
HAL Id: hal-01944039
https://hal.sorbonne-universite.fr/hal-01944039

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A two-phase Pareto local search heuristic for the
bi-objective pollution-routing problem

Luciano Costa, Thibaut Lust, Raphael Kramer, Anand Subramanian

To cite this version:
Luciano Costa, Thibaut Lust, Raphael Kramer, Anand Subramanian. A two-phase Pareto local search
heuristic for the bi-objective pollution-routing problem. Networks, Wiley, 2018, 72 (3), pp.311-336.
�hal-01944039�

https://hal.sorbonne-universite.fr/hal-01944039
https://hal.archives-ouvertes.fr

A two-phase Pareto local search heuristic for
the bi-objective pollution-routing problem

Luciano Costa1, Thibaut Lust*2, Raphael Kramer3, Anand
Subramanian4

1 École Polytechnique de Montréal and GERAD, Département de Mathématiques et de
Génie Industriel, Montréal, Québec, Canada H3C 3A7

2 Sorbonne Universités, UPMC, Université Paris 06, CNRS, LIP6, UMR 7606, F-75005,
Paris, France

3 Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze e Metodi
dell’Ingegneria, Via Amendola 2, Pad. Morselli, 42122 Reggio Emilia, Italy

4 Universidade Federal da Paráıba, Departamento de Sistemas de Computação, Centro
de Informática, Rua dos Escoteiros, Mangabeira, 58058-600, João Pessoa–PB, Brazil

Abstract. This paper deals with the bi-objective pollution-routing problem (bPRP), a
vehicle routing variant that arises in the context of green logistics. The two conflicting
objectives considered are the minimization of the CO2 emissions and the costs related
to drivers wages. A multi-objective (MO) approach based on the two-phase Pareto local
search (2PPLS) heuristic is employed to generate a good approximation of the Pareto
front. During the first phase of the method, a first set of potentially efficient solutions is
obtained by solving a series of weighted sum problems with an efficient heuristic originally
developed to solve the single-objective PRP. A dichotomous scheme is used to generate
the different weight sets in a automatic way. In the second phase, the set is improved
with an efficient Pareto local search procedure. The use of Pareto local search allows
to limit the number of computational demanding weighted sum problems solved in the
first phase, while keeping high-quality results. Extensive computational experiments over
existing benchmark instances show that the proposed approach leads to better results in
less CPU time when compared to those obtained by state-of-the-art methods.

Keywords. Pollution-routing problem, Multi-objective optimization, Pareto local search,
Combinatorial optimization, Heuristics.

* Corresponding author
Email addresses: luciano.costa@gerad.ca (Luciano Costa), thibaut.lust@lip6.fr

(Thibaut Lust), raphael.kramer@unimore.it (Raphael Kramer), anand@ci.ufpb.br (Anand
Subramanian)

1

1 Introduction

This paper deals with a green variant of the vehicle routing problem (VRP), a well-known

combinatorial optimization problem that arises in the fields of operations research and

logistics. In the VRP, a set of routes that start and end in the same (and unique) depot

must be designed in such a way that each customer has its demand satisfied in a single

visit and the vehicle capacity is not exceeded. In practical situations, one usually aims at

minimizing the operational costs such as the total distance traveled, number of vehicles,

labor costs, etc.

The continuous research efforts on VRPs are often motivated by economic aspects [56].

However, given that transportation operations are responsible for a large amount of green-

house gases (GHG) emissions, environmental issues may be also taken into account when

solving such problems.

Due to the growing worldwide concern about the impact of human activities on the

environment, research works related to this issue started to increase. In fact, in the

last two decades, the number of operations research works including environmental as-

pects in their scope, specially those related to logistics and freight transportation, also

increased [40]. Sbihi and Eglese [53] presented several combinatorial optimization prob-

lems that could be analyzed in the environment context as well as some concepts and

definitions about green logistics.

According to Lin et al. [40], VRP variants considering sustainable transportation issues

are called green vehicle routing problems (GVRPs). As an attempt to characterize the

different types of GVRPs, the authors proposed a classification that divides the GVRPs

into three categories: (i) green-VRP (green-VRP), which addresses the optimization of

energy consumption of transportation; (ii) pollution routing problem (PRP), which aims

at reducing the emissions of greenhouse gases; and (iii) VRP in reverse logistics (e.g.,

waste collection VRP).

Data from International Energy Agency (IEA) show that the majority of CO2 emis-

sions arising from fuel combustion in the year 2015 came from the energetic and transporta-

tion sectors, each one responsible for 42% and 24% of total emissions, respectively [26].

The emissions related to the latter sector are directly proportional to the amount of fuel

consumed by a vehicle. The way such emissions are estimated might vary depending on

which aspects are considered by the emission model. Typically, the speed, the acceler-

ation, the load carried and the distance traveled by the vehicle are some of the factors

incorporated by most models [10]. A comparison highlighting the weakness and strengths

of several emission models can be found in Demir et al. [10]. VRPs where the emis-

2

sions are estimated according to the vehicle load × distance indicator have been proposed

by Figliozzi [16], Kopfer et al. [35] and Xiao et al. [58]. On the other hand, Franceschetti

et al. [18], Franceschetti et al. [19], Jabali et al. [27], Kopfer and Kopfer [34], Bektaş and

Laporte [5], Demir et al. [11], Kramer et al. [36], Kramer et al. [37], Kuo [39] and Soysal

et al. [55] considered VRPs where the level of emissions is proportional to the travel-

ing speeds between pairs of customers. Most of the methods adopted to solve these

problems are based on heuristics. Concerning the exact approaches, one can cite the col-

umn generation-based algorithms proposed by Fukasawa et al. [21], Fukasawa et al. [20],

and Dabia et al. [7], and the disjunctive convex programming models by Fukasawa et al.

[22]. The interested reader is referred to the surveys of Demir et al. [13] and Lin et al.

[40] for a more complete analysis of the state-of-the-art on VRPs with environmental

considerations.

Despite the growing interest on the environmental preservation, economic aspects still

remains highly important. Therefore, examining their relationship allows for a more

complete analysis on the behavior of such aspects in this integrated context. In light of

this, Bektaş and Laporte [5] proposed the pollution-routing problem (PRP), an extension

of the VRP with time windows (VRPTW), whose objective is to minimize the GHG

emission costs plus the labor costs.

The objectives considered in all works mentioned above were embedded in the same

cost function. However, it should be pointed out that the two PRP objective functions (i.e.,

GHG emission and labor costs) are conflicting. As depicted in Figure 1, this happens when

the vehicles travel with speeds greater than ≈ 15 m/s, where optimizing one objective

implies degrading the other. Since labor costs increase with the routes duration, one

may intend to generate shorter routes, in terms of travel time. Nevertheless, at the same

time, this may imply in larger emission costs, since higher vehicle speeds are necessary to

minimize the total travel time of a route. On the other hand, in order to minimize the

emission costs, one needs to adopt lower vehicle speeds. In this case, routes will have a

larger duration, thus increasing the labor costs.

Recently, Lin et al. [40] remarked that it could be interesting to explore the existing

trade-off between travel distance and environmental impacts. According to Ehrgott [15],

the best way to analyze trade-off in problems with multiples objectives is through multi-

objective optimization (MO). The main goal of MO is to find all Pareto optimal solutions

(or a good approximation of these solutions [8, 23]), that is, solutions that cannot be

improved in any of the objectives without degrading at least one of the other objectives.

3

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

co
st

speed (m/s)

Env. Cost
Driver Cost

PRP Cost

Figure 1: PRP objective functions

Despite the conflicting nature between the environmental and economic costs, there

are few works in which a MO approach is explicitly applied to tackle problems of this

nature. Jemai et al. [30] defined the bi-objective green VRP, where the two objectives

to be minimized are the total traveled distance and CO2 emissions. The non-dominated

sorting genetic algorithm II (NSGA-II) [9] was applied to solve the problem. Siu et al.

[54] devised a genetic algorithm for dealing with the multi-objective green cargo routing,

in which different plans must be defined for distinct types of transportation modes. Nev-

ertheless, the objectives still remain the same, i.e., minimizing transportation costs and

CO2 emissions. The authors compared their results with those obtained by an adapted

version of Martins’ algorithm [46]. Molina et al. [47] dealt with a real-life application for

the multi-objective heterogeneous fleet VRP with environmental considerations. Three

objectives were considered: (i) minimization of internal costs and minimization of (ii) CO2

and (iii) NOx emissions. An augmented weighted Tchebycheff method was used to solve

it.

Demir et al. [12] proposed the bi-objective PRP (bPRP) which extends the PRP

defined in [5], but they considered the two objectives separately through a MO approach.

The authors solved such problem by directly applying straightforward and well-known

MO methods from the literature. Recently, Kumar et al. [38] implemented a so-called

self-learning particle swarm optimization approach for solving a multi-objective PRP with

time windows and multiple time periods, where the objectives considered were related to

environmental, routing and production costs.

4

In this paper, we focus our attention on solving the bPRP by adapting the two-phase

Pareto local search (2PPLS) approach proposed by Lust and Teghem [43] and originally

developed for solving the bi-objective TSP (bTSP). State-of-the-art results have been ob-

tained by such method when solving other classic MO combinatorial optimization prob-

lems like the MO knapsack problem [44] and MO set covering problem [45]. In the first

phase of the method, an approximation of the set of supported efficient solutions is gen-

erated by solving single-objective problems (SOPs) obtained from the linear weighted

aggregation of the objectives (weighted sum). In our case, we used a simplified version of

the state-of-the-art PRP algorithm by Kramer et al. [37] to solve such problems. In the

second phase, new solutions are generated by applying Pareto local search (PLS) [2, 48],

a method based on neighborhood search. In contrast to the bTSP, finding good approx-

imations for the Pareto Front for the bPRP in an acceptable CPU time is not an easy

task. Firstly, solving single-objective PRP instances obtained with weighted sums is much

harder and more computational demanding than solving single-objective TSP instances.

Therefore, it is necessary to limit as much as possible the number of single-objective prob-

lems solved during the first phase of the algorithm. Secondly, during the application of

the neighborhood search, one needs to build not only the routes themselves, but also de-

termine the vehicle speeds associated with each arc of the route, which makes the problem

much harder to be solved in practice.

The main contributions of this paper are threefold: firstly we show how to limit the

number of weighted sum problems solved during the first phase by using a dichotomous

scheme to generate automatically the different weight sets, allowing to obtain good quality

initial sets in small CPU times. Secondly, we study different combinations of neighborhood

functions and propose an efficient mechanism that avoids a prohibitive number of calls to

the speed optimization algorithm throughout the Pareto local search. Thirdly, we show

that the proposed algorithm obtains high-quality results for several MO indicators, in less

CPU time than state-of-the-art MO methods used in [12] to solve the same problem. To

our knowledge, this is the first time that an adaptation of 2PPLS to solve a multi-objective

mixed integer linear program problem (MOMILP) is proposed. Although this MO method

is more enhanced than those considered in [12], it is still simple and straightforward to be

implemented, since the method is mainly based on the single-objective solver previously

developed for solving the PRP. Please note that the goal of this paper is not only to

produce high-quality results for the bPRP, but also to show that it is possible to easily

use an efficient single-objective solver of a specific problem to obtain high-quality results

for the bi-objective version of the same problem. We only consider two objectives in this

5

paper, as for problems with more than two objectives, particular adaptations are often

needed to manage the growing number of solutions [6].

The remainder of this paper is organized as follows. Section 2 describes the bPRP.

Section 3 explains the proposed 2PPLS based approach. Quality indicators are listed in

Section 4. Computational experiments are reported and discussed in Section 5. Finally,

Section 6 presents some concluding remarks.

2 Problem description

Let G = (V ,A) be a complete and directed graph with a set V = {0, . . . , n} of vertices

and a set A = {(i, j) : i, j ∈ V ; i 6= j} of arcs. The depot is represented by vertex 0

whereas the set of customers is denoted by V ′ = V \ {0}. Each customer i ∈ V ′ has a

non-negative demand qi, a time interval [ai, bi] where it can be served, and a service time

ti. The travel distance between a pair of vertices i and j is given by dij, (i, j) ∈ A. A set

K = {1, . . . , r} of homogeneous vehicles with capacity Q is available at the depot.

The bPRP considers the same constraints found in the VRPTW, where in addition to

the constraints defined for the classical VRP, it also imposes that each customer i ∈ V ′ can

only start to be served within its time window [ai, bi] [14]. The bPRP has two objective

functions, which are treated separately: the first aims at minimizing the costs from CO2

emissions while the second aims at minimizing the total costs associated with drive wages.

