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Abstract—The sensitivity analysis of a cellular genetic algo-
rithm with local search is used to design a new and simpler
heuristic for the problem of scheduling independent tasks. The
proposed heuristic improves the previously known Min-Min
heuristic. Moreover, it provides schedules of similar quality to
the reference cellular genetic algorithm in a significantly reduced
runtime. This heuristic is evaluated across twelve different classes
of scheduling instances.
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I. I NTRODUCTION

The assignment of tasks to computing resources in a dis-
tributed computing system is a challenging problem. The
aforementioned is further complicated with the introduction
of energy minimization as a system criterion.

This work contributes to this problem by suggesting a new
heuristic for the scheduling of independent tasks that can be
applied to the energy-efficient operation of distributed systems.

An interesting feature of this work, is the path that leads to
its definition, which is a direct consequence of the sensitivity
analysis performed earlier in [1], on an elaborate cellular
genetic algorithm, termed PA-CGA [2].

The heuristic, termed as 2PH, is a simple extension to
the well-known scheduling heuristic for independent task
scheduling, the Min-Min [3].

The rest of the paper is organized as follows. Section II
presents the previous work on the sensitivity analysis of the
PA-CGA evolutionary algorithm (EA). Section III describes
the new heuristic and provides a comparison with the Min-
Min heuristic and the PA-CGA evolutionary algorithm.

II. SENSITIVITY ANALYSIS OF A CELLULAR GA

Ref. [1] performed sensitivity analysis on a cellular genetic
algorithm, PA-CGA [2], which was designed to schedule
independent tasks on a distributed system. This section briefly
presents the results from the aforementioned previous papers.

Sensitivity analysis aims to identify how uncertainty in each
of the parameters influences the uncertainty in the system
output [4]. This technique can answer the following important
question: given uncertainty in system parameters, which ones
affect (the most and the least) the system output. (also known
as screening).

In the previous work [1], the analyzed output was the quality
of the solution produced by the PA-CGA EA. The quality of

the solution, the schedule of tasks, is further defined in the
next Section, which also presents the scheduling problem in
more details.

Sensitivity analysis is not only useful for parameter tuning,
but also at design-time. The work presented here is an example
of such a process. The results of the analysis are used to
design a new heuristic to solve the independent task scheduling
problem.

The chosen sensitivity analysis method is based on decom-
posing the variance of the output, as indicated in [4]. The exact
implementation used is an extension to the Fourier Amplitude
Sensitivity Test proposed in [5], called Fast99. Ref. [5] allows
the computation of first order effects and interactions for each
parameter. Parameters interaction occurs when the effect of
the parameters on the output is not a sum of their single (first
order) effects.

A. Parallel Asynchronous Cellular GA

In the previous work, the sensitivity analysis was performed
on a parallel asynchronous cellular genetic algorithm [2] for
scheduling of independent tasks in a computational grid.

The problem that the EA attempts to solve arises quite
frequently in parameter sweep applications, such as the Monte-
Carlo simulations [6]. In these applications, many tasks with
almost no interdependencies are generated and submitted to
the computational grid to be efficiently scheduled. Efficiency
means to allocate tasks as fast as possible and to optimize
some criteria, such as makespan or flowtime. Makespan is
among the most important optimization criterion of a grid
system. Indeed, it is a measure of the system’s productivity
(throughput). Task scheduling is treated as a single objective
optimization problem, in which the makespan is minimized.
Makespan, the finishing time of latest task, is defined as:

min
S

max{Ft : t ∈ Tasks}, (1)

whereFt is the finishing time of taskt in a scheduleS.

More precisely, assuming that the computing time needed
to perform a task knowna priori (assumption that is usually
made in the literature [7], [8], [9]), the problem is represented
with the Expected Time to Compute (ETC) modeled by Braun
et al. [7]. The instance definition of the problem is as follows:



• nb tasks: the numberof independent (user/application)
tasksto be scheduled.

