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ABSTRACT In the distributed integrated modular avionics (DIMA), it is desirable to assign the DIMA

devices to the installation locations of the aircraft for obtaining the optimal quality and cost, subject to

the resource and safety constraints. Currently, the routine device assignments in DIMA are conducted

manually or by experience, which becomes more and more difficult with the increasing number of devices.

Especially, in the face of large-scale device assignment problems (DAPs), the manual allocation will become

an almost impossible task. In this paper, a bi-objective safety-constraint device assignment model in DIMA

is formulated with the integer encoding for better scalability. A two-phase multiobjective local search

(2PMOLS) is proposed for addressing it. In the first phase of 2PMOLS, the fast convergence of the population

toward the Pareto front (PF) is achieved by the weighted sum approach. In the second phase, Pareto local

search is conducted on the solutions delivered in the first phase for the extension of the PF approximation.

2PMOLS is compared with three decomposition-based approaches and one domination-based approach on

DAPs of different sizes in the experimental studies. The experimental results show that 2PMOLS outperforms

all the compared algorithms, in terms of both the convergence and diversity. It has also been demonstrated that

the solution obtained by 2PMOLS is better in terms of both objectives (mass and ship set costs), compared

with the solution designed by the domain expert. The experimental results show that 2PMOLS performs

increasingly better with the increase of the problem size, compared with other algorithms, which indicates

it has better scalability.

INDEX TERMS Distributed integrated modular avionics, device assignment, Pareto local search,

multiobjective optimization.

I. INTRODUCTION

Integrated modular avionics (IMA) is the product of the

standardization of avionic software and hardware. IMA is a

computing platform made up of general integrated modules,

on which multiple aircraft tasks (atomic concepts separated

by aircraft system functions) can reside. The key concept is

to share resources provided by standardized hardware with

the standardized software interfaces allowing the parallel

integration of aircraft systems on fewer devices than before.

The associate editor coordinating the review of this manuscript and
approving it for publication was Genny Tortora.

As the concept of IMA can greatly reduce the weight of the

avionic system, it becomes the mainstream direction for the

development of the avionic system. However, IMA requires

very precise design of the system as a whole (e.g, the device

configuration in the physical space), which is more prominent

in the distributed architecture-based IMA (DIMA). In DIMA,

the standardized equipments can be distributed in multiple

locations of the aircraft, thus such an architecture can further

reduce the cable length and the task response time relative to

IMA. Nevertheless, how to design the overall architecture of

the DIMA is a very difficult task with the following factors

taken into consideration:
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1) the device used by DIMA,

2) the topological structure consisting of devices,

3) resources provided by device for aircraft tasks,

4) aircraft hardware installation position,

5) aircraft avionic integrated design process in the sys-

tem resources, security, reliability and other constraints

based on some metric (e.g., the total weight and cost of

avionics systems).

The current avionic system mainly relies on the designing

experience of the domain experts. With the rapid growth

of the aircraft functions and modules, system resource

requirements, as well as the requirements on the sys-

tem reliability, safety and other aspects continue to grow.

Under this circumstance, the manual design and verifica-

tion become both inaccurate and difficult, modeling, valida-

tion and the optimal design of DIMA become an inevitable

trend.

As the avionic system contributes significantly to the ship

set cost, and mass of an aircraft, the optimal design of the

DIMA architecture gradually becomes an active research

field. For example, the mathematical models have been estab-

lished for promoting and improving the design through the

validation and evaluation of the model-based avionic archi-

tecture in [1]. The feasibility of the optimal design of hard-

ware mapping has been demonstrated in [2]. Compared to the

manual design, significant improvements of the model-based

design has been presented in [2].

Sagaspe et al. proposed an allocation approach of avion-

ics shared resources in [3] to analyze the safety of the

avionic systems with the considerations of the computational

and communication resources. They further proposed an

constraint-based shared resource allocation approach in [4]

to help decide whether a set of systems can be implemented

on an IMA architecture while enforcing safety require-

ments. However, their approach can neither be applied to the

multi-objective avionic model, nor suitable for large-scale

problems.