From [5, 10], drivers are assumed to be paid per unit of time, and CO2 emissions are

assumed to be proportional to vehicle fuel consumption, which in turn is dependent on

environment and traffic-related parameters such as vehicle type, speed, load, acceleration

and congestion. Let νij and fij be the vehicle speed and the vehicle load on arc (i, j),

respectively. The amount of CO2 emissions associated with a travel from i to j can be

computed as

Fij(νij, fij , dij) = ξ(µNV + wγαijνij + γαijfijνij + βγν3
ij)dij/νij, (1)

where ξ and γ are constants related to fuel properties, β and w are associated with

vehicle characteristics and αij is a constant that depends on road characteristics and

vehicle acceleration. Moreover, µ is the engine friction factor, N is the engine speed, V

is the engine displacement. The equation (1) is based on the comprehensive emissions

model described by Barth et al. [4] and Barth and Boriboonsomsin [3]. The parameter

values adopted in the bPRP can be found in [11, 37].

6

The bPRP aims at designing a set of routes by deciding the arcs to be included

in the solution as well as their associated vehicle speeds, in order to minimize the two

aforementioned objectives, while respecting VRPTW constraints. Hence, if we consider

fc and fd as the cost associated with fuel consumption and labor activities, respectively,

the bPRP objective functions can be expressed as follows:

min f1(x) = fc
∑

(i,j)∈S

Fij(νij, fij , dij) (2)

min f2(x) = fd
∑

i∈V ′

si, (3)

where x is a feasible solution (set of routes), S is the set of arcs in x, Fij(.) corresponds to

the amount of CO2 emissions as given in Eq. (1), and si represents the total time spent

on a route that has the vertex i ∈ V ′ as the last visit before returning to the depot.

Note that we can consider the bPRP as a multi-objective mixed integer linear program

(MOMILP) since one has to perform binary decisions, i.e., by deciding whether an arc must

be included in the solution or not, as well as continuous decisions, i.e., by deciding the

vehicle speed over each selected arc. Motivated by real-life aspects, the selected speeds

must respect lower (VMIN) and upper (VMAX) bounds, which come from the problem

definition. According to Bektaş and Laporte [5], the speed at which a vehicle travels on

arc (i, j) is imposed by traffic regulations. Nevertheless, it is important to emphasize that

in the PRP definition, traffic conditions are not taken into account. Hence, the vehicles

are allowed to travel at any speed within a given interval.

In practice, we are interested in finding the set of Pareto optimal (or efficient) solutions

for the bPRP. We recall the definitions related to MO optimization in the following.

We consider a general MO problem (MOP), with a feasible set X and k objective

functions fi(x) (i ∈ {1, . . . , k}), where x ∈ X is a solution vector. In MO optimization,

solutions are usually compared according to the Pareto dominance relation:

Definition 1. Pareto dominance relation: we say that a vector z∗ = (z∗1 , . . . , z
∗
k) domi-

nates a vector z = (z1, . . . , zk) if, and only if, z∗i ≤ zi ∀ i ∈ {1, . . . , k} ∧ ∃ i ∈ {1, . . . , k} :

z∗i < zi. We denote this relation by z∗ ≻ z.

We define an efficient solution as follows:

Definition 2. Efficient solution: a feasible solution x∗ ∈ X is called efficient if there does

not exist any other feasible solution x ∈ X such that f(x) ≻ f(x∗).

7

For these solutions, it is not possible to improve the value of one of the criteria without

deteriorating at least one other criterion.

The image z = f(x) of an efficient solution is called a non-dominated point (z ∈ Rk).

The efficient set denoted by XE contains all efficient solutions, whereas the Pareto front,

denoted by YN , contains all non-dominated points (it corresponds to the image of the

efficient set in objective space). In this work we will mainly work with approximations of

the efficient set, also called set of potentially efficient solutions, and denoted by X̂E.

At some point, we will also need to use the weakly Pareto dominance relation, defined

as follows.

Definition 3. Weakly Pareto dominance relation: we say that a vector z∗ = (z∗1 , . . . , z
∗
k)

weakly dominates a vector z = (z1, . . . , zk) if, and only if, z∗ ≻ z or z = z∗. We denote

this relation by z∗ � z.

Finally, we make the important distinction between two types of efficient solutions:

supported and non-supported [15]. The set of supported efficient solutions (XSE) can be

obtained by solving weighted sum SOPs of the form min
x∈X

∑k

i=1 λifi(x), with non-negative

weights λi. The set of non-supported efficient solutions (XNSE) are the remaining efficient

solutions, not located in the convex hull of the Pareto front, and that cannot be obtained

by solving weighted sum problems. In many cases, non-supported solutions may provide

a better compromise between the objectives of the problem [42].

3 Proposed method

We developed a 2PPLS-based method [43] for solving the bPRP, which makes use of

approximation schemes in both phases, as described in the following.

• Phase 1: aims at finding a good approximation for the set of supported efficient

solutions. This can be done, for example, by solving weighted linear aggregated

problems related to the two bPRP objectives.

• Phase 2: aims at obtaining a set of non-supported efficient solutions by exploring the

search space between supported efficient solutions. These new solutions are obtained

using a Pareto local search (PLS) procedure. PLS [2, 48] is an adaptation of simple

local search based on improving moves to multi-objective optimization. PLS works

directly with the current approximation of the efficient set. For each solution in the

approximation its neighborhood is searched to find new potentially efficient solutions

8

and to update the approximation. PLS is especially good for finding solutions along

the Pareto front but can be very slow to find solutions towards the Pareto front.

That is why it is important to start PLS from a good initial population. In this

configuration, PLS can generate a large number of new potentially efficient solutions

in a very short CPU time.

We present below how we have adapted these two phases to the bPRP.

3.1 First phase

In this phase, aggregated problems of the form (4) are solved for the feasible space X,

where λ = [λ1, λ2, . . . , λk] and z = [f1(x), f2(x), . . . , fk(x)] represent the weight and ob-

jective function vectors, respectively.

min

{
k∑

i=1

λifi(x) : x ∈ X

}
. (4)

One way of generating the weight sets is by applying the dichotomous scheme proposed

by Aneja and Nair [1] and later improved by Przybylski et al. [51]. These methods employ

exact approaches capable of generating all the weight sets, thus enabling one to obtain all

the supported efficient solutions for bi-objective problems. Lust and Teghem [43] adapted

the former method by applying heuristic approaches for solving the aggregated problems,

in order to decrease the runtime of the method. As a result, the solutions found are not

necessarily supported, or even efficient, but constitute a set that is close to the complete

set of supported efficient solutions. Two main advantages of using this method for solving

the bPRP are that the number of weight sets to be used is automatically determined and

the objective functions need not be normalized as the weight sets are computed from the

representation of the solutions in the objective space.

This method is adopted in the present work and its adaptation to the bPRP is detailed

in the following.

3.1.1 Heuristic procedure for obtaining supported efficient solutions

The dichotomous scheme used for obtaining a good approximation of the set of supported

efficient solutions is presented in Alg. 1. For all pseudo-codes presented hereafter, the

symbols ↑, ↓ and l denote the passing of parameters in mode IN, OUT and IN/OUT,

respectively. The comments are identified by the symbol ⊲.

9

Alg. 1 receives as input a bPRP instance and returns an approximation X̂SE of the

set of supported efficient solutions. Herein, when the procedure SolvePRP is called, a

single-objective problem of the form λ1f1 + λ2f2 is solved.

The approximation X̂SE is initialized with two solutions of SOPs. Firstly, the objective

that aims at minimizing the costs from CO2 emissions is considered (line 4). Secondly,

the total cost associated with drive wages is minimized (line 6). Once both solutions are

obtained, the method SolveRecursionHeuristic (line 8) is called in order to generate

new weight sets and solutions.

Algorithm 1 bPRP Phase1 Heuristic

1: Parameters ↑: bPRP instance c

2: Parameters ↓: An approximation X̂SE of XSE

3: λ = (1, 0)

4: SolvePRP(λ ↓, x1 ↑) ⊲ Solve the PRP considering only the objective that minimizes the

emission costs

5: λ = (0, 1)

6: SolvePRP(λ ↓, x2 ↑) ⊲ Solve the PRP considering only the objective that minimizes the

costs associated with the driver wages

7: X̂SE ← {x1, x2}

8: SolveRecursionHeuristic(x1 ↓, x2 ↓, X̂SE l) ⊲ Compute an approximation of XSE

The method SolveRecursionHeuristic is described in Alg. 2. In this method, the

property that the images of the supported efficient solutions are always located in the

convex hull of the Pareto front is used: by considering weight sets λ = (λ1, λ2) defined

by the normal line across the images in the objective space of the two solutions x1 and

x2 considered, new supported solutions can be recursively generated [51]. As the new

weight set is a vector normal to the line joining the two points f(xr) and f(xs), we have

λ1 = f2(xr)−f2(xs)
f1(xs)−f1(xr)

and λ2 = 1. Then, we normalize the weight sets (λ1 + λ2 = 1) and we

obtain λ1 =
f2(xr)−f2(xs)

f2(xr)−f2(xs)+f1(xs)−f1(xr)
and λ2 = 1− λ1.

The solution obtained considering the new weight set is denoted as xt. If xt is not

dominated by any of the solutions of the set of potentially efficient solutions, then xt is

added to this set. This verification is performed using the method UpdateXE (see Alg.

3). The procedure simply consists in updating a set of potentially efficient solutions X̂E

with a new solution p of cost f(p). The solution p is compared with all solutions from

X̂E (lines 4–8) and in case p is weakly dominated by at least one solution from the set,

p is not added to X̂E and the algorithm stops (lines 5–6). Otherwise, p is added to X̂E

10

(line 9). Moreover, if p dominates some solutions of X̂E, then these solutions are removed

from X̂E (lines 7–8).

Algorithm 2 SolveRecursionHeuristic

1: Parameters ↓: xr and xs

2: Parameters l: X̂SE

3: λ = (λ1, λ2) λ1 = f2(xr)−f2(xs)
f2(xr)−f2(xs)+f1(xs)−f1(xr)

, λ2 = 1− λ1 ⊲ New weight set λ

4: SolvePRP(λ ↓, xt ↑) ⊲ Solve PRP λ = (λ1, λ2)

5: UpdateXE(X̂SE l, xt ↓, z(xt) ↓) ⊲ Add xt to set X̂SE

6: if z(xt) ∩ int△ z(xr)z(xs) 6= 0 then

7: SolveRecursionHeuristic(xr ↓, xt ↓, X̂SE l)

8: SolveRecursionHeuristic(xt ↓, xs ↓, X̂SE l)

Algorithm 3 UpdateXE

1: Parameters l: A set X̂E of potentially efficient solutions

2: Parameters ↓: A solution p and its evaluation f(p)

3: Parameters ↑: A Boolean variable which is true if p has been added and false otherwise

4: for all x ∈ X̂E do

5: if f(x) � f(p) then

6: return False ⊲ p is weakly dominated

7: if f(p) ≻ f(x) then

8: X̂E ← X̂E \ {x} ⊲ We remove the dominated solutions from X̂E

9: X̂E ← X̂E ∪ {p} ⊲ p is added to X̂E

10: return True

Let △z(xr)z(xs) be the right triangle defined by the points z(xr), z(xs) (xr and xs

images’) and their associated local ideal point (minimum value of the coordinate of each

point). Every time a solution xt whose image z(xt) is inside the interior of the triangle

△z(xr)z(xs), Alg. 2 is recursively called twice: one for xr and xt, and another one for xt

and xs. Otherwise, the SolveRecursionHeuristic function is not called. Note that the

area of △z(xr)z(xs) decreases between two iterations of SolveRecursionHeuristic and

that is why the method is often called “dichotomic” search.

In practice, we do not consider the entire region defined by △z(xr)z(xs). When

applying the dichotomous scheme, since in the bPRP there are decisions associated with

continuous variables, there might be too many solutions that are close to each other. As

a result, the dichotomous scheme will possibly generate a considerable number of non-

dominated points, and thus the first phase could be time consuming. Given that PLS

employed in the second phase is likely to generate a large number of points in a small

11

amount of time, one potential strategy is to accept less solutions during the first phase so

as to improve the overall runtime of the algorithm.

More precisely, we propose a mechanism that reduces the area of the triangle in order

to avoid the acceptance of several non-dominated points within a small region of the

solution space (see Figure 2). Such reduction is controlled by a parameter τ : the larger

the value of τ , the smaller the number of non-dominated points accepted for restarting

the recursion. In other words, parameter τ is used to limit the generation of supported

efficient solutions located between two close efficient supported solutions. In our case, we

assume that τ is proportional to the Euclidean distance between the points z(xr) and

z(xs), i.e., τ = ρ × ||z(xr), z(xs)||, where ρ is an input parameter. The value of this

parameter should be chosen in such way that enough potentially non-dominated points

are generated in the first phase so as to provide to PLS a good initial set and to attain

high-quality approximations front in reasonable CPU times (see Section 5.2).

z(xr)

z(xs)

τ

τ

τ

f2

f1

Figure 2: Adapted Stopping Criterion

3.1.2 Solving the single-objective PRP

For solving the single-objective PRPs obtained from the linear weighted aggregation of

the objectives, we have decided to use the algorithm proposed by Kramer et al. [37], which

is to the best of our knowledge the best heuristic method available for solving the single-

objective PRP. Their multi-start matheuristic, called ILS-SP-SOA, combines iterated local

search (ILS) [41] with a set partitioning (SP) approach and a speed optimization algorithm

(SOA). Nevertheless, since many SOPs are solved during the execution of the algorithm,

we chose to drop the SP phase of the method so as to improve the runtime performance.

