations with respect to the classic large 𝑝 small 𝑛 problem and recent advances in sequencing and geno-

typing technologies, it is natural to believe that two-phase methodologies such as the one proposed here will become standard

in GWAS. For this reason, future work could be aimed at examining different marginal analysis techniques that could be used

to identify a reduced set of promising SNPs. This could be accomplished by using sparse estimation techniques (e.g., LASSO,

elastic net, etc.) or through adopting ideas from the recent advances in polygenic risk scores Dudbridge (2013). Though prescan

techniques, such as Phase 1 of the proposed approach, are common (e.g., see Wang et al., 2018), it is important to note that they,

in fact, limit the set of candidate variables that can be considered in the joint model; that is, once a set of candidate SNPs has

been identified, additions in Phase 2 are not considered. For this reason, it could be of interest to merge the goals of Phases 1 and

2 into a more flexible formulation that would allow one to consider all available SNPs in the joint model. With that being said,

an approach of this nature would likely pose many challenges from both a methodological and a computational perspective.
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