Lohse et al. used heuristic methods to optimize the

IMA distribution [5]. As a result, the weight of the small

avionic systems can be significantly reduced. However, their

approach did not consider the safety and reliability con-

straints for designing the avionic system.

Annighofer and Thielecke [2] models the DIMA by map-

ping the devices to the installation locations in an air-

craft. The binary programming is employed to optimize

the total weight on the model. Later, they have extended

their work to multiobjective modeling and optimization

in [6].

Zhang and Xiao [7] modeled the DIMA system as a cyber-

physical system (CPS) containing a physical layer and a

function layer. The improvement of the system is conducted

through the conventional lexicographic optimization with the

binary encoding.

While the optimal design of the model-based IMA/DIMA

architecture becomes a promising research field, neverthe-

less, the following issues have not been well-addressed. First

of all, the avionic system has high requirements for the

reliability and safety. Most of the aforementioned works do

not consider these features in the design. Second, the scala-

bility of the existing IMA/DIMA models is poor due to the

use of the binary encoding. This leads to the fact that the

existing work of model-based IMA/DIMA design is limited

to small subsystems. Third, the model-based IMA/DIMA

architecture design faces the complex constraints, large-

scale of systems and multiple objectives (e.g., total weight

and cost of the avionics system) to be optimized, how to

design an effective algorithm to adapt to its needs is of great

importance.

In this paper, the device assignment problem in DIMA is

modeled with the safety constraints using the integer encod-

ing for better scalability. A two-phase multiobjective local

search (2PMOLS) is further proposed for addressing it. The

rest of this paper is organized as follows. In Section II,

the background with regard to multiobjective optimization

and decomposition methods are introduced. The local search

and Pareto local search for combinatorial multiobjective

optimization problems (CMOPs) are also presented in this

section. Section III elaborates the mathematical model of

the device assignment problem. Section IV presents the

proposed algorithm for addressing DAP. The experimental

setups are presented in Section V. The systematic exper-

iments are conducted to verify the effectiveness of pro-

posed algorithm in Section VI. The DIMA architecture

obtained is also analyzed in this Section. Finally, a summary

alongside with the future research direction are provided

in Section VII.

II. BACKGROUND

A. MULTIOBJECTIVE OPTIMIZATION

In DIMA architecture design, the device assignment problem

has multiple possibly conflicting objectives (e.g., mass and

costs) to be optimized. Such a problem is called a multiob-

jective optimization problem (MOP), which can be stated as

follows:

minimize F(x) = (f1(x), . . . , fm(x))

subject to x ∈ �

where � is the decision space, F : � → Rm consists of m

real-valued objective functions. The attainable objective set

is {F(x)|x ∈ �}. In the case when� is a finite set, (1) is called

a combinatorial MOP (CMOP).

Let u, v ∈ Rm, u is said to dominate v, denoted by u ≺ v,

if and only if ui ≤ vi for every i ∈ {1, . . . ,m} and uj < vj
for at least one index j ∈ {1, . . . ,m}.1 A solution x∗ ∈ �

is Pareto-optimal to (1) if there exists no solution x ∈ �

such thatF(x) dominatesF(x∗).F(x∗) is then called aPareto-

optimal (objective) vector. In other words, any improvement

in one objective of a Pareto optimal solution is bound to

deteriorate at least another objective. The set of all the

Pareto-optimal solutions is called the Pareto set (PS) and the

1In the case of maximization, the inequality signs should be reversed.
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image of (PS) on the objective vector space is called Pareto

front (PF) [8].