12

Of course, removing this component of the method may possibly affect the quality of

the solutions generated. However, this simplified version (ILS-SOA) of the algorithm

developed in [37] still yields good solutions. This can be verified in the results reported

in Appendix A.

Alg. 4 presents the pseudo-code of ILS-SOA. The algorithm restarts nR times (lines

5–17) where at each iteration the speed matrix v is initialized with the maximum speed

allowed in the instance (line 9) and a solution is generated using an insertion based

heuristic [50] that allows infeasible solutions with respect to the time windows constraints

(line 10). Local search and perturbation moves as well as speed optimization are then

alternatively performed (line 13) for nILS consecutive iterations without improvements

(lines 11–15). The algorithm returns the best solution found among all restarts.

ILS-SOA makes use of the auxiliary data structures (ADSs) presented in Vidal et al.

[57] in order to enhance the runtime performance of the method. These ADSs store a

series of information (total duration, earliest arrival time, latest arrival time, cumulated

load, etc.) for all the subsequences of a given solution, and they allow to perform move

evaluation and feasibility check in amortizedO(1) time during the local search. The reader

is referred to [37] for a complete and detailed description of all individual components of

the algorithm, including local search, perturbation and speed optimization procedures.

Algorithm 4 ILS-SOA

1: Parameters ↓: nR, nILS , seed

2: Parameters ↑: S∗

3: S∗ ← ∅;

4: f(S∗)←∞;

5: while iR < nR do

6: iR ← iR + 1

7: S′ ← ∅;

8: f(S′)←∞;

9: v ← InitializeSpeedMatrix(νMAX)

10: S ← SpeedOptimization(LocalSearch(GenInitSol(seed)))

11: while iILS < nILS do

12: iILS ← iILS + 1

13: S ← SpeedOptimization(LocalSearch(Perturbation(S′, seed)))

14: if f(S) < f(S′) then

15: S′ ← S; iILS ← 0

16: if f(S′ < f(S∗)) then

17: S∗ ← S′

13

3.2 Second phase

In this phase one aims at finding potentially non-supported efficient solutions with a view

of improving the quality of the Pareto front by applying PLS [43, 48, 49] over the set of

potentially efficient solutions X̂SE obtained in first phase, as shown in Alg. 5.

Algorithm 5 Pareto Local Search (PLS)

1: Parameters ↓: An initial set X̂SE and a bPRP instance

2: Parameters ↑: An approximation X̂E of the set of efficient solutions

3: X̂E ← X̂SE

4: P ← X̂SE ⊲ P is the set of solutions to be explored

5: Pa ← ∅ ⊲ Pa is an auxiliary set

6: while P 6= ∅ do

7: for all p ∈ P do

8: for all p′ ∈ N (p) do ⊲ The neighborhood of p is explored

9: if f(p) � f(p′) then

10: if UpdateXE(X̂E l, p′ ↓, f(p′) ↓) then ⊲ Update X̂E with p′

11: UpdateXE(Pa l, p′ ↓, f(p′) ↓) ⊲ Update Pa with p′

12: P ← Pa ⊲ Pa is the new set to explore and we copy it in P

13: Pa ← ∅

A set P and the set of potentially efficient solutions X̂E are both initialized with the

same set of solutions X̂SE (lines 4–5), generated during phase 1. Next, while P is not

empty (lines 6–13), each neighbor solution p′ of every p ∈ P is generated (lines 7–11)

using the following VRP based neighborhoods, that are all well-known for providing good

computational results in the VRP context (and also used in ILS-SOA):

• Shift(1,0) — a customer is moved from one route to another one.

• Swap(1,1) — two customers in two different routes are switched.

• Cross (a.k.a. 2-opt∗) — two arcs are removed: one from route r1 and another one

from route r2; and another two are inserted: one connecting r1 with r2 and another

one connecting r2 with r1.

• Reinsertion — a customer is removed and inserted in another position of the same

route.

• Exchange — two customers in the same route are switched.

14

In Section 5.2, we will empirically justify the choice of the neighborhood structures

described above.

Next, each non-dominated solution p′ is added to X̂E and also to an auxiliary set Pa

(lines 9–11), which in turn becomes the new set P in line 12.

Note that the moves performed in the neighborhood only modify the routes. However,

the optimal speeds associated with the arcs of a modified route may not be the same

as the original route. One thus needs to apply the SOA in order to compute the new

optimal speeds for the arcs. Nevertheless, since the size of each neighborhood structure

is of the order of O(n2), and the SOA complexity is O(n2), the worst-case complexity of

the entire procedure is O(n4). Hence, the overhead of calling the SOA every time a move

is evaluated can be prohibitively expensive in terms of CPU time.

To overcome the aforementioned issue, we propose a simple yet effective approach

to improve the runtime performance without severely compromising the quality of the

solutions found during the local search. In particular, whenever a move is evaluated, the

method computes the objective functions considering a maximum speed allowed in the

instance. If this solution turns out to be potentially efficient, then SOA is called in order to

determine the actual optimal speeds for each arc of the modified route. This dramatically

reduces the number of calls to SOA, thus preventing the algorithm’s runtime to increase

excessively.

PLS does not accept infeasible solutions that violate the vehicle capacity, and the

feasibility check can be easily performed using the ADSs mentioned in Section 3.1.2.

However, infeasible solutions with respect to time windows are accepted, but the algorithm

penalizes such solutions, which will be then naturally dominated and thus disregarded

during the search. In this case, the move evaluation (considering the penalties due to time

windows violation) can still be performed in amortized O(1) time as shown in [37, 57].

Note that this is also the same policy adopted by ILS-SOA.

4 Quality indicators

In contrast to SOPs, comparing the quality of solutions in MOPs is not an easy task.

While in the first the solutions can be directly compared by simply observing the value

of the objective function, in the latter one has to compare a set of points, which is not

straightforward. Nevertheless, according to Zitzler et al. [60], when assessing the quality

of solutions in MOPs, it is desirable that: the distance between the potentially non-

dominated points found by the method and the optimal Pareto front (reference set) is the

15

minimum possible; there should be a maximal number of points, well-distributed along the

Pareto front. When is not practical to determine the optimal Pareto front, the reference

set can be derived by merging the fronts generated by state-of-the-art algorithms and

removing dominated points [31].

The MO assessment methods available in the literature can be classified into two main

categories: unary and binary. While in the first category a score is attributed to a set

of solutions, in the second one a score is attributed to a pair of sets of solutions. Such

score is generally computed by comparing both sets to a reference set. Zitzler et al. [61]

performed a detailed analysis on the main features of the most popular MO assessment

methods.

In this work, we make use of two indicators: hypervolume (H) and R measure. We

chose them because they are unary indicators and thus do not depend on a reference set,

which is quite complicated to determine, not only because solving the bPRP exactly is

far from being a simple task, but also because the approximations found in [12] are no

longer available. We also use the concept of attainment surfaces to take into account the

stochasticity of the algorithms and to compare the approximations in objective space. We

briefly present these concepts in the following subsections.

4.1 Hypervolume

The hypervolume (H) indicator was proposed by Zitzler [59] and it computes the approxi-

mated area over the curve formed by the set of potentially non-dominated points bounded

by a low-quality point. The low-quality point should be defined such that every point of

the Pareto front approximation weakly dominates the low-quality point. A point close to

the Nadir point (that is the virtual point composed of the worst values for each objective

among the non-dominated points) can be used. The value of H must be maximized to

obtain potentially non-dominated points located far from the low-quality point and close

to the ideal point (the virtual point composed of the best values for each objective).

4.2 R measure

The R measure (R) [28] depends on the average of the minimum value of the weighted

Tchebycheff function (Γ) over a set of systematically generated normalized weight vec-

tors. For each weight λ, the Tchebycheff weighted distance is determined for all the

points y = f(x) of an approximation ŶN , by means of the expression Γλ
y = ||y − y0||λ =

maxi=1,...,k λi(yi − y0i). Next, the minimum (best) value associated with each λ is com-

16

puted, i.e., Γ∗
λ = min

y∈ŶN

{Γλ
y}. We finally normalize the value of R with this expression:

R = 1−

∑
λ∈Ψ

Γ∗

λ

|Ψ|
. In this way, values between 0 and 1 are obtained, and as in the previous

case, the value of R must be maximized (that is close to 1).

4.3 Attainment surfaces

Proposed by Fonseca and Fleming [17], attainment surfaces are a nice way to represent

the different outputs of a stochastic multi-objective optimizer in objective space. Indeed,

when running one algorithm several times, plots of approximation of Pareto fronts quickly

become confusing and unusable. In this work, we will use the concept of summary attain-

ment surface proposed by Knowles [32], which can be defined as the union of all tightest

goals that have been attained (independently) in precisely s of the runs of a sample of m

runs, for any s ∈ 1, . . . ,m. For example, the sample median quality is the best estimator

of what one would expect to achieve in 50% of the runs. In this work, we will use the

best (1st) summary attainment surface (best-case performance of the algorithm), the me-

dian summary attainment surface and the worst summary attainment surface (worst-case

performance of the algorithm). We have used the code of Knowles [32] to generate the

summary attainment surfaces.

5 Computational experiments

The proposed algorithm was coded in C++ and the computational experiments were

conducted on an Intel Xeon E3-1226 3.30GHz with 16 GB of RAM running Oracle Linux

Server. The method was executed 10 times for each instance using a single thread. The

statistical tests were performed using the R package [52].

Since the bPRP instances used in [12] are no longer available, we decided to use

those originally proposed for the PRP, which are divided into three groups involving

different sizes, each of them containing 20 instances. Group A, available at http:

//www.apollo.management.soton.ac.uk/prplib.htm, was suggested in [11]. Groups

B and C, available at http://w1.cirrelt.ca/~vidalt/en/VRP-resources.html, were

introduced in [37] and they were derived from the instances of group A by tightening

the customers’ time windows. More precisely, Groups A, B and C contain instances with

large, tight and moderate time windows, respectively. For comparison purposes, we only

performed experiments for 100-customer instances, as in [12].

17

5.1 Assessment of results

As already mentioned, the indicators H and R were the ones adopted to assess the quality

of the solutions found by the algorithm. For obtaining the value of R, the number of

weights |Ψ| generated for determining the weighted Tchebycheff function was given by(
n+k−1
k−1

)
[29], where n is the number of customers and k is the number of objectives. In

our case, since k = 2 and n = 100, it follows that |Ψ| = 101 weights.

The non-deterministic values of H and R, obtained through several stochastic runs

of 2PPLS and also of other MO methods from the literature (see Section 5.3.1), were

evaluated by means of the Mann-Whitney (MW) non-parametric statistical test. The

reason for performing a non-parametric test is that the statistical distribution of the data

is unknown. Since two hypothesis were simultaneously tested (differences between the

values of R and of H), the risk level α, which determines the probability of error of the

test, was adjusted according to the Holm sequential rejective method [25], with α = 0.05.

The smallest p-value obtained during the statistical tests were compared with α/2, while

the second smallest value was compared with α. The statistical results are reported in

the tables of Section 5.3.1. The analysis was always performed with respect to 2PPLS

using the following scheme. On the one hand, signs “>” and “<” indicate that the values

of the quality indicator associated with 2PPLS are, respectively, statistically greater and

smaller than the values found using other MO methods from the literature. On the other

hand, sign “=” indicates that the values are not statistically different. Moreover, the

number of solutions found (#Sol.), as well as the CPU time in seconds (T(s)) are also

reported.

5.2 Parameter tuning

In this section, we show how the parameters of the proposed algorithm were calibrated.

The overall performance of the method mainly depends on: (i) the reduction of the ideal

local triangle △z(xr)z(xs) that is measured by the parameter ρ described in Section 3.1.1;

and (ii) the neighborhoods used in the second phase of the method.

We have tested three values of ρ, namely: 1.25%, 2.50% and 5.00%, and three neigh-

borhood schemes, thus leading to a total of 9 different settings, as shown in Table 1.