• nb machines: the number of heterogeneousmachine
candidates to participate in the planning.

• The workload of each task (in millions of instructions).
• The computing capacityof each machine (inMIPS).
• readym: Ready time indicating when machinem will

have finished the previously assigned tasks.
• The Expected Time to Compute (ETC) matrix

(nb tasks× nb machines) in which ETC[t][m] is the
expected execution time of taskt on machinem.

The two benchmark instances used for this analysis con-
sisted of 512 tasks and 16 machines. Both instances repre-
sented different classes of ETC matrices. The classification is
based on three parameters: (a) task heterogeneity, (b) machine
heterogeneity, and (c) consistency [10]. Instances are labelled
asg x yyzz where:
g stands for Gamma distribution (used for generating

the matrix).
x stands for the type of consistency (c for consistent,i

for inconsistent, ands for semi-consistent). An ETC
matrix is considered consistent when the following
is true: if a machinemi executes a taskt faster than
machinemj , thenmi executes all tasks faster than
mj . Inconsistency means that a machine is faster
for some tasks and slower for some others. An ETC
matrix is considered semi-consistent if it contains a
consistent sub-matrix.

yy indicates the heterogeneity of the tasks (hi means
high, andlo means low).

zz indicates the heterogeneity of the resources (hi
means high, andlo means low).

B. Algorithm

The EA analyzed is a parallel asynchronous CGA (PA-
CGA) [2], which is based on the study reported in [11].
Cellular genetic algorithms (cGAs) [12] are a kind of GA with
a structured population in which the individuals are spreadin a
two dimensional toroidal mesh and are only allowed to interact
with their neighbors. The algorithm iteratively considerseach
individual in the mesh. This individual may only interact with
individuals belonging to its neighborhood, moreover parents
are chosen among the neighbors using a given criterion. The
crossover and mutation operators are applied to the individuals,
with probabilities pc and pm, respectively. Following the
crossover and mutation operations, the algorithm computesthe
fitness value of the new offspring individual (or individuals),
and inserts it (or one of them) instead of the current individual
in the population following a given replacement policy. This
loop is repeated until termination condition(s) are fulfilled.

In the PA-CGA, the population is partitioned into a number
of contiguous blocks with a similar number of individuals
(Figure 1). Each block containspop size/#threads individ-
uals, where#threads represents the number of concurrent
threads executed. To preserve the exploration characteristics of
the CGA, the communication between individuals of different

Fig. 1. Partition of an8× 8 population over 4 threads.

blocks is made possible. This neighborhood may include
individuals from other population blocks. This allows an
individual’s genetic information to cross block boundaries.

The different threads evolve their population block inde-
pendently and do not wait for each other to complete their
generation (the evolution of all the individuals in their block)
before pursuing their evolution. Therefore, if a breeding loop
takes longer for an individual of a given thread, the individuals
evolved by the other threads may go through more generations.

The combination of a concurrent execution model with the
neighborhoods crossing block boundaries, lead to concurrent
access to shared memory. To ensure safe concurrent mem-
ory access, the access is synchronized to individuals with a
POSIX [13] read-write lock. This high-level mechanism allows
concurrent reads from different threads, but not concurrent
reads with writes, nor concurrent writes. In the two latter cases,
the operations are serialized.

The algorithm implements a local search operator, H2LL
(Algorithm 1), which is conceived for the scheduling problem
considered in this research. This operator moves a randomly
chosen task from the most loaded machine (a machine’s load is
the total of the tasks completion times assigned to the machine)
to a selected candidate machine among theN least loaded.
A candidate machine is selected if its new completion time,
with the addition of the task moved, is the smallest of all
the candidate machines. This new completion time must also
remain inferior to the makespan. This operation is performed
several times (a parameter of the local search).