B. DECOMPOSITION METHODS

Over the past decades, multiobjective evolutionary algo-

rithms (MOEAs) [9]–[12] have been recognized as a

major methodology for approximating the PFs in the

MOPs [13], [14]. Based on their selection mechanism, they

can be further divided into the domination-based (e.g., [11],

[15]–[20]), indicator-based (e.g., [21]–[25]) and decomposi-

tion approaches (e.g., [12], [26]–[33]). In the decomposition-

based approaches, an MOP is usually decomposed into a

number of single objective subproblems and solve them in

a collaborative manner. A representative of such approaches

is multiobjective evolutionary algorithm based on decom-

position (MOEA/D) [12]. The commonly used decomposi-

tion methods [8] include Weighted Sum, Tchebycheff and

Penalty-based Boundary Intersection, which can be defined

as follows.

Let λi = (λ1, . . . , λm)
T be a direction vector for i-th

subproblem, where λj ≥ 0, j ∈ 1, . . . ,m and
∑m

j=1 λj = 1.

1) Weighted Sum (WS) Approach: The i-th subproblem

is defined as

minimize gws(x|λi) =

m
∑

j=1

λijfj(x),

subject to x ∈ �. (1)

Its search direction vector is defined as λi.

2) Tchebycheff (TCH) Approach: The i-th subproblem

is defined as

minimize gtch(x|λi, z∗) = max
1≤j≤m

{|fj(x) − z∗j |/λ
i
j},

subject to x ∈ �. (2)

where � is the feasible region, but λj = 0 is replaced

by λj = 10−6 because λj = 0 is not allowed as

a denominator in (2). Its search direction vector is

defined as λi.

3) Penalty-based Boundary Intersection (PBI)

Approach: This approach is a variant of Normal-

Boundary Intersection approach [34]. The i-th subprob-

lem is defined as

minimize gpbi(x|λi, z∗) = d i1 + βd i2,

d i1 = (F(x) − z∗)Tλi/||λi||,

d i2 = ||F(x) − z∗ − (d i1/||λ
i||)λi||,

subject to x ∈ �. (3)

where ||.|| denotes L2-norm and β is the penalty

parameter. Its search direction vector is defined

as λi.

C. LOCAL SEARCH AND PARETO LOCAL SEARCH

By using decomposition-based approaches, such asMOEA/D,

a single-objective local search heuristic can be easily

applied to a CMOP. Thus the local search heuristics and/or

meta-heuristics (e.g. iterative local search [35], guided

local search [36], tabu search [37], variable neighborhood

search [38], ant colony optimization [39] and simulated

annealing [40]) have been widely adopted to approximate the

PFs of CMOPs.

Pareto local search (PLS) can be considered as an

extension of the single objective local search [41]–[43].

It explores the neighborhood of a set of nondominated

solutions for approximating PF [44], [45], which can be

used as either stand-alone algorithms [46], [47] or even as

components of the hybrid algorithms [42], [48]. Usually,

a classical PLS can be divided into the following three

components [49].

1) Selection step determines how to select the start-

ing solutions for neighborhood exploration. In the

PLS [41], these solutions are selected uniformly at

random among the unexplored ones.

2) Acceptance criterion determines which solutions can

be stored into the external archive. In the PLS, all the

nondominated solutions identified in the neighborhood

exploration are accepted.

3) Neighborhood exploration is conducted on the start-

ing solutions. In particular, it defines the neighborhood

of a solution, which is to be explored before switching

to a different solution. The PLS always explores the

entire neighborhood of a solution.

III. MATHEMATICAL MODEL OF DEVICE ASSIGNMENT

PROBLEM

In the distributed integrated modular avionics (DIMA), it is

desirable to assign the DIMA devices to the installation loca-

tions of the aircraft for obtaining the optimal quality and

cost, subject to the resource and safety constraints. This is

called device assignment problem (DAP) in this paper. The

inputs of DAP are the device types, the number of devices,

the resources required for the device and the installation

locations [6].