We have performed a series of experiments on the set of 100-customers instances of

Group B (20 instances, in total), which can be considered the most challenging set. The

proposed algorithm was executed ten times for each instance and the results obtained for

the different settings can be found in Table 2. We report the number of times a particular

18

Table 1: Different settings adopted for the 2PPLS

Setting ρ (%) Neighborhoods PLS
1 1.25 Shift(1,0), Swap(1,1), Reinsertion
2 1.25 Shift(1,0), Swap(1,1), Reinsertion, Exchange
3 1.25 Shift(1,0), Swap(1,1), Reinsertion, Exchange, Cross
4 2.50 Shift(1,0), Swap(1,1), Reinsertion
5 2.50 Shift(1,0), Swap(1,1), Reinsertion, Exchange
6 2.50 Shift(1,0), Swap(1,1), Reinsertion, Exchange, Cross
7 5.00 Shift(1,0), Swap(1,1), Reinsertion
8 5.00 Shift(1,0), Swap(1,1), Reinsertion, Exchange
9 5.00 Shift(1,0), Swap(1,1), Reinsertion, Exchange, Cross

setting is superior to the best known methods of [12] in terms of number of non-dominated

solutions (#Sol.), hypervolume (H) and R measure (R), as well as the CPU time (T(s)) in

seconds. The results show that setting 6 seems to be the most interesting configuration,

with a good compromise between solution quality and CPU time. Therefore, we have

set ρ = 2.50% and we have adopted the neighborhoods Shift(1,0), Swap(1,1), Cross,

Reinsertion and Exchange.

Table 2: Number of times each setting of the 2PPLS outperformed the best known meth-
ods of Demir et al. [12]

Setting #Sol. H R CPU Time
1 20 20 19 2
2 20 20 19 5
3 20 20 20 5
4 20 18 16 15
5 20 19 16 17
6 20 19 17 15
7 20 15 13 17
8 20 15 9 16
9 20 17 14 14

5.3 Results

5.3.1 Comparing 2PPLS with other MO methods from the literature

With a view of evaluating the performance of the proposed 2PPLS heuristic in solving

the bPRP, we have implemented two other MO methods considered in [12] for solving

the bPRP, namely: weighted sum of the objective functions (WM) and weighed sum of

the normalized objective functions (WMN). The other methods presented in [12] could

19

not be reproduced because they are based on the ε-Constraint approach, which should

be implemented in an exact fashion and the authors did not mention how this issue was

dealt in their work.

As proposed by the authors, we considered the set W =

{(1, 0) (0.9, 0.1) . . . (0.1, 0.9) (0, 1)}, containing 11 weights, for WM and WMN. For

the sake of comparison with 2PPLS, ILS-SOA was also used to solve the single-objective

problems that arise in such methods. Hence, all the conclusions drawn can be attributed

to the multi-objective methods.

We chose to compare 2PPLS with WM and WMN for two important reasons: (i) WM

and WMN have been successfully applied to the bPRP and it is easy to reproduce the

results obtained to the new instances used in the paper (ii) WM, WMN and 2PPLS are

quite similar since weighted sums problems are solved in the three methods. Therefore, the

comparison between these methods will also tell us, for a given CPU time, if it is worth to

apply PLS rather than solving more weighted sum problems. We did not compare 2PPLS

with the more popular MO algorithm NSGA-II [9] since Kumar et al. [38] already showed

that the performances attained by NSGA-II were not very good for the bPRP.

Tables 3–5 compare 2PPLS either with WM or with WMN. Each table reports the

average values (of 10 runs) for the indicators #Sol, H and R obtained by each algorithm.

In addition, gaps with respect to WM and WMN are presented (columns below the label

Gap (%)) and they are computed as (v2PPLS - vWM)/vWM or (v2PPLS - vWMN)/vWMN,

where v2PPLS, vWM, and vWMN refer to the values of the indicators achieved by using

2PPLS, WM, and WMN, respectively.

From Table 3, it is possible to observe that a large number of potentially efficient

solutions were generated by 2PPLS. This can be explained by the wide time windows

of the instances of set A, allowing many feasible solutions to be generated during the

application of PLS. Moreover, the gap between the quality indicators show that 2PPLS is

clearly superior than the other methods for this set of instances, which is also confirmed

by the result of the MW statistical test. In addition, the proposed algorithm was capable

of finding 6 to 8 times more solutions than the other ones. Finally, the average CPU time

of 2PPLS was slightly slower than WM, but faster than WMN.

Note that the CPU time of 2PPLS depends on the stopping criterion used in the first

phase. As a matter of fact, it is not possible to specify a priori the number of calls to

ILS-SOA, as opposed to WM and WMN, since the first phase of 2PPLS stops when a good

estimation of the supported efficient solutions is obtained. Nevertheless, depending on

the reduction of the ideal triangle considered during the dichotomous scheme (parameter

20

ρ described in Section 3.1.1) and also on the feasible region provided by the instance, a

large number of solutions may be generated, which can be time consuming. This some-

what explains the differences in CPU time between 2PPLS and the other two methods.

Further conclusions in this matter can be drawn from Table 6, where we summarize the

computational results presented in Tables 3–5.

With respect to the instances of sets B and C, as can be observed in Tables 4– 5, 2PPLS

was capable of finding a high number of potentially efficient solutions. In addition, it also

visibly outperforms, on average, WM and WMN when considering H and R indicators.

In terms of CPU time, the average performance of 2PPLS and WM are equivalent and

both are faster than WMN.

21

Table 3: Comparison between 2PPLS, WM and WMN – Set A

Instance
2PPLS WM Gap (%) MW WMN Gap (%) MW

#Sol. H R T (s) #Sol. H R T (s) H R T (s) H R #Sol. H R T (s) H R T (s) H R
UK100 01-A 66.8 52813.9 0.8959 319.5 9.1 50775.2 0.8815 412.7 4.02 1.63 -22.58 > > 9.3 50674.7 0.8807 425.1 4.22 1.73 -24.84 > >

UK100 02-A 80.0 49074.3 0.9002 412.1 10.7 47726.7 0.8852 364.6 2.82 1.69 13.03 > > 10.5 47612.5 0.8850 420.7 3.07 1.72 -2.04 > >

UK100 03-A 69.0 41192.5 0.9020 436.8 9.7 40014.8 0.8867 418.7 2.94 1.73 4.32 > > 10.3 40091.3 0.8869 429.9 2.75 1.70 1.61 > >

UK100 04-A 72.7 50616.0 0.9108 518.2 9.8 48691.4 0.8898 338.2 3.95 2.36 53.22 > > 9.7 48450.8 0.8883 411.4 4.47 2.53 25.96 > >

UK100 05-A 69.8 38687.3 0.8991 476.5 9.0 37626.3 0.8844 348.4 2.82 1.66 36.77 > > 9.0 37164.3 0.8831 421.8 4.10 1.81 12.97 > >

UK100 06-A 65.6 50171.2 0.8950 310.3 9.2 48726.3 0.8812 307.6 2.97 1.57 0.88 > > 9.8 48340.7 0.8811 376.8 3.79 1.58 -17.65 > >

UK100 07-A 63.8 40732.5 0.8971 402.1 8.5 38554.4 0.8827 294.2 5.65 1.63 36.68 > > 9.1 39235.4 0.8806 361.7 3.82 1.87 11.17 > >

UK100 08-A 62.9 42739.5 0.8958 370.4 9.0 41705.2 0.8831 287.8 2.48 1.44 28.70 > > 9.2 41650.3 0.8828 357.8 2.62 1.47 3.52 > >

UK100 09-A 74.3 44644.4 0.9048 347.8 9.5 43207.8 0.8871 336.7 3.32 2.00 3.30 > > 9.7 43105.9 0.8873 411.5 3.57 1.97 -15.48 > >

UK100 10-A 67.1 43744.1 0.8961 352.4 9.5 42134.8 0.8814 287.8 3.82 1.67 22.45 > > 9.8 42259.3 0.8814 361.7 3.51 1.67 -2.57 > >

UK100 11-A 74.0 57958.2 0.9002 355.8 8.7 55139.1 0.8780 365.2 5.11 2.53 -2.57 > > 8.3 54612.8 0.8766 453.7 6.13 2.69 -21.58 > >

UK100 12-A 65.2 40390.8 0.9003 505.6 8.6 38750.8 0.8823 304.7 4.23 2.04 65.93 > > 9.3 38642.1 0.8808 383.1 4.53 2.21 31.98 > >

UK100 13-A 72.7 46537.7 0.8972 380.8 10.1 45480.0 0.8849 306.9 2.33 1.39 24.08 > > 10.0 45268.8 0.8833 369.0 2.80 1.57 3.20 > >

UK100 14-A 63.9 49461.8 0.9019 321.5 9.0 47053.2 0.8806 338.0 5.12 2.42 -4.88 > > 9.8 47587.9 0.8808 412.1 3.94 2.40 -21.98 > >

UK100 15-A 75.1 64470.5 0.9012 460.1 9.9 62555.1 0.8864 371.9 3.06 1.67 23.72 > > 10.2 62742.1 0.8865 453.1 2.75 1.66 1.54 > >

UK100 16-A 70.5 41059.4 0.9003 334.4 8.6 39694.0 0.8865 301.4 3.44 1.56 10.95 > > 9.4 39767.8 0.8864 367.5 3.25 1.57 -9.01 > >

UK100 17-A 68.1 58994.6 0.8950 460.6 9.8 56708.5 0.8764 389.1 4.03 2.12 18.38 > > 9.4 56344.2 0.8762 466.4 4.70 2.15 -1.24 > >

UK100 18-A 69.3 45526.0 0.8988 476.0 9.4 43952.5 0.8845 350.1 3.58 1.62 35.96 > > 9.8 44181.1 0.8852 430.4 3.04 1.54 10.59 > >

UK100 19-A 73.6 44306.6 0.9055 292.5 9.1 43041.1 0.8932 326.3 2.94 1.38 -10.36 > > 9.5 42857.9 0.8926 398.9 3.38 1.45 -26.67 > >

UK100 20-A 74.3 56893.4 0.8969 354.1 10.4 55564.5 0.8844 340.8 2.39 1.41 3.90 > > 10.1 55362.5 0.8841 416.3 2.77 1.45 -14.94 > >

Average 69.9 48000.7 0.8997 394.4 9.4 46355.1 0.8840 339.6 3.55 1.78 17.09 9.6 46297.6 0.8835 425.1 3.66 1.84 -2.77

22

Table 4: Comparison between 2PPLS, WM and WMN – Set B

Instance
2PPLS WM Gap (%) MW WMN Gap (%) MW

#Sol. H R T (s) #Sol. H R T (s) H R T (s) H R #Sol. H R T (s) H R T (s) H R
UK100 01-B 62.3 137170.1 0.9126 482.1 10.1 133931.9 0.9010 506.8 2.42 1.29 -4.87 > > 9.6 133092.5 0.9023 614.8 3.06 1.14 -21.58 > >

UK100 02-B 67.1 217810.1 0.9261 461.8 10.4 212317.4 0.9210 477.0 2.59 0.55 -3.19 > > 9.6 212211.1 0.9219 582.2 2.57 0.45 -20.68 > >

UK100 03-B 98.0 212508.6 0.9211 659.1 10.7 209034.4 0.9152 538.8 1.66 0.64 22.33 > > 10.2 210049.1 0.9165 635.0 1.16 0.50 3.80 > >

UK100 04-B 52.9 202401.9 0.9171 447.2 10.1 199315.6 0.9119 543.3 1.55 0.57 -17.69 > > 9.9 199753.8 0.9131 596.2 1.31 0.44 -24.99 > >

UK100 05-B 69.9 230489.6 0.9057 562.9 10.4 227078.8 0.9012 573.8 1.50 0.50 -1.90 > > 9.2 225797.1 0.9011 586.6 2.04 0.51 -4.04 > >

UK100 06-B 60.1 226259.5 0.9296 413.2 9.4 225387.2 0.9288 470.9 0.39 0.09 -12.25 = = 8.9 227001.3 0.9302 596.9 -0.33 -0.06 -30.78 = =
UK100 07-B 49.0 234897.4 0.9282 339.7 10.4 232030.5 0.9263 461.3 1.24 0.21 -26.36 > = 9.5 233307.4 0.9278 565.6 0.68 0.04 -39.94 > =
UK100 08-B 73.3 234991.1 0.9392 463.8 10.3 233069.7 0.9354 474.2 0.82 0.41 -2.19 > > 10.0 232170.2 0.9347 598.0 1.20 0.48 -22.44 > >

UK100 09-B 69.1 226787.6 0.9409 500.6 9.9 221786.0 0.9352 444.5 2.26 0.61 12.62 > > 8.8 222142.5 0.9350 545.7 2.05 0.63 -8.26 > >

UK100 10-B 77.4 210447.0 0.9345 512.1 10.4 206756.3 0.9293 448.1 1.79 0.56 14.28 > > 9.6 206596.7 0.9291 563.8 1.83 0.58 -9.17 > >

UK100 11-B 71.1 226803.7 0.9299 615.3 10.8 223769.2 0.9264 539.7 1.36 0.38 14.01 > > 10.3 223752.4 0.9254 670.4 1.35 0.48 -8.22 > >

UK100 12-B 62.5 155418.0 0.9255 412.4 8.8 152473.6 0.9229 462.4 1.93 0.28 -10.81 = = 8.5 154454.2 0.9229 611.4 0.62 0.28 -32.55 = =
UK100 13-B 55.2 250030.6 0.9258 491.5 10.2 246466.2 0.9248 512.5 1.45 0.11 -4.10 > = 10.0 246725.5 0.9252 634.4 1.32 0.06 -22.53 > =
UK100 14-B 55.3 216549.3 0.9352 416.9 9.7 213399.6 0.9310 504.3 1.48 0.45 -17.33 > > 9.1 214458.2 0.9324 578.8 0.97 0.30 -27.97 = >

