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Abstract Due to the new carbon neutral policies, many district heating op-
erators start operating their combined heat and power (CHP) plants using dif-
ferent types of biomass instead of fossil fuel. The contracts with the biomass
suppliers are negotiated months in advance and involve many uncertainties
from the energy producer’s side. The demand for biomass is uncertain at that
time, and heat demand and electricity prices vary drastically during the plan-
ning period. Furthermore, the optimal operation of combined heat and power
plants has to consider the existing synergies between the power and heating
systems. We propose a solution method using stochastic optimization to sup-
port the biomass supply planning for combined heat and power plants. Our
two-phase approach determines mid-term decisions about biomass supply con-
tracts as well as short-term decisions regarding the optimal production of the
producer to ensure profitability and feasibility. We present results based on
ten realistic test cases placed in two municipalities.
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1 Introduction

The integration of different energy systems is one step towards a fossil-free
energy system, which many developed countries target today. By integrating
different energy systems, such as heat and power, a higher share of volatile
renewable energies, e.g., wind energy, can be used efficiently [21]. In areas
with large district heating networks, one way to achieve this integration is
using combined heat and power (CHP) plants that produce heat and power
simultaneously. By co-optimizing the production of both, the efficiency of the
system is increased while providing flexibility to the power grid and satisfying
the heat demand in the district heating network. Due to the neutral carbon
policies imposed by the authorities, a shift from traditional fuels to renewable
resources is taking place. Denmark has a widespread use of district heating
and CHP plants and the government supports the use of biomass to produce
heat and power. With subsidies and tax benefits, it has become profitable for
large CHP plants to change from, e.g., coal or natural gas to biomass [10].

The use of biomass as fuel for CHP plants raises some challenges in the
planning of the supply and in the operation of the plant. Many different types
of biomass are used to produce heat and power [35] but the most common
type of biomass used for large-scale CHP producers is wood pellets. Due to
their high energy content, wood pellets facilitate a more efficient transport
because smaller volumes are required. In addition, the low moisture content of
wood pellets allows a better conservation of the product resulting in a larger
storage capacity [31]. In combination with neutral carbon policy incentives for
biomass, the wood pellet is becoming a candidate to substitute coal in CHP
plants. The supply of wood pellets, or biomass in general, has some disadvan-
tages compared to the supply of natural gas. First, natural gas prices have been
dropping since 2008. Second, natural gas has a well-developed infrastructure
that allows the producer to be directly connected to the gas network. On the
contrary, biomass has to be transported for long distances and contracts with
the supplier must be agreed beforehand for a long horizon (one to three years)
involving a high degree of uncertainty at the time of negotiation because the
final amount is unknown. With the maturing of the biomass markets also new
types of contracts are emerging, e.g., to include some flexibility to the con-
tracted amount in terms of options. Therefore, it is crucial for CHP operators
to optimize their biomass contracts to be competitive with gas-fired plants.

In this work, we propose a solution approach based on stochastic pro-
gramming [4] to optimize the yearly biomass contracting decisions for a CHP
operator taking into account the uncertainty at the point of negotiation. Fur-
thermore, the approach also determines the optimal operation of the plant
to maximize profits and satisfy the heat demand throughout the year while
taking the long-term biomass contract decisions into account.
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2 Literature review

Several models for the optimal operation of CHP systems, where different as-
pects of the problem are highlighted, have been proposed. We refer for example
to [3, 28, 14, 8, 29, 25]. These solution approaches determine the optimal pro-
duction of both commodities (heat and power) at different levels of detail, but
do not consider uncertainties and supply contracts for fuel explicitly.

Since then several approaches that apply stochastic programming to the
operational planning were developed. [2] solve the operational scheduling for
an industrial customer that owns an integrated system formed by CHP units,
conventional power production and heat only units. The method uses electric-
ity market sales and demand response programs to integrate the uncertainty
caused by electricity prices and load. An optimal operation of a portfolio of
different CHP systems in a district heating network is studied in [24]. The au-
thors consider uncertain heat demand and electricity prices and show that the
system profits from leveraging a thermal storage to handle this uncertainty.
[19] present a multi-stage stochastic program for optimizing the operation of a
gas-fired CHP plant and deriving bids for the German spot and balancing mar-
kets. The considered uncertainty are electricity prices. [12] propose a stochastic
program including technical aspects of an extraction-condensing CHP plant to
optimize the hourly operation under price and demand uncertainty. The au-
thors use this model to determine bidding curves for the day-ahead market. In
[13] this model is revisited with more focus on the joint production scheduling
of two CHP plants. The operational planning problem in our work is similar
to these two formulations, but extended with further characteristics regarding
the biomass contracts deliveries and technical constraints.