Algorithm 1 Pseudo-code for H2LL, our local search.
1: for all iter iterationsdo
2: sortmachines on ascending completion time
3: task ← random task of the last machine inmachines;
4: best score← CT [lastmachines]; {makespan}
5: for all mac in N first machines do
6: new score← CT [mac] + ETC[mac][task];
7: if new score < best score then
8: best mac← mac;
9: best score← new score;

10: end if
11: end for
12: move task to best mac if any
13: end for

The following parameters have been used in the analysis
of PA-CGA. The population is initialized randomly, except
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Fig. 2. Sensitivity analysis, hihi instance.

for one individual obtained with the Min-Min heuristic [3].
The selection operator used is binary tournament. The recom-
bination operator used is the one-point (opx) crossover and
the mutation operator moves one randomly chosen task to a
randomly chosen machine. The neighborhood shape used is
linear 5 (L5), also known as the Von Neumann neighborhood,
which is composed of the 4 nearest individuals (measured in
Manhattan distance), plus the individual evolved. The replace-
ment strategy is the ”replace if better”i.e., the newly generated
offspring replaces the current individual if it improves the
parent fitness value.

C. Results of the Sensitivity Analysis

Figure 2 depicts for each parameter studied, their linear
and non-linear effects on the output for the problem instance
with high tasks and resources heterogeneity. The quality of
the solution is recorded as the average makespan over 4
independent runs.

This study clearly showed that the local search parameters
and notably the maximum number of iterations, influence the
output the most. It plays a role twice as big as the second
most influential parameter: the local search rate. Because the
chosen method for the sensitivity analysis is quantitative, it al-
lows such comparisons, whereas qualitative methods can only
indicate the order of importance. This result is consistentwith
related works in the scheduling literature which highlighted
the importance of the local search when dealing with hybrid
metaheuristics.

These results also highlighted that other parameters play a
limited role i.e., population size, mutation rate, iterations, as
well as the number of threads. This is also beneficial because
values that have a positive impact on the other aspects of the
algorithm, such as runtime can be selected without impacting
the quality of the solutions. Indeed, the proposed algorithm
was designed to be run for a limited period of time (wall
clock); therefore choosing a smaller population and a higher
number of threads will provide more generations.

TABLE I
SETTINGS FOR THE COMPARISON WITH OTHER ALGORITHMS IN THE

LITERATURE.

Instance size 128 tasks× 16 machines
Instance classes 12
Instances per class 30
PA-CGA runtime 1-5 seconds
PA-CGA population 8× 8

PA-CGA thread(s) 1
PA-CGA search iterations 5
2PH search iterations 30

III. A T WO-PHASE HEURISTIC

The previous section recapped the findings of the sen-
sitivity analysis performed in [1]. It clearly showed that
the specifically designed local search operator, H2LL, was
very important to the quality of the schedules found. More
precisely, it also found that the number of iterations for which
to perform this local search was of prime importance.

This algorithm is important because it improves on a well-
known heuristic, the Min-Min [3], which has been recently
applied to the problem of energy-efficient scheduling of
tasks [14]. Therefore, improving this algorithm should lead
to improvements in their derivative applications to energy-
efficiency.

A. The 2PH Heuristic Description

The algorithm proposed is simply the execution of the Min-
Min, followed by the local search operator H2LL, originally
designed for the PA-CGA.

The number of iterations for the local search in H2LL is
increased from 5 to 30. This is because the sensitivity analysis
indicated that this parameter influences the quality of the
schedules. Additionally, the local search is performed only
once for the 2PH. In contrast with PA-CGA which executes
it for each individual in the population at each generation.
Therefore more iterations can be afforded in the 2PH.

Although this new heuristic is simple, there isa priori evi-
dence that it should perform well. The next section describes
how it compares to other algorithms.

B. Configuration for Simulations

The 2PH extends the Min-Min heuristic with an additional
phase, the local search. Therefore, it seems natural to evaluate
how this additional phase improves the results of Min-Min.
This is the first point of comparison.