UK100 15-B 46.9 190124.9 0.9248 453.1 10.2 185266.3 0.9181 540.9 2.62 0.73 -16.23 > > 9.5 185755.9 0.9195 606.2 2.30 0.57 -25.26 > >

UK100 16-B 54.6 193615.0 0.9299 435.0 10.1 190496.3 0.9292 482.7 1.64 0.08 -9.88 > = 9.7 191060.6 0.9293 605.8 1.32 0.06 -28.19 > =
UK100 17-B 71.3 193250.2 0.9168 562.4 10.3 189269.4 0.9096 523.0 2.10 0.79 7.53 > > 9.6 189383.5 0.9091 629.1 2.00 0.84 -10.60 > >

UK100 18-B 59.7 200926.6 0.9215 392.9 10.1 197711.8 0.9207 462.4 1.63 0.09 -15.03 = = 9.2 200371.2 0.9227 580.2 0.28 -0.13 -32.28 = =
UK100 19-B 65.0 266002.1 0.9366 447.9 10.6 263407.2 0.9334 467.7 0.99 0.34 -4.23 > > 10.0 263429.8 0.9331 566.4 0.97 0.37 -20.92 > >

UK100 20-B 52.0 209712.5 0.9285 376.1 10.3 207994.6 0.9279 438.6 0.83 0.06 -14.25 = = 9.8 207317.0 0.9298 547.1 1.14 -0.14 -31.26 > =
Average 63.6 211809.8 0.9265 472.3 10.2 208548.1 0.9225 493.6 1.61 0.44 -4.48 9.6 208941.5 0.9231 595.7 1.39 0.37 -20.89

23

Table 5: Comparison between 2PPLS, WM and WMN – Set C

Instance
2PPLS WM Gap (%) MW WMN Gap (%) MW

#Sol. H R T (s) #Sol. H R T (s) H R T (s) H R #Sol. H R T (s) H R T (s) H R
UK100 01-C 91.3 162461.7 0.9199 448.5 10.3 157607.9 0.9104 444.0 3.08 1.04 1.01 > > 10.3 158069.1 0.9095 542.9 2.78 1.14 -17.39 > >

UK100 02-C 88.7 183414.7 0.9242 442.4 10.1 179111.3 0.9168 438.6 2.40 0.81 0.87 > > 9.4 178585.4 0.9169 545.8 2.70 0.80 -18.94 > >

UK100 03-C 89.8 139473.5 0.9242 533.8 10.2 135063.3 0.9121 453.8 3.27 1.33 17.63 > > 9.3 135331.0 0.9133 562.5 3.06 1.19 -5.10 > >

UK100 04-C 83.5 203208.2 0.9391 530.2 10.5 199436.1 0.9293 425.2 1.89 1.05 24.69 > > 10.4 198719.5 0.9279 531.1 2.26 1.21 -0.17 > >

UK100 05-C 90.4 157937.2 0.9325 490.5 10.2 154928.9 0.9250 416.4 1.94 0.81 17.80 > > 10.3 154577.5 0.9234 509.3 2.17 0.99 -3.69 > >

UK100 06-C 99.8 170646.0 0.9264 464.0 10.4 168222.6 0.9209 429.9 1.44 0.60 7.93 > > 10.4 167543.9 0.9204 536.1 1.85 0.65 -13.45 > >

UK100 07-C 82.1 157590.5 0.9281 401.1 9.9 155526.2 0.9235 409.7 1.33 0.50 -2.10 > > 9.4 154879.1 0.9234 511.0 1.75 0.51 -21.51 > >

UK100 08-C 74.8 207032.6 0.9381 398.9 10.5 203222.4 0.9324 391.7 1.87 0.61 1.84 > > 9.7 203276.2 0.9326 480.2 1.85 0.59 -16.93 > >

UK100 09-C 84.3 190909.1 0.9270 415.3 9.6 184317.5 0.9158 371.4 3.58 1.22 11.82 > > 9.5 184470.2 0.9148 448.4 3.49 1.33 -7.38 > >

UK100 10-C 76.8 141106.8 0.9224 428.1 10.0 137885.5 0.9152 400.8 2.34 0.79 6.81 > > 10.2 138333.9 0.9163 506.6 2.00 0.67 -15.50 > >

UK100 11-C 75.5 229173.0 0.9376 519.0 10.1 223793.0 0.9256 441.6 2.40 1.30 17.53 > > 9.9 224391.4 0.9255 547.6 2.13 1.31 -5.22 > >

UK100 12-C 75.0 101181.4 0.9255 388.3 9.5 99289.6 0.9194 389.9 1.91 0.66 -0.41 > > 9.6 99795.4 0.9200 481.8 1.39 0.60 -19.41 > >

UK100 13-C 93.4 180856.1 0.9268 474.0 10.4 177292.8 0.9197 434.0 2.01 0.77 9.22 > > 10.1 177071.0 0.9202 541.2 2.14 0.72 -12.42 > >

UK100 14-C 85.1 185454.4 0.9258 444.1 9.8 178732.2 0.9115 431.6 3.76 1.57 2.90 > > 10.4 179568.3 0.9129 540.2 3.28 1.41 -17.79 > >

UK100 15-C 93.3 180755.8 0.9278 461.2 10.3 173503.3 0.9100 457.4 4.18 1.96 0.83 > > 10.0 174372.9 0.9103 577.9 3.66 1.92 -20.19 > >

UK100 16-C 76.4 129825.3 0.9352 422.9 9.5 127382.9 0.9265 387.4 1.92 0.94 9.16 > > 9.4 127690.7 0.9270 480.8 1.67 0.88 -12.04 > >

UK100 17-C 85.9 225831.9 0.9372 440.6 10.0 222202.4 0.9278 466.4 1.63 1.01 -5.53 > > 10.4 221603.8 0.9273 561.4 1.91 1.07 -21.52 > >

UK100 18-C 67.3 150931.3 0.9401 406.9 9.7 148148.9 0.9274 425.8 1.88 1.37 -4.44 > > 9.0 147608.4 0.9256 519.6 2.25 1.57 -21.69 > >

UK100 19-C 93.8 163494.9 0.9287 520.8 9.7 158382.6 0.9187 425.4 3.23 1.09 22.43 > > 9.8 159117.1 0.9188 540.1 2.75 1.08 -3.57 > >

UK100 20-C 102.4 148553.0 0.9198 425.1 10.3 143872.7 0.9093 428.6 3.25 1.15 -0.82 > > 10.4 145149.7 0.9097 540.5 2.34 1.11 -21.35 > >

Average 85.5 170491.9 0.9293 452.8 10.1 166396.1 0.9199 423.5 2.47 1.03 6.96 9.9 166507.7 0.9198 525.3 2.37 1.04 -13.76

24

The average results for each instance group is summarized in Table 6. For each

method, it reports the minimum, maximum, and average values of #Sol., H, R, and

T(s). The three methods usually require more CPU time for solving instances with

tighter time-windows (i.e., those from sets B and C), which coincides with the results

reported by Kramer et al. [37] for the mono-objective PRP. 2PPLS obtained more poten-

tially efficient solutions for instances from the set C. This may be justified by the larger

heterogeneity of the time-window widths of these instances. In contrast to 2PPLS, the

number of potentially efficient solutions obtained by WM and WMN does not vary sig-

nificantly between the instances sets. This is a consequence of the chosen weight set W

(few elements with uniformly spread values).

Table 6: Summary results

Method Statistic
Set A Set B Set C

#Sol. H R T (s) #Sol. H R T (s) #Sol. H R T (s)

2PPLS
Min. 58.2 47400.5 0.8950 236.4 51.1 208392.3 0.9201 372.3 70.2 168126.6 0.9232 350.7
Max. 82.5 48732.4 0.9050 976.6 76.8 215062.7 0.9330 589.4 101.4 173363.9 0.9361 621.4
Avg. 69.9 48000.7 0.8997 394.4 63.6 211809.8 0.9265 472.3 85.5 170491.9 0.9293 452.8

WM
Min. 8.1 45402.8 0.8822 325.9 9.0 204296.3 0.9197 469.5 8.9 163405.2 0.9172 406.9
Max. 10.5 46787.7 0.8857 356.5 11.0 211301.5 0.9251 519.5 11.0 168231.4 0.9228 439.4
Avg. 9.4 46355.1 0.8840 339.6 10.2 208548.1 0.9225 493.6 10.1 166396.1 0.9199 423.5

WMN
Min. 8.3 45585.5 0.8814 394.3 8.2 205874.0 0.9207 574.8 8.8 163894.6 0.9171 505.3
Max. 10.7 46725.0 0.8854 420.0 10.6 211081.8 0.9253 621.0 10.8 168223.7 0.9225 545.7
Avg. 9.6 46297.6 0.8835 406.4 9.6 208941.5 0.9231 595.7 9.9 166507.7 0.9198 525.2

5.3.2 Evaluating the impact of the PLS

In this section, we discuss the impact of PLS in improving the quality of the Pareto fronts

obtained during the first phase (Tables 7–9). In each table, we provide the number of po-

tentially supported (#St.) and non-supported efficient solutions (#NSt.) obtained after

each phase. The convex hulls of the fronts, which are required to identify the supported

solutions, were obtained by employing Graham’s algorithm [24]. A representation of the

convex hull associated with some instances is depicted in Figure 3. Note that as we use a

heuristic in the first phase to solve the weighted sum problems, potentially non-supported

efficient solutions can also be generated during the first phase. We also present in column

#C. the number of calls to the mono-objective solver during the first phase.

We can observe that the second phase substantially improves the results found in the

first phase. The first phase is quite time consuming: solving one single-objective PRP

takes on average at least 30 seconds. It is thus important to find a good compromise

between the first phase and PLS. The second phase is much more faster than the first one,

especially for the instances of Set A. On average, PLS spends, for the instances of Sets

25

A, B and C, 6.90%, 33.59% and 30.51% of the total CPU time, respectively. The reason

for the larger CPU time required by the second phase when solving instances from sets B

and C is the same as explained previously, i.e., the existence of tight time windows. As a

result, the quality of the fronts obtained during the first phase is not as good as the one

associated with the instances of Set A. It is thus more challenging for PLS to improve the

fronts during the second phase. Nonetheless, the total CPU time of 2PPLS still remains

competitive when compared to WM and WMN (Tables 4–5).

Table 7: Characterization of the solutions obtained by 2PPLS in each phase of the algo-
rithm - Instances A

Instance
First phase Second phase

#Sol #St. #NSt. #C. H R T(s) #Sol #St. #NSt. H R T(s)
UK100 01-A 8.9 8.3 0.6 9.4 50467.6 0.8819 302.8 66.8 11.9 54.9 52813.9 0.8959 16.7
UK100 02-A 11.6 9.6 2.0 12.4 47621.3 0.8862 390.5 80.0 12.9 67.1 49074.3 0.9002 21.0
UK100 03-A 11.8 9.8 2.0 13.0 40289.7 0.8903 413.8 69.0 12.8 56.2 41192.5 0.9020 23.0
UK100 04-A 11.1 7.8 3.3 14.4 48199.6 0.8879 449.8 72.7 14.7 58.0 50616.0 0.9108 68.4
UK100 05-A 10.1 6.7 3.4 14.0 36667.2 0.8843 450.5 69.8 11.9 57.9 38687.3 0.8991 26.0
UK100 06-A 10.1 8.5 1.6 10.2 48588.1 0.8822 290.4 65.6 14.8 50.8 50171.2 0.8950 19.9
UK100 07-A 11.2 7.4 3.8 14.4 38708.8 0.8844 385.8 63.8 10.8 53.0 40732.5 0.8971 16.3
UK100 08-A 10.9 8.2 2.7 13.4 41295.6 0.8835 358.2 62.9 12.8 50.1 42739.5 0.8958 12.2
UK100 09-A 8.1 6.8 1.3 9.6 42371.6 0.8833 296.3 74.3 11.1 63.2 44644.4 0.9048 51.5
UK100 10-A 10.7 8.4 2.3 13.0 42217.3 0.8822 335.8 67.1 13.1 54.0 43744.1 0.8961 16.6
UK100 11-A 7.5 6.3 1.2 9.2 52801.9 0.8731 297.5 74.0 12.3 61.7 57958.2 0.9002 58.4
UK100 12-A 10.6 7.1 3.5 16.6 38677.7 0.8825 478.5 65.2 12.6 52.6 40390.8 0.9003 27.1
UK100 13-A 11.2 8.4 2.8 13.2 45240.8 0.8850 367.0 72.7 13.3 59.4 46537.7 0.8972 13.8
UK100 14-A 9.1 8.5 0.6 9.8 47056.4 0.8822 300.9 63.9 13.7 50.2 49461.8 0.9019 20.6
UK100 15-A 11.9 9.8 2.1 12.8 62612.2 0.8871 437.3 75.1 13.7 61.4 64470.5 0.9012 22.7
UK100 16-A 10.1 7.5 2.6 11.6 39195.8 0.8872 312.1 70.5 13.5 57.0 41059.4 0.9003 22.3
UK100 17-A 10.8 8.9 1.9 11.6 56252.3 0.8779 412.6 68.1 12.0 56.1 58994.6 0.8950 47.9
UK100 18-A 11.5 8.7 2.8 14.2 44208.1 0.8854 458.4 69.3 13.8 55.5 45526.0 0.8988 17.6
UK100 19-A 8.5 7.5 1.0 9.0 42779.4 0.8902 267.5 73.6 14.3 59.3 44306.6 0.9055 24.9
UK100 20-A 10.7 8.7 2.0 10.8 55180.7 0.8847 338.7 74.3 13.8 60.5 56893.4 0.8969 15.4
Average 10.3 8.1 2.2 12.1 46021.6 0.8841 367.2 69.9 13.0 56.9 48000.7 0.8997 27.1

In addition, the results also confirm what has been already hinted in [43]: the compu-

tational effort of generating a good estimation of the Pareto front in the first phase can

be extremely useful to enhance the performance of the second phase.