For DAP, a solution can be encoded as follows.

xD = {xD1
, xD2

, . . . , xDi , . . . , xDt }, xDi ∈ [1, n]. (4)

In this vector, Di stands for the i-th device; and t is

the number of the devices in DIMA architecture. n is the

number of the installation locations. Each entry in the solu-

tion vector consists of the variable from 1 to n represents

a possible assignment. The value of the variable xDi indi-

cates that the device i is assigned to a installation location,

e.g. xDi = z means that the i-th device is assigned to

z-th installation location. The DIMA device types include

the core processing module (CPM) and the remote data

concentrator(RDC). When these devices are installed, they

require the installation locations to provide the resources,

such as slots, peripherals, cooling facilities, and power

supply.
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In the model, we use a resource vector

Rj = {R
j
1,R

j
2, . . . ,R

j
s, . . . ,R

j
S}. (5)

to describe the type of resources and the amount of resources

available to the installation location j. Correspondingly,

we use another resource vector

r i = {r i1, r
i
2, . . . , r

i
s, . . . r

i
S}. (6)

to represent the type of installation resource and the quantity

necessary for device i to run.

For each valid device assignment, the amount of resources

for each resource type consumed by all devices at each

installation location does not exceed the total number of

resources of that type at that installation location. This is

illustrated by aResource Constraints expression, for a given

location j,
∑

xDi=j

r is ≤ Rjs, s = 1, . . . , S. (7)

which means that all types of resources consumed by the

devices on the installation location j do not exceed the

limit.

In the DIMA architecture, the safety of the avionic sys-

tems must be taken into account. Thus, in the model, each

system has a redundant backup. But the mutual redundancy

between the system devices cannot be placed in the same

installation location, must be isolated. Such that Segregation

Constraints is expressed as follows:

xDi 6= xDj , i 6= j. (8)

It is revealed that the device i and the device j that

are redundant with each other cannot exist at any

same position. The expression can also represent other

devices that need to be isolated in addition to redundant

devices.

The following two objectives are considered for optimiza-

tion in DAP.

Mass is one of the most important objectives for evaluating

the entire aircraft. Since Mass has a significant impact on

the fuel consumption of the aircraft, which further affects the

efficiency of the aircraft. The Mass of the avionics system

is mainly composed of hardware modules, cables and instal-

lation facilities. In the device assignment problem, the Mass

is mainly composed of the weight of the cables. The cable

mass is the weight of the connecting cable between the task

hosted on the device and the desired peripheral. In the objec-

tive function fMass, it calculates all the cables Mass Mi,xDi
produced by each assignment possible xDi . If the cable is not

required, the cable Mass is 0. Finally all the cables mass is

accumulated. Such that,

fMass =

t
∑

i=1

Mi,xDi
. (9)

Ship set costs (SSC) is another important object con-

sidered in DIMA field. In the avionics system, SSC is a

recurrent expense in the production process of each aircraft.

In device assignment problem, SSC is total cost of peripheral

used in each assignment. which means the SSC objective

is

fSSC =

t
∑

i=1

Ci,xDi . (10)

where Ci,xDi is produced by each possible assignment xDi .

IV. A TWO-PHASE MULTIOBJECTIVE LOCAL SEARCH

ALGORITHM

To solve DIMA device assignment problem, a two-phase

multiobjective local search (2PMOLS) is proposed. In the

first phase, the weighted-sum approach is adopted for the fast

convergence of the population towards PFs. In the second

phase, PLS is conducted on the obtained solutions in the first

phase for the extension of PFs.

Algorithm 1 shows the workflow of 2PMOLS for DAPs.

2PMOLS maintains:

• the starting population SP, which consists of the starting

solutions for LS;

• the external population EP, in which all the obtained

nondominated solutions are stored;

• a uniformly generated set of weight vectors W =

{λ1, . . . , λN }.

The symbol ↓ represents the input while ↑ represents

the output, l represents both the input and output of a

algorithm.

Algorithm 1 2PMOLS

Input: a stopping criterion;

Output: EP.

1 Initialization(EP l,W ↓);

/* first phase */

2 Phase_1(SP ↓,EP l,W ↓);

/* second phase */

3 Phase_2(SP ↓,EP l);

4 If the stopping criteria is satisfied, stop and output the

EP. Otherwise go to Step3.