Secondly, the 2PH differs from the PA-CGA EA for the
evolutionary part, and the number of iterations of local search
(5 for PA-CGA versus 30 for the 2PH). Therefore, it also
seems natural to examine the impact of these differences on
the schedules produced. Wallclock times for the 2PH and
the PA-CGA EA implementations are useful to measure the
performance of the algorithms. Moreover, defining schedules
for independent tasks is often a time-critical activity.

Table I summarizes the different points of comparison for
the evaluation of the 2PH. A total of 360 instances were used
in the comparison (30 instances of each class). The PA-CGA
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Fig. 3. Makespan results for the gc hihi instances.

EA was run for 1 to 5 seconds, wallclock time. The original
article [2] ran the algorithm for 90 seconds: however, the
2PH only took 3 milliseconds to complete these instances.
Therefore the same treatment was chosen for all algorithms.
One thread for PA-CGA was chosen for the same reason.
Moreover, the sensitivity analysis showed that the number
of threads does not play the biggest role in the search for
good solutions. Finally, PA-CGA with 1 thread completes
over 100,000 evaluations per second of runtime, which is
sufficient for an EA. It should be noted that PA-CGA initializes
its population randomly (uniform distribution) except forone
individual, which is the result of the Min-Min heuristic. As
mentioned earlier, 30 iterations were chosen for the 2PH
instead of 5 for the PA-CGA EA. The other parameters for PA-
CGA have identical values to those chosen for the sensitivity
analysis.

C. Simulation Results

This section presents the simulation results of the different
algorithms: (a) the Min-Min heuristic, (b) the 2PH, and (c) the
PA-CGA EA with various runtimes, in seconds.

The graphics are box-and-whisker plots. They show the
minimum and maximum makespans, the first and third quar-
tiles and the median value, for the 30 instances of each ETC
class.

Overall, the 2PH improves the quality of the resource
allocation significantly over Min-Min, and provides results of
similar quality to PA-CGA. These results are good because it
achieves this in about 3 milliseconds on a Xeon E5400 server-
class machine.

The results for the different ETC classes are detailed next.In
the consistent instances, the results for theg c lohi instances
stand out because all the algorithms provide similar results.
The results for theg c lolo instances show that PA-CGA
provides better solutions than the 2PH.

In the semi-consistent instances, the results for theg s lohi
instances are similar across all the algorithms. The results for
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Fig. 4. Makespan results for the gc hilo instances.
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the g s lolo instances show that the 2PH provides the best
solutions.

In the inconsistent instances, the results for theg i lohi
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Fig. 9. Makespan results for the gs lohi instances.

instances are again similar across all the algorithms. The
results for theg i lolo instances show that the 2PH provides
the best solutions, like the results for theg s lolo instances.

 690

 700

 710

 720

 730

 740

 750

 760

 770

Min-Min 2PH PA-CGA-1 PA-CGA-2 PA-CGA-3 PA-CGA-4 PA-CGA-5

Fig. 10. Makespan results for the gs lolo instances.
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IV. CONCLUSIONS

This paper exploits the results of the sensitivity analysis
of a parallel asynchronous cellular genetic algorithm, with
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local search. The analysis lead to the design of a simple
2-phase heuristic for the scheduling of independent tasks.
This new heuristic was compared against two algorithms from
the literature, (a) the parallel asynchronous cellular genetic
algorithm, and (b) the Min-Min heuristic. In most problem
instances, it found equivalent schedules in much less time
(milliseconds versus seconds) to the cellular genetic algorithm.
It also significantly improves the schedules found by the
Min-Min heuristic, with little additional computation cost.
Moreover, this little computational cost scales well with the
problem sizes.

This new heuristic can be applied to solve the problem of
energy-efficient scheduling of independent tasks, where Min-
Min is currently used.

An interesting extension of this current work could be the
inclusion of the analysis of how this second phase succeeds
in improving Min-Min, and confirm how larger instances can
be quickly processed by this two-phase heuristic.
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