5.3.3 Attainment surfaces

This section compares the worst, median and best summary attainment surfaces obtained

by 2PPLS, WM and WMN. However, to limit the number of figures, we only expose

the results obtained for the first instance of each type (that is UK100-01-A, UK100 01-B

and UK100 01-C). Similar results have been obtained for the other instances. We also

represent the approximations of Pareto front obtained in the first run of each algorithm.

The results for the instances of types A, B and C are provided in Figures 4, 5 and 6,

respectively.

As already observed in Tables 3–5, we remark that the approximations of Pareto fronts

of 2PPLS contains many more points that WM and WMN. The points of WM and WMN

26

Table 8: Characterization of the solutions obtained by 2PPLS in each phase of the algo-
rithm - Instances B

Instance
First phase Second phase

#Sol #St. #NSt. #C. H R T(s) #Sol #St. #NSt. H R T(s)
UK100 01-B 7.3 7.1 0.2 7.4 131220.4 0.8968 353.6 62.3 12.2 50.1 137170.1 0.9126 128.5
UK100 02-B 6.4 6.0 0.4 7.0 206733.5 0.9141 313.1 67.1 11.3 55.8 217810.1 0.9261 148.7
UK100 03-B 8.2 7.5 0.7 8.8 203342.2 0.9129 428.8 98.0 13.6 84.4 212508.6 0.9211 230.3
UK100 04-B 6.3 6.2 0.1 6.8 196099.0 0.9091 321.8 52.9 10.6 42.3 202401.9 0.9171 125.4
UK100 05-B 7.4 6.7 0.7 7.8 221772.5 0.8965 368.7 69.9 12.6 57.3 230489.6 0.9057 194.3
UK100 06-B 4.5 4.4 0.1 4.8 213304.8 0.9114 216.4 60.1 11.3 48.8 226259.5 0.9296 196.8
UK100 07-B 4.1 4.1 0.0 4.6 223105.0 0.9147 203.7 49.0 11.1 37.9 234897.4 0.9282 136.0
UK100 08-B 7.0 6.6 0.4 7.2 230346.7 0.9289 324.1 73.3 13.0 60.3 234991.1 0.9392 139.7
UK100 09-B 5.8 5.8 0.0 6.2 218667.3 0.9269 265.8 69.1 12.4 56.7 226787.6 0.9409 234.8
UK100 10-B 8.5 7.6 0.9 8.6 205521.6 0.9261 370.4 77.4 13.1 64.3 210447.0 0.9345 141.8
UK100 11-B 7.6 7.1 0.5 8.0 219813.5 0.9202 429.2 71.1 12.4 58.7 226803.7 0.9299 186.1
UK100 12-B 4.8 4.3 0.5 5.0 146086.3 0.9053 240.2 62.5 10.5 52.0 155418.0 0.9255 172.2
UK100 13-B 5.6 5.6 0.0 5.8 241400.6 0.9162 300.2 55.2 9.8 45.4 250030.6 0.9258 191.3
UK100 14-B 4.8 4.8 0.0 5.2 205538.3 0.9198 258.0 55.3 11.7 43.6 216549.3 0.9352 158.9
UK100 15-B 6.7 6.6 0.1 6.8 184101.4 0.9131 364.6 46.9 12.0 34.9 190124.9 0.9248 88.5
UK100 16-B 5.5 5.5 0.0 6.0 184777.6 0.9207 297.1 54.6 10.6 44.0 193615.0 0.9299 137.9
UK100 17-B 7.6 7.0 0.6 8.2 182544.9 0.9054 420.7 71.3 11.1 60.2 193250.2 0.9168 141.7
UK100 18-B 5.2 4.8 0.4 5.4 190524.1 0.9075 246.6 59.7 10.4 49.3 200926.6 0.9215 146.3
UK100 19-B 5.9 5.6 0.3 6.2 255855.4 0.9247 280.0 65.0 13.4 51.6 266002.1 0.9366 167.9
UK100 20-B 6.1 6.1 0.0 6.6 199861.3 0.9196 290.1 52.0 11.8 40.2 209712.5 0.9285 86.0
Average 6.3 6.0 0.3 6.6 203030.8 0.9145 314.7 63.6 11.7 51.9 211809.8 0.9265 157.7

Table 9: Characterization of the solutions obtained by 2PPLS in each phase of the algo-
rithm - Instances C

Instance
First phase Second phase

#Sol #St. #NSt. #C. H R T(s) #Sol #St. #NSt. H R T(s)
UK100 01-C 7.5 7.0 0.5 7.8 155257.5 0.9055 317.9 91.3 15.0 76.3 162461.7 0.9199 130.7
UK100 02-C 7.3 6.6 0.7 8.2 170925.5 0.9125 324.0 88.7 12.9 75.8 183414.7 0.9242 118.3
UK100 03-C 7.5 6.9 0.6 7.8 133884.5 0.9093 318.2 89.8 14.7 75.1 139473.5 0.9242 215.5
UK100 04-C 7.7 6.8 0.9 8.2 196122.4 0.9257 319.7 83.5 13.4 70.1 203208.2 0.9391 210.5
UK100 05-C 8.0 6.7 1.3 8.6 153161.5 0.9201 330.1 90.4 13.4 77.0 157937.2 0.9325 160.4
UK100 06-C 8.6 8.1 0.5 9.0 164855.7 0.9172 354.6 99.8 15.8 84.0 170646.0 0.9264 109.5
UK100 07-C 6.5 5.9 0.6 7.0 148690.5 0.9130 261.7 82.1 13.6 68.5 157590.5 0.9281 139.4
UK100 08-C 7.1 6.5 0.6 7.6 198801.8 0.9267 285.6 74.8 12.4 62.4 207032.6 0.9381 113.3
UK100 09-C 5.3 5.2 0.1 5.6 178483.2 0.9028 185.8 84.3 14.4 69.9 190909.1 0.9270 229.4
UK100 10-C 9.2 7.4 1.8 10.2 138056.8 0.9151 377.2 76.8 13.4 63.4 141106.8 0.9224 50.9
UK100 11-C 6.5 6.1 0.4 7.0 218888.7 0.9194 285.2 75.5 12.4 63.1 229173.0 0.9376 233.7
UK100 12-C 7.9 7.1 0.8 9.0 98566.2 0.9149 314.5 75.0 12.8 62.2 101181.4 0.9255 73.8
UK100 13-C 8.1 7.7 0.4 8.4 175513.5 0.9167 347.8 93.4 14.7 78.7 180856.1 0.9268 126.2
UK100 14-C 7.9 7.5 0.4 8.0 178913.3 0.9086 326.5 85.1 13.0 72.1 185454.4 0.9258 117.6
UK100 15-C 7.2 6.5 0.7 8.0 167282.9 0.9064 338.3 93.3 14.2 79.1 180755.8 0.9278 122.9
UK100 16-C 6.9 5.6 1.3 8.0 124246.0 0.9171 282.7 76.4 14.0 62.4 129825.3 0.9352 140.2
UK100 17-C 6.9 6.2 0.7 7.2 215452.6 0.9212 308.6 85.9 13.5 72.4 225831.9 0.9372 132.0
UK100 18-C 7.4 6.1 1.3 8.2 142504.0 0.9234 320.7 67.3 10.5 56.8 150931.3 0.9401 86.3
UK100 19-C 8.4 7.5 0.9 8.8 158845.2 0.9152 346.5 93.8 13.5 80.3 163494.9 0.9287 174.3
UK100 20-C 7.7 7.4 0.3 7.8 143986.1 0.9076 314.1 102.4 14.5 87.9 148553.0 0.9198 111.0
Average 7.5 6.7 0.7 8.0 163121.9 0.9149 313.0 85.5 13.6 71.9 170491.9 0.9293 139.8

27

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 600 620 640 660 680 700 720 740

S
al

ar
ie

s

Emissions

Convex hull
Non-supported

Supported

(a) Instance UK100 13-A - phase 1

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 600 620 640 660 680 700 720 740

S
al

ar
ie

s

Emissions

Convex hull
Non-supported

Supported

(b) Instance UK100 13-A - phase 2

 700

 750

 800

 850

 900

 950

 1000

 1050

 750 800 850 900 950 1000 1050 1100 1150 1200 1250

S
al

ar
ie

s

Emissions

Convex hull
Non-supported

Supported

(c) Instance UK100 13-B - phase 1

 720

 740

 760

 780

 800

 820

 840

 860

 880

 750 800 850 900 950 1000 1050 1100 1150 1200 1250

S
al

ar
ie

s

Emissions

Convex hull
Non-supported

Supported

(d) Instance UK100 13-B - phase 2

 650

 700

 750

 800

 850

 900

 650 700 750 800 850 900 950

S
al

ar
ie

s

Emissions

Convex hull
Non-supported

Supported

(e) Instance UK100 13-C - phase 1

 650

 700

 750

 800

 850

 900

 650 700 750 800 850 900 950

S
al

ar
ie

s

Emissions

Convex hull
Non-supported

Supported

(f) Instance UK100 13-C - phase 2

Figure 3: Convex hull for the Pareto front obtained during the two phases of 2PPLS

28

are, however, well located and well spread. We also remark that the median and best

summary attainment surfaces of 2PPLS are clearly better than WM and WMN for all

types of instances. Nevertheless, for instances B and C, the worst summary attainment

surfaces of 2PPLS are globally worse than those of WM and WMN. We can explain that

by the fact that for instances B and C, the number of weighted sum generation in phase

1 of 2PPLS is lower than the number of weighted sum generation of WM and WMN.

Therefore, the chances that all the weighted sum generations of 2PPLS give low-quality

results are higher than with WM or WMN, which make these algorithm more robust for

instances B and C. For instances of type A, the worst summary attainment surfaces of

2PPLS are better.