Algorithm 2 Initialization

Input: EP = {x1, . . . , xN }

Output: EP, W

1 Decompose a DAP into N subproblems by the weight

vectors W = {λ1, . . . , λN }. For each i = 1, . . . ,N ,

solution x i is generated randomly or by a heuristic and

associated with i-th subproblem.

2 Compute the Euclidean distance between any two

weight vectors and obtain T closest weight vectors to

each weight vector. For each i = 1, . . . ,N , set

B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the T closest

weight vectors to λi.
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A. INITIALIZATION

The initialization procedure is presented in Algorithm 2.

First, a DAP is decomposed into N subproblems by the

uniformly generated weight vectors W . EP is initialized ran-

domly or by a heuristic. For each i ∈ {1, . . . ,N }, a solu-

tion x i is associated with the i-th subproblem. After that,

the Euclidean distance between any two weight vectors is

calculated. For each weight vector, its T closest vectors are

chosen as the neighborhood.

B. PHASE ONE

The Algorithm 3 seeks the fast convergence of the population

for obtaining a good PF approximation. For each solution

x ∈ SP, the local search (LS) is conducted by generating

its neighboring solutions N (x). After that, each solution y ∈

N (x) is used to update the neighborhood of x by the weighted-

sum approach based on Eq. (1).

Algorithm 3 Phase_1

Input : SP = {x1, . . . , xN }, EP, W

Output: EP.

1 Set TP = EP, SP = EP.

2 while SP is not empty do

3 foreach x i ∈ SP do

/* N (x) is the neighborhood of x

*/

4 foreach y ∈ N (x i) do

5 if j ∈ B(i)&&gws(y
∣

∣λj) ≤ gws(x j
∣

∣λj) then

6 set x j = y;

7 end

8 end

9 end

10 SP = EP\TP.

11 end

C. PHASE TWO

In Algorithm 4, Pareto local search(PLS) is conducted on

each solution x ∈ SP by generating its neighborsN (x), which

is then used to update EP as follows. For each y ∈ N (x),

if there is no solution in EP which can dominate it, then y

will be added into EP and all the solutions in EP that are

dominated by y will be removed. All the new generated non-

dominated solutions that successfully update EP are stored

in SP as the starting solutions for the next round of the local

search.

V. EXPERIMENTAL SETUPS

A. CASE STUDY

A320-like aircraft is used for our empirical study. In the

A320 aircraft, it has seven installation locations, namely

AVIONICS-BAY, NOSE-LEFT, NOSE-RIGHT, MID-LEFT,

MID-RIGHT, TAIL-LEFT and TAIL-RIGHT. Different

installation locations have different access time, and differ-

ent types or numbers of the resources, which will lead to

Algorithm 4 Phase_2

Input : SP,EP

Output: EP.

1 Set TP = EP, SP = EP.

2 while SP is not empty do

3 foreach x ∈ SP do

/* N (x) is the neighborhood of x

*/

4 foreach y ∈ N (x) do

5 add y to EP, if there is no solution in EP

which can dominate y, remove all the

solutions in EP that are dominated by y.
6 end

7 end

8 SP = EP\TP.

9 end

differences in constraints and objectives. The mass and cost

of cable routes will result in the differences in the Mass

and SSC objective. The goal is to assign the devices to

these seven installation locations so that the two objectives

(Mass and SSC) are optimized. An instance named 14-7 indi-

cates that 14 devices are to be installed into 7 locations.

In this paper, seven instances of different scales are selected,

i.e., 14-7, 28-7, 40-7, 50-7, 60-7, 100-7, 140-7.

B. PARAMETERS SETTINGS

• 2PMOLS: In phase 1, the weighted sum method is

adopted to decompose the multiobjective problem into

a number of single objective optimization subproblems.

The number of subproblems is set to 60 and the size

of the neighborhood of each subproblem is set to 20.