The above mentioned publications assume instantaneous fuel supply and,
therefore, do not consider fuel supply decisions. Another stream of publica-
tions explicitly focuses on the biomass supply chain planning for power gener-
ation considering processing of biomass, transport and logistics aspects. The
OPTIMASS model for strategic and tactical biomass supply chain planning
is presented in [11]. The formulation is based on a facility location planning
problem that includes the processing of the biomass to determine the locations
and capacities of facilities in the supply chain and the allocation of biomass
sites to conversion facilities. The final usage of biomass in electricity produc-
tion is not part of this study. [16] present a decision support system for a
forest biomass supply chain deciding on the locations and capacities as well
as assignment of biomass sources to power plants. [27] present a two-stage
stochastic program with chance constraints for biomass supply chain plan-
ning under biomass availability uncertainty. The demand is based on markets
and not single plants. [6] model the biomass-based energy production process,
which includes deciding the location of plants as well as flow and conversion of
commodities where one commodity is electricity. The model focuses on long-
term decisions. [18] consider the supply chain connected to a biogas CHP plant
and use a network flow model formulation. The model includes conversion to
biogas and production with a CHP or heat boiler as well as transportation
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costs. All publications mentioned above have a setting where the biomass is
not traded based on contracts, because the biomass delivery is part of their
own supply chain. However, this is often not the case when we consider e.g.
wood chips or wood pellets.

Therefore, in this work the perspective of a CHP plant that receives biomass
from third party suppliers is considered. Furthermore, we investigate the inte-
gration of long-term biomass supply decisions with the operational planning
of the production. Similar settings have been studied in the following publica-
tions. [23] consider the fuel supply of gas for a consumer having a micro CHP
and a heat boiler. Their multi-stage stochastic program decides on how much
gas to buy on the spot or the monthly and weekly futures market, while elec-
tricity can be sold with similar market instruments. The model has a monthly
planning horizon and abstracts from more detailed considerations regarding
the operation of the system. In [32], a general overview of the benefits of
using stochastic programming to incorporate the uncertainty involved in the
biomass supply chain for a power producer on a tactical planning level is given.
The authors formulate a one year planning problem considering the amount
of biomass supply from different suppliers, storage and the expected power
production on a monthly basis, i.e., the model abstracts from considering op-
erational implications of the biomass supply. [30] address biomass supplier
selection combining an analytic hierarchy process (AHP) with a chance con-
straint program to address stakeholders and uncertainties in this setting. Their
focus is ensuring the quality of the biomass by blending biomass of different
kinds and suppliers to fulfill the overall demand. The solution approach dis-
regards the production level and delivery times. Finally, [7] use stochastic
programming for optimal biomass contracting decisions in a long-term plan-
ning horizon. The model decides which biomass contracts should be settled
with the suppliers. They model the contracts as well as the deliveries and
production to provide a basis for this decision. Due to the planning horizon
and short time periods, the model results in a computationally hard two-stage
stochastic program. To the best of our knowledge, [7] are the first and only
approach to handle biomass contracts and the production of the CHP in one
solution approach.

Our work differs from [7] regarding the modeling of contracting decisions
and the overall solution approach. Delivery times and amounts for contracts
in [7] are fixed and the decision-maker can just decide which contracts are
selected. On the contrary, our approach allows more flexibility to decide on
the amount to be supplied and the delivery time. As a consequence, the exact
delivery time and precise quantity are determined closer to the actual time of
energy delivery. Furthermore, we reduce the computational complexity of the
planning problem by presenting a two-phase approach. Finally, [7] only solve
the problem for a planning horizon of year, i.e., they do not investigate and
model the implications of the biomass contract selection on the operational
planning of the CHP plant.

The main contributions of our work are the following:
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1. We propose a two-phase solution approach that combines biomass con-
tracting decisions with the optimal operation of the CHP plant. Therefore,
it provides two models that can be used by an operator for long-term
and operational planning, respectively. The first phase concentrates on the
biomass contract selection at the beginning of the year considering produc-
tion on a weekly less detailed basis and, therefore, reducing the complexity
of the problem. The second phase optimizes the weekly operation of the
system on a detailed hourly basis and takes the biomass contract decisions
into account. The overall solution approach considers relevant technical
requirements and resembles the planning process in practice.

2. Our modeling of biomass contracts offers a high degree of flexibility. Com-
pletely fixed contracts can be investigated as well as more flexible contracts
regarding amounts of deliveries. We include the possibility to buy options
on the biomass amount to be able to adjust the delivery quantity dur-
ing the course of the year. This is a new model feature that is worth of
investigation, at least from the standpoint of a CHP producer.

3. Our two-phase solution approach enables us to investigate the implications
of biomass contract decisions of the long-term planning problem on the
operational planning problem. This has not been analyzed before.

4. Furthermore, we use a rolling horizon approach to improve the results of
our weekly operational planning, because it is important to take initial in-
formation from previous weeks into account and have a feasible transition.
This also allows us to update the scenarios with new information.