 460

 480

 500

 520

 540

 560

 580

 600

 620

 640

 660

 640 660 680 700 720 740 760 780 800

S
al

ar
ie

s

Emissions

2PPLS - Pareto Front
WM - Pareto Front

WMN - Pareto Front

 450

 500

 550

 600

 650

 700

 640 660 680 700 720 740 760 780 800 820

S
al

ar
ie

s

Emissions

2PPLS - Median
WM - Median

WMN - Median

 450

 500

 550

 600

 650

 700

 640 660 680 700 720 740 760 780 800 820

S
al

ar
ie

s

Emissions

2PPLS - Best
WM - Best

WMN - Best

 450

 500

 550

 600

 650

 700

 640 660 680 700 720 740 760 780 800 820

S
al

ar
ie

s

Emissions

2PPLS - Worst
WM - Worst

WMN - Worst

Figure 4: Comparison of the Pareto front (first run) an attainment surfaces of 2PPLS vs
WM vs WMN for instance 1 of type A

29

 700

 720

 740

 760

 780

 800

 820

 840

 860

 880

 900

 750 800 850 900 950 1000 1050 1100

S
al

ar
ie

s

Emissions

2PPLS - Pareto Front
WM - Pareto Front

WMN - Pareto Front

 700

 750

 800

 850

 900

 950

 750 800 850 900 950 1000 1050 1100 1150 1200

S
al

ar
ie

s

Emissions

2PPLS - Median
WM - Median

WMN - Median

 650

 700

 750

 800

 850

 900

 950

 750 800 850 900 950 1000 1050 1100 1150 1200

S
al

ar
ie

s

Emissions

2PPLS - Best
WM - Best

WMN - Best

 700

 750

 800

 850

 900

 950

 750 800 850 900 950 1000 1050 1100 1150 1200

S
al

ar
ie

s

Emissions

2PPLS - Worst
WM - Worst

WMN - Worst

Figure 5: Comparison of the Pareto front (first run) an attainment surfaces of 2PPLS vs
WM vs WMN for instance 1 of type B

 650

 700

 750

 800

 850

 900

 700 750 800 850 900 950 1000 1050 1100 1150

S
al

ar
ie

s

Emissions

2PPLS - Pareto Front
WM - Pareto Front

WMN - Pareto Front

 650

 700

 750

 800

 850

 900

 700 750 800 850 900 950 1000 1050 1100 1150 1200

S
al

ar
ie

s

Emissions

2PPLS - Median
WM - Median

WMN - Median

 650

 700

 750

 800

 850

 900

 700 750 800 850 900 950 1000 1050 1100 1150 1200

S
al

ar
ie

s

Emissions

2PPLS - Best
WM - Best

WMN - Best

 650

 700

 750

 800

 850

 900

 700 750 800 850 900 950 1000 1050 1100 1150 1200

S
al

ar
ie

s

Emissions

2PPLS - Worst
WM - Worst

WMN - Worst

Figure 6: Comparison of the Pareto front (first run) an attainment surfaces of 2PPLS vs
WM vs WMN for instance 1 of type C

30

6 Concluding remarks

This paper proposed a two-phase Pareto local search (2PPLS) for the bi-objective

pollution-routing problem (bPRP). The proposed algorithm combines the efficient ideas

presented in [37] for the single-objective PRP with those developed in [43] for general

MO problems. We showed that using Pareto local search allows to limit the number of

computationally demanding weighted sum problems solved in the first phase while keep-

ing high-quality results, which is better than preceding state-of-the-art methods. The

method remains, however, simple; the same neighborhood operators are used in PLS and

in the single-objective method. Furthermore, the method proposed in this work could be

easily adapted to solve other complex MO problems, for which an efficient single-objective

heuristic is known. The crucial part of such adaptation is to find the good compromise

between the number of weighted sum problems solved in the first phase and the size of

the neighborhood used in PLS. As for future work, we intend to propose a full automatic

way to adapt a heuristic single-objective solver to obtain high-quality results for MO ver-

sions of the same problem. Moreover, richer PRP variants, such as the time-dependent

PRP [18, 19] and the heterogeneous fleet PRP [33], might be addressed under a multi-

objective paradigm.

Acknowledgments

This research was partially supported by Conselho Nacional de Desenvolvimento Cient́ıfico

e Tecnológico (CNPq/Brazil), grants 132610/2014-0, 132789/2015-9, 305223/2015-1,

428549/2016-0, and GDE grant 201222/2014-0.

31

Appendix

A Comparison between the PRP algorithms

In this section, we compare the performance of five algorithms for solving the mono-

objective PRP, namely: the ALNS algorithm by Demir et al. [11] (DBL12), the hybrid

evolutionary algorithm by Koç et al. [33] (KBJL14), the ALNS algorithm by Franceschetti

et al. [18] (FDHWLS17), the matheuristic ILS-SP-SOA by Kramer et al. [37] (KSVC15),

and a simpler version of the latter that does not include the set partitioning component

(KSVC15-basic). This experiment has been performed in order to select a fast yet efficient

method to be integrated into our 2PPLS algorithm.

The computational environments where each algorithm was executed is provided in Ta-

ble 10. Only the results for KSVC15-basic have been obtained from our experiments. The

ones for DBL12, KBJL14, KSVC15, and FDHWLS17 have been collected from the references

given in the second column of Table 10.

Table 10: Computational environments

Algorithm Reference Machine Lang. Prog.
KSVC15 Kramer et al. [37] Intel(R) i7-3440 CPU @ 3.40GHz with 16Gb C++
KSVC15-basic Kramer et al. [37] Adapt. Intel(R) i7-6700 CPU @ 3.40GHz with 16Gb C++
DBL12 Demir et al. [11] Intel Xeon(R) @3.00GHz with 1Gb C++
KBJL14 Koç et al. [33] Intel Xeon(R) @2.60GHz with 1Gb C++
FDHWLS17 Franceschetti et al. [18] Intel Xeon(R) X5675 @3.07 GHz with 96Gb Java

The results of each method are reported in Tables 11–13. The first two columns

contain the name of each instance and their corresponding best known solution (BKS).

The remaining columns report the solution costs (Cost), the percentage gaps with respect

to BKS (Gap (%)), and the CPU time (T(s)) required by each method. The results

for DBL12, KBJL14, and FDHWLS17 refer to the best solutions of 10 runs, while those for

KSVC15 and KSVC15-basic refer to the average of 10 runs. Among the state-of-the-art

algorithms, only Kramer et al. [37] reported results for the instance sets B and C.

Although the algorithms have been tested in different computational environments,

KSVC15-basic appears to be the fastest algorithm. Regarding the solution costs, KSVC15

was capable of finding better results for most of the instances. Nevertheless, when com-

paring the average costs of KSVC15-basic with those of DBL12, KBJL14, and FDHWLS17

(Table 11), we can observe that KSVC15-basic still seems highly competitive, clearly out-

performing DBL12. Based on these results, we decided to use KSVC15-basic in our 2PPLS

algorithm for solving the bPRP.

32

Table 11: Comparing algorithms performance for solving the mono-objective PRP – Set A instances

Instance BKS
KSVC15-basic KSVC15 DBL12 KBJL14 FDHWLS17

Cost Gap(%) T(s) Cost Gap(%) T(s) Cost Gap(%) T(s) Cost Gap(%) T(s) Cost Gap(%) T(s)
UK100 01-A 1209.11 1217.23 0.67 17.99 1211.34 0.18 34.65 1240.79 2.62 92.10 1212.72 0.30 262.20 1216.18 0.58 -
UK100 02-A 1146.55 1150.99 0.39 16.73 1148.79 0.20 33.20 1168.17 1.89 98.20 1149.16 0.23 280.20 1146.55 0.00 -
UK100 03-A 1078.75 1082.19 0.32 17.21 1080.11 0.13 33.28 1092.73 1.30 207.90 1080.87 0.20 317.40 1089.74 1.02 -
UK100 04-A 1075.29 1083.32 0.75 16.61 1077.42 0.20 35.79 1106.48 2.90 149.70 1085.66 0.96 307.80 1086.95 1.08 -
UK100 05-A 1028.86 1038.62 0.95 18.68 1036.51 0.74 33.63 1043.41 1.41 159.00 1033.19 0.42 295.80 1041.57 1.24 -
UK100 06-A 1192.67 1196.29 0.30 16.23 1195.60 0.25 29.37 1213.61 1.76 133.80 1192.67 0.00 289.80 1194.73 0.17 -
UK100 07-A 1044.58 1051.51 0.66 14.70 1047.66 0.29 28.63 1060.08 1.48 102.60 1044.58 0.00 270.60 1051.99 0.71 -
UK100 08-A 1089.84 1093.42 0.33 13.31 1092.70 0.26 26.63 1106.78 1.55 209.50 1092.67 0.26 340.20 1090.29 0.04 -
UK100 09-A 988.41 992.18 0.38 16.69 991.18 0.28 30.47 1015.46 2.74 154.00 992.36 0.40 298.20 991.38 0.30 -
UK100 10-A 1059.95 1063.97 0.38 15.12 1061.45 0.14 29.73 1076.56 1.57 199.00 1063.05 0.29 338.40 1067.70 0.73 -
UK100 11-A 1196.50 1205.91 0.79 19.30 1202.36 0.49 36.26 1210.25 1.15 107.10 1200.53 0.34 246.60 1204.70 0.69 -
UK100 12-A 1027.38 1036.87 0.92 15.06 1029.86 0.24 31.91 1053.02 2.50 206.40 1030.17 0.27 338.40 1039.43 1.17 -
UK100 13-A 1129.73 1134.48 0.42 15.90 1134.15 0.39 27.46 1154.83 2.22 87.90 1132.02 0.20 209.40 1129.73 0.00 -
UK100 14-A 1241.31 1243.66 0.19 17.29 1243.67 0.19 31.45 1264.50 1.87 91.80 1241.31 0.00 257.40 1245.03 0.30 -
UK100 15-A 1300.13 1306.64 0.50 18.29 1303.81 0.28 36.24 1315.50 1.18 110.90 1311.36 0.86 232.20 1306.31 0.48 -
UK100 16-A 980.46 986.05 0.57 14.30 984.52 0.41 28.14 1005.03 2.51 254.70 986.57 0.62 358.20 980.46 0.00 -
UK100 17-A 1257.44 1262.04 0.37 19.88 1259.27 0.15 38.88 1284.81 2.18 152.80 1257.44 0.00 251.40 1267.22 0.78 -
UK100 18-A 1073.38 1083.70 0.96 16.81 1081.40 0.75 33.15 1106.00 3.04 92.60 1088.89 1.44 252.60 1086.44 1.22 -
UK100 19-A 1015.95 1020.15 0.41 16.33 1018.71 0.27 30.67 1044.71 2.83 91.00 1024.17 0.81 251.40 1016.82 0.09 -
UK100 20-A 1237.87 1246.49 0.70 16.91 1244.41 0.53 30.05 1263.06 2.03 204.40 1249.84 0.97 310.20 1237.87 0.00 -
Average - 1124.79 0.55 16.67 1122.25 0.32 31.98 1141.29 2.04 145.27 1123.46 0.43 285.42 1124.55 0.53 -

33

Table 12: Comparing algorithms performance for solving the mono-objective PRP – Set
B instances

Instance BKS
KSVC15-basic KSVC15

Cost Gap(%) T(s) Cost Gap(%) T(s)
UK100 01-B 1591.20 1600.63 0.59 24.21 1594.84 0.23 83.29
UK100 02-B 1599.56 1610.68 0.70 21.53 1603.01 0.22 96.50
UK100 03-B 1500.40 1520.16 1.32 24.03 1506.67 0.42 229.98
UK100 04-B 1472.49 1478.86 0.43 22.41 1473.84 0.09 117.36
UK100 05-B 1488.73 1504.53 1.06 23.40 1493.42 0.32 108.81
UK100 06-B 1645.77 1658.09 0.75 22.17 1649.37 0.22 56.75
UK100 07-B 1508.05 1515.39 0.49 21.18 1510.73 0.18 80.10
UK100 08-B 1466.62 1493.19 1.81 20.37 1477.29 0.73 110.27
UK100 09-B 1377.64 1381.65 0.29 18.12 1380.30 0.19 60.76
UK100 10-B 1477.25 1487.24 0.68 20.34 1479.82 0.17 73.18
UK100 11-B 1618.94 1643.71 1.53 24.04 1630.02 0.68 71.22
UK100 12-B 1362.14 1384.53 1.64 20.94 1366.52 0.32 91.03
UK100 13-B 1605.99 1616.49 0.65 22.65 1606.47 0.03 68.06
UK100 14-B 1690.25 1694.06 0.23 22.20 1690.25 0.00 76.47
UK100 15-B 1734.92 1739.10 0.24 24.14 1735.18 0.01 56.36
UK100 16-B 1381.03 1395.53 1.05 20.81 1386.92 0.43 78.23
UK100 17-B 1678.04 1688.08 0.60 23.75 1678.78 0.04 118.82
UK100 18-B 1495.60 1519.16 1.58 20.84 1508.96 0.89 128.55
UK100 19-B 1400.28 1412.98 0.91 20.38 1401.65 0.10 86.72
UK100 20-B 1628.89 1632.23 0.21 19.85 1629.15 0.02 47.20
Average - 1548.81 0.84 21.87 1540.16 0.26 91.98

Table 13: Comparing algorithms performance for solving the mono-objective PRP – Set
C instances

Instance BKS
KSVC15-basic KSVC15

Cost Gap(%) T(s) Cost Gap(%) T(s)
UK100 01-C 1486.34 1504.03 1.19 19.35 1492.63 0.42 49.58
UK100 02-C 1431.55 1435.73 0.29 18.48 1432.84 0.09 56.86
UK100 03-C 1322.73 1333.32 0.80 19.08 1326.02 0.25 65.95
UK100 04-C 1377.73 1394.99 1.25 18.56 1382.50 0.35 80.26
UK100 05-C 1306.04 1326.00 1.53 17.47 1310.80 0.36 55.27
UK100 06-C 1485.99 1496.72 0.72 17.94 1487.86 0.13 46.01
UK100 07-C 1331.67 1342.76 0.83 17.32 1338.78 0.53 74.42
UK100 08-C 1373.20 1392.97 1.44 16.93 1380.89 0.56 62.02
UK100 09-C 1270.84 1285.12 1.12 17.27 1275.60 0.37 52.63
UK100 10-C 1329.95 1344.91 1.12 16.86 1335.22 0.40 56.29
UK100 11-C 1499.15 1519.03 1.33 19.77 1500.60 0.10 44.47
UK100 12-C 1233.28 1243.68 0.84 16.13 1237.53 0.34 52.03
UK100 13-C 1442.65 1451.23 0.59 18.10 1443.21 0.04 56.31
UK100 14-C 1552.85 1560.44 0.49 18.30 1555.29 0.16 50.09
UK100 15-C 1625.66 1640.57 0.92 19.13 1627.87 0.14 64.80
UK100 16-C 1216.84 1233.15 1.34 16.86 1219.92 0.25 47.35
UK100 17-C 1553.50 1581.46 1.80 20.57 1563.23 0.63 109.41
UK100 18-C 1321.19 1348.61 2.08 18.58 1336.22 1.14 72.65
UK100 19-C 1272.96 1285.33 0.97 19.34 1275.42 0.19 83.30
UK100 20-C 1540.99 1551.29 0.67 17.67 1540.99 0.00 61.09
Average 1413.57 1.07 18.19 1403.17 0.32 62.04

34

References

[1] Aneja, Y.P., Nair, K.P.K., 1979. Bicriteria transportation problem. Management

Science 25, 73–78.