In phase 2, PLS is adopted for obtaining more approxi-

mated Pareto optimal solutions.

• MOEA/D-LS: MOEA/D [12] based on three decom-

position methods, weighted sum (WS), Tcheby-

cheff (TCH) and penalty boundary intersection

(PBI) is adopted. For a fair comparison, MOEA/D

(WS, TCH, PBI) is combined with local search heuristic

(MOEA/D-LS). The number of subproblems for these

algorithms are set to 60 for all instances and the size of

the neighborhood of each subproblem is set to 20. For

PBI, the penalty parameter θ is set to 5.

• NSGA-II-LS: NSGA-II [11] is a classical Pareto-

dominance based algorithm and NSGA-II-LS is the

combination of NSGA-II and local search heuristic. The

population size in NSGA-II-LS is set to 60.

The neighborhood N (x) of a solution x is generated as

follows: Randomly remove 2 devices from x and then add the

devices one by one to the locations considering the resource

at each location and segregation constraints between devices.

Repeat the process until all the possible assignments are taken

into account.

VOLUME 8, 2020 5



Q. Zhou et al.: 2PMOLS for the Device Allocation in the DIMA

TABLE 1. The c-metric (%) values between 2PMOLS and MOEA/D-LS (WS, TCH and PBI), NSGA-II-LS on seven DAP instances of different scales.

TABLE 2. The performance of 2PMOLS, MOEA/D-LS (WS, TCH, PBI) and NSGA-II-LS in terms of average IH values on seven DAP instances of different
scales.

Stopping criterion: Each of the compared algorithms is

terminated when there is no newly added solutions for local

search.

For a fair comparison, all the compared algorithms are

run independently for 20 times on each test instance. All

the compared algorithms use the same method to initialize

populations and use the same parameter settings as in the

original paper. All the compared algorithms are coded in Java

and the experiments are conducted on a PC equipped with

Intel 3.4 GHz CPU and 16G RAM.

C. PERFORMANCE METRICS

Two performance metrics are used to measure the perfor-

mance of the comparedmultiobjective algorithms, as follows.

1) Hypervolume indicator(IH ) [50]: Let z
∗ = (f ∗

1 , . . . , f ∗
m )

be a reference point in the objective space which is

dominated by all Pareto optimal objective vectors. Cal-

culating the area from z∗ to Pareto front of the objective

space to obtain the IH . The higher the IH , the better the

approximation. It can be defined as

IH (P) = volume(
⋃

f ∈P

[f1, z
r
1] × . . . [fm, zrm]). (11)

In our experiments, the reference points are set

as 1.1 times of the largest objective values of the

nondominated solutions obtained by all the compared

algorithms.

2) Set coverage (c-metric) [50]: Let A and B be two

approximations to the PF of anMOP.C(A,B) is defined

as the percentage of the solutions in B dominated by at

least one solution in A:

C(A,B) =
|u ∈ B|∃v ∈ A : v dominates u|

|B|
× 100%

(12)

C(B,A) is not necessarily equal to 1 − C(A,B).

C(A,B) = 1 indicates that all solutions in B are

dominated by solutions in A while C(A,B) = 0 means

that no solution in B is dominated by a solution in A.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. COMPARISONS WITH MOEA/D-LS (WS, TCH AND PBI)

AND NSGA-II-LS

In this section, 2PMOLS is compared with MOEA/D-LS

(WS, TCH, PBI) and NSGA-II-LS on DAP instances. We can

observe from Table 1 that 2PMOLS has the best performance

6 VOLUME 8, 2020
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FIGURE 1. The nondominated solutions obtained by 2PMOLS, MOEA/D-LS (WS, TCH and PBI) and NSGA-II-LS on different DAP instances.

FIGURE 2. Device assignment designed by a domain expert.

except for 28-7 in terms of c-metric. This indicates that

2PMOLS has the best overall convergence. It is interest-

ing to see that 2PMOLS performs increasingly better with

the increasing scale of DAP instance compared with other

algorithms, which indicates that 2PMOLS has much better

scalability.
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FIGURE 3. A solution of the device assignment obtained by 2PMOLS.