[2] Angel, E., Bampis, E., Gourvès, L., 2004. A dynasearch neighborhood for the di-

criteria traveling salesman problem, in: Gandibleux, X., Sevaux, M., Sörensen, K.,

T’kindt, V. (Eds.), Metaheuristics for multiobjective optimisation. Springer Berlin

Heidelberg, Berlin. volume 535 of Lecture Notes in Economics and Mathematical

Systems, pp. 153–176.

[3] Barth, M., Boriboonsomsin, K., 2008. Real-world carbon dioxide impacts of traffic

congestion. Transportation Research Record 1, 163–171.

[4] Barth, M., Younglove, T., Scora, G., 2005. Development of a heavy-duty diesel

modal emissions and fuel consumption model. Technical Report. California Partners

for Advanced Transit and Highways (PATH). UC Berkeley.

[5] Bektaş, T., Laporte, G., 2011. The pollution-routing problem. Transportation Re-

search Part B: Methodological 45, 1232–1250.

[6] Chand, S., Wagner, M., 2015. Evolutionary many-objective optimization: A quick-

start guide. Surveys in operations research and management science 20, 35 – 42.

[7] Dabia, S., Demir, E., Van Woensel, T., 2017. An exact approach for a variant of the

pollution-routing problem. Transportation Science 51, 607–628.

[8] Dabia, S., Talbi, E.G., Van Woensel, T., de Kok, T., 2013. Approximating multi-

objective scheduling problems. Computers & Operations Research 40, 1165–1175.

[9] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation

6, 182–197.

[10] Demir, E., Bektaş, T., Laporte, G., 2011. A comparative analysis of several vehicle

emission models for road freight transportation. Transportation Research Part D:

Transport and Environment 16, 347–357.

[11] Demir, E., Bektaş, T., Laporte, G., 2012. An adaptive large neighborhood search

heuristic for the pollution-routing problem. European Journal of Operational Re-

search 223, 346–359.

35

[12] Demir, E., Bektaş, T., Laporte, G., 2014a. The bi-objective pollution-routing prob-

lem. European Journal of Operational Research 232, 464–478.

[13] Demir, E., Bektaş, T., Laporte, G., 2014b. A review of recent research on green road

freight transportation. European Journal of Operational Research 237, 775–793.

[14] Desaulniers, G., Madsen, O.B.G., Ropke, S., 2014. The vehicle routing problem with

time windows, in: Toth, P., Vigo, D. (Eds.), Vehicle Routing: Problems, Methods and

Applications. 2nd ed.. Society for Industrial and Applied Mathematics, Philadelphia,

PA. chapter 5, pp. 119–159.

[15] Ehrgott, M., 2005. Multicriteria optimization. 2 ed., Springer-Verlag,

Berlin/Heidelberg.

[16] Figliozzi, M., 2010. Vehicle routing problem for emissions minimization. Transporta-

tion Research Record: Journal of the Transportation Research Board 2197, 1–7.

[17] Fonseca, C.M., Fleming, P.J., 1996. On the performance assessment and comparison

of stochastic multiobjective optimizers, in: Voigt, H.M., Ebeling, W., Rechenberg, I.,

Schwefel, H.P. (Eds.), The 4th International Conference on Parallel Problem Solving

from Nature Berlin, Germany, September 22–26, 1996 Proceedings, Springer Berlin

Heidelberg. pp. 584–593.

[18] Franceschetti, A., Demir, E., Honhon, D., Van Woensel, T., Laporte, G., Stobbe, M.,

2017. A metaheuristic for the time-dependent pollution-routing problem. European

Journal of Operational Research 259, 972–991.

[19] Franceschetti, A., Honhon, D., Van Woensel, T., Bektaş, T., Laporte, G., 2013.

The time-dependent pollution-routing problem. Transportation Research Part B:

Methodological 56, 265–293.

[20] Fukasawa, R., He, Q., Santos, F., Song, Y., 2017. A joint routing and speed

optimization problem. Technical Report. Optimization-Online. Available at www.

optimization-online.org/DB_FILE/2016/02/5344.pdf.

[21] Fukasawa, R., He, Q., Song, Y., 2016a. A branch-cut-and-price algorithm for the

energy minimization vehicle routing problem. Transportation Science 50, 23–34.

[22] Fukasawa, R., He, Q., Song, Y., 2016b. A disjunctive convex programming approach

to the pollution-routing problem. Transportation Research Part B: Methodological

94, 61–79.

36

[23] Gandibleux, X., Sevaux, M., Sörensen, K., T’Kindt, V. (Eds.), 2004. Metaheuristics

for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical

Systems. 1 ed., Springer-Verlag Berlin Heidelberg.

[24] Graham, R.L., 1972. An efficient algorithm for determining the convex hull of a finite

planar set. Information Processing Letters 1, 132–133.

[25] Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian

Journal of Statistics 6, 65–70.

[26] IEA, 2017. CO2 emissions from fuel combustion: Overview. Technical Report. Inter-

national Energy Agency.

[27] Jabali, O., Van Woensel, T., de Kok, A.G., 2012. Analysis of travel times and co2

emissions in time-dependent vehicle routing. Production and Operations Manage-

ment 21, 1060–1074.

[28] Jaszkiewicz, A., 2002a. Genetic local search for multi-objective combinatorial opti-

mization. European Journal of Operational Research 137, 50–71.

[29] Jaszkiewicz, A., 2002b. On the performance of multiple-objective genetic local search

on the 0/1 knapsack problem – a comparative experiment. IEEE Transactions on

Evolutionary Computation 6, 402–412.

[30] Jemai, J., Zekri, M., Mellouli, K., 2012. An NSGA-II algorithm for the green ve-

hicle routing problem, in: Evolutionary computation in combinatorial optimization,

Springer-Verlag Berlin Heidelberg, Malaga. pp. 37–48.

[31] Joshua D. Knowles, L.T., Zitzler, E., 2006. A Tutorial on the performance assessment

of stochastic multiobjective optimizers. Technical Report. Computer Engineering and

Networks Laboratory (TIK), ETH Zurich.

[32] Knowles, J., 2005. A summary-attainment-surface plotting method for visualizing the

performance of stochastic multiobjective optimizers, in: 5th International Conference

on Intelligent Systems Design and Applications (ISDA’05), pp. 552–557.

[33] Koç, Ç., Bektaş, T., Jabali, O., Laporte, G., 2014. The fleet size and mix pollution-

routing problem. Transportation Research Part B: Methodological 70, 239–254.

37

[34] Kopfer, H., Kopfer, H., 2013. Emissions minimization vehicle routing problem in

dependence of different vehicle classes, in: Kreowski, H.J., Scholz-Reiter, B., Thoben,

K.D. (Eds.), Dynamics in Logistics. Springer Berlin Heidelberg. Lecture Notes in

Logistics, pp. 49–58.

[35] Kopfer, H.W., Schönberger, J., Kopfer, H., 2014. Reducing greenhouse gas emissions

of a heterogeneous vehicle fleet. Flexible Services and Manufacturing Journal 26,

221–248.

[36] Kramer, R., Maculan, N., Subramanian, A., Vidal, T., 2015a. A speed and departure

time optimization algorithm for the pollution-routing problem. European Journal of

Operational Research 247, 782–787.

[37] Kramer, R., Subramanian, A., Vidal, T., Cabral, L.A.F., 2015b. A matheuristic ap-

proach for the pollution-routing problem. European Journal of Operational Research

243, 523–539.

[38] Kumar, R.S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L., Tiwari, M.,

2016. Multi-objective modeling of production and pollution routing problem with

time window: A self-learning particle swarm optimization approach. Computers &

Industrial Engineering 99, 29–40.

[39] Kuo, Y., 2010. Using simulated annealing to minimize fuel consumption for the

time-dependent vehicle routing problem. Computers & Industrial Engineering 59,

157–165.

[40] Lin, C., Choy, K., Ho, G., Chung, S., Lam, H., 2014. Survey of green vehicle routing

problem: Past and future trends. Expert Systems with Applications 41, 1118–1138.

[41] Lourenço, H.R., Martin, O.C., Stützle, T., 2010. Iterated local search: Framework

and applications, in: Gendreau, M., Potvin, J.Y. (Eds.), Handbook of Metaheuristics.

Springer US. volume 146 of International Series in Operations Research & Manage-

ment Science, pp. 363–397.

[42] Lust, T., 2009. New metaheuristics for solving MOCO problems: Application to the

knapsack problem, the traveling salesman problem and IMRT optimization. Ph.D.

thesis. Université de Mons.

[43] Lust, T., Teghem, J., 2009. Two-phase pareto local search for the biobjective travel-

ing salesman problem. Journal of Heuristics 16, 475–510.

38

[44] Lust, T., Teghem, J., 2012. The multiobjective multidimensional knapsack problem:

A survey and a new approach. International Transactions in Operational Research

19, 495–520.

[45] Lust, T., Tuyttens, D., 2014. Variable and large neighborhood search to solve the

multiobjective set covering problem. Journal of Heuristics 20, 165–188.

[46] Martins, E.Q.V., 1984. On a multicriteria shortest path problem. European Journal

of Operational Research 16, 236–245.

[47] Molina, J.C., Eguia, I., Racero, J., Guerrero, F., 2014. Multi-objective vehicle routing

problem with cost and emission functions. Procedia – Social and Behavioral Sciences

160, 254–263.

[48] Paquete, L., Chiarandini, M., Stützle, T., 2004. Pareto local optimum sets in the

biobjective traveling salesman problem: An experimental study, in: Gandibleux,

X., Sevaux, M., Sörensen, K., T’kindt, V. (Eds.), Metaheuristics for multiobjective

optimisation. Springer Berlin Heidelberg. volume 535 of Lecture Notes in Economics

and Mathematical Systems, pp. 177–199.

[49] Paquete, L., Stützle, T., 2003. A two-phase local search for the biobjective traveling

salesman problem, in: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb,

K. (Eds.), Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg.

volume 2632 of Lecture Notes in Computer Science, pp. 479–493.

[50] Penna, P.H.V., Subramanian, A., Ochi, L.S., 2013. An iterated local search heuristic

for the heterogeneous fleet vehicle routing problem. Journal of Heuristics 19, 201–232.

[51] Przybylski, A., Gandibleux, X., Ehrgott, M., 2008. Two phase algorithms for the

bi-objective assignment problem. European Journal of Operational Research 185,

509–533.

[52] R Core Team, 2015. R: A language and environment for statistical computing.

R Foundation for Statistical Computing. Vienna, Austria. URL: http://www.R-

project.org/. ISBN 3-900051-07-0.

[53] Sbihi, A., Eglese, R.W., 2007. Combinatorial optimization and green logistics. 4OR

5, 99–116.

39

[54] Siu, W.S.H., Chan, C.k., Chan, H.C.B., 2012. Green cargo routing using genetic

algorithms, in: Proceedings of the internacional multiconference of engineers and

compute scientists, Hong Kong. pp. 12–17.

[55] Soysal, M., Bloemhof-Ruwaard, J.M., Bektaş, T., 2015. The time-dependent two-

echelon capacitated vehicle routing problem with environmental considerations. In-

ternational Journal of Production Economics 164, 366–378.

[56] Toth, P., Vigo, D., 2002. The Vehicle Routing Problem. 1 ed., SIAM, Philadelphia.

[57] Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2013. A hybrid genetic algorithm

with adaptive diversity management for a large class of vehicle routing problems with

time-windows. Computers & Operations Research 40, 475–489.

[58] Xiao, Y., Zhao, Q., Kaku, I., Xu, Y., 2012. Development of a fuel consumption opti-

mization model for the capacitated vehicle routing problem. Computers & Operations

Research 39, 1419–1431.

[59] Zitzler, E., 1999. Evolutionary algorithms for multiobjective optimization: Meth-

ods and applications. Ph.D. thesis. Swiss Federal Institute of Technology Zurich.

Switzerland.

[60] Zitzler, E., Deb, K., Thiele, L., 2000. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation 8, 173–195.

[61] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert, V., 2003. Performance

assessment of multiobjective optimizers: An analysis and review. IEEE Transactions

on Evolutionary Computation 7, 117–132.

40