TABLE 3. The CPU time (s) spent by 2PMOLS, MOEA/D-LS (WS, TCH and
PBI) and NSGA-II-LS on seven DAP instances of different scales.

To further validate the performance of 2PMOLS,

the hypervolume values obtained by all five compared algo-

rithms are presented in Table 2. It can be observed clearly

that 2PMOLS performs significantly better than all the other

compared algorithms, which indicates that 2PMOLS has

the best overall performance in terms of both convergence

and diversity. For 28-7 instance, although the convergence

performance of 2PMOLS in terms of c-metric is worse than

that of other compared algorithms, its over performance in

terms of hypervolume is significantly better than that of all

the other compared algorithms. This indicates 2PMOLS has

the superior performance in terms of diversity.

To better visualize the performance of all the compared

algorithms, the nondominated sets delivered by five com-

pared algorithms in the run with the median hypervolume

value on seven DAP instances with different scales are given

in Fig. 1. It can be observed that 2PMOLS has the best

performance on all the instances.

In addition, the final CPU time in seconds for all the five

compared algorithms are given in Table 3. It can be observed

that MOEA/D-LS (WS) has the fastest convergence speed,

followed by MOEA/D-LS (TCH). The convergence speed

of 2PMOLS is very close to that of MOEA/D-LS (PBI)

on 14-7, 28-7, 40-7, 50-7 and 60-7 instances. However, in the

two large-scale problems (100-7 and 140-7), the computa-

tional time of 2PMOLS is more than other compared algo-

rithms due to the use of PLS.

In 14-7 instance, a manually designed DIMA device archi-

tecture by a human expert is given in Figure 2. For com-

parison, a solution obtained by 2PMOLS and selected by a

human expert is decoded and presented in Figure 3. This

solution is (2, 2, 2, 2, 3, 4, 3, 4, 2, 6, 6, 2, 5, 2). It can be

observed that all the computing devices (CPM) are assigned

to AVIONICS-BAY, since that the cooling resources needed

by the computing device are only available in the AVIONICS-

BAY. In addition, the mass of the manual assignment is

7.69 kg (its SSC is 715), whereas the optimal mass of the

device assignment obtained by 2PMOLS is 7.07 kg (its SSC

is 678). The results show that the model-based optimal design

by 2PMOLS makes a significant improvement over manual

design by a human expert on both objectives.

B. COMPUTATIONAL COMPLEXITY OF 2PMOLS

Let us assume the number of subproblems isN ; the neighbor-

hood size for each subproblem is T ; the size of the external

population is M and on average each initial solution will

generate Y solutions by local search. In the idealization pro-

cess (Algorithm 2), computing T closest neighboring weight

vector requires O(NlogN ), where sorting N weight vectors

requires O(NlogN ) and finding T closest neighboring weight

vectors requires O(TN ). In phase 1 (Algorithm 3), the local

search for each solutions requires O(Y ) computations; thus
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updating T neighboring subproblems for N subproblems

requires O(TNY ) computations. In phase 2 (Algorithm 4),

the local search for the external population requires O(MY )

computations and updating the external population requires

O(M2Y ) computations. Therefore, the total computational

complexity of 2PMOLS is O(M2Y ).

VII. CONCLUSION

In this paper, the device assignment problem in DIMA

is modeled with the safety constraints using the integer

encoding for better scalability. A two-phase multiobjective

local search (2PMOLS) is further proposed for addressing

it. 2PMOLS is compared with three decomposition-based

approaches and one domination-based approach on DAPs of

different sizes in the experimental studies. The experimental

results show that 2PMOLS outperforms all the compared

algorithms, in terms of both the convergence and diversity.

It has also been demonstrated that the solution obtained by

2PMOLS is better in terms of both objectives (mass and ship

set costs), comparedwith the solution designed by the domain

expert.
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