The remainder of this publication is organized as follows. A detailed descrip-
tion of the planning problem is given in Section 3. Our solution approach and
the respective model formulations are presented in Section 4. In Section 5,
we analyze two realistic case studies each having five test cases. The section
includes a description of the data, experimental setup and scenario generation.
The numerical results are stated in Section 6. Finally, Section 7 summarizes
our work and gives an outlook.

3 Problem description

In this section, we describe the biomass supply planning problem including
used sets and parameters. For quick reference, we also provide an overview of
parameters and sets in Table 11.

An overview of the components in the planning problem is given in Fig. 1.
We consider a power and heat producer directly connected to a district heating
network. The producer operates a CHP plant fueled by biomass and an aux-
iliary heat producing unit (e.g. gas boiler, electric boiler or heat pump). Both
units can supply the district heating network directly but are also connected
to a thermal storage, which can store hot water for later heat supply.

1 In general, the notation follows the following pattern: sets are denoted by calligraphic
capital letters, parameters are denoted by capital letters, uncertain parameters are marked
by ∼ and decision variables are denoted by small letters.
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Fig. 1: Overview of components in the planning problem

The biomass delivered by suppliers according to the contracts is unloaded
into the biomass storage and withdrawn from the storage for later use (i.e. no
direct supply to the boiler). We assume that fuel for the additional heat-only
unit is provided directly and instantaneously without storage and deliveries.
This assumption stems from the setting of a gas boiler connected to the gas
network or an electric boiler connected to the electricity grid.

In practice, biomass contracts are often agreed for a period of one year
or more, defining the amount of biomass and a preliminary delivery schedule.
The actual delivery time is revised during the course of the year. We model
two different types of contracts, namely fixed and flexible. Fixed contracts are
cheaper but offer no possibility to alter the delivery amount afterward. Flex-
ible contracts are more expensive than fixed contracts, but the operator has
the opportunity to buy an option of changing the amount. In the beginning
of the year, in addition to the delivery amount, the options for up- and/or
down-scaling the amount are settled, but the producer has to pay extra for
those options. The possibility of buying options to change the biomass deliv-
ery amount is a new concept from industry that is studied in this paper. It
provides the power producer with additional flexibility that can be beneficial
especially in the long term when the actual demand is still uncertain. Also
from the supplier’s side this is interesting instrument, because it offers addi-
tional incomes from selling options while the amounts can be shifted between
different customers. However, the supplier side is not the focus of this paper.

The input to our solution approach is a set of possible contracts j ∈J , a set
of scenarios ω ∈Ω and a set of periods t ∈T = {1, . . . , |T |}. The first planning
period is always denoted with t =1, so that initial values are given values for
period t = 0. For example, the storage level of the biomass storage at the
beginning of the planning horizon in scenario ω ∈ Ω is denoted by δ0,ω and
the initial storage level of the thermal storage by s0,ω. Each contract j ∈ J
has a minimum and maximum amount per delivery (Bj , Bj), a minimum and

maximum number of deliveries per planning horizon (N j , N j) and a minimum
time between deliveries (Fj). If contract j ∈ J offers up-scaling and down-
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scaling options, the maximum limitations are given by O+
j and O−

j (in percent
deviation from the nominal amount), respectively. For fixed contracts these
parameters are set to zero (O+

j = O−
j = 0). The cost for the fixed, up-scaling

and down-scaling amount are given by CB
j , CB+

j and CB−
j , respectively. The

cost are given per MWt (MW thermal), because the payment in practice is
determined based on the energy content of the biomass in Gigajoule, which
can be directly transformed to MWt. This means that the payment does not
depend only on the amount in tonnes but also on the quality of the biomass, the
so-called calorific value. Transportation costs are considered only indirectly,
because the supplier has to cover these and can include them in the biomass
cost per MWt. Furthermore, we assume that the supplier has the responsibility
to deliver the contracted amount. As mentioned above, the biomass is delivered
to the biomass storage, which is limited by a minimum safety and maximum
storage level (∆t, ∆). The initial storage level δ0,ω is given for period 0 and
the outflow per period is restricted to a maximum of ∆F. To avoid congestion
at the storage due to several deliveries at the same time, the time distance
between deliveries must be at least ∆W periods.

Biomass from the storage is used by the CHP plant to produce power and
heat. The production of both is limited to the feasible production region of
an extraction condensing unit depicted with the relevant parameters Θ and Ξ

[36] in Figure 2. The efficiency of a conversion from biomass to power and heat
is denoted by ECHP

P and ECHP
Q , respectively. From one hour to the next, the

power production of the CHP can be ramped up or down but only in the limits
of the parameters RU and RD. If the unit is started up or shut down it has to
be in that state for at least MU or MD time periods. Starting up and shutting
down is priced with CSU and CSD, respectively. The operation of the CHP
itself has a cost of CCHP. The power produced is sold on the electricity market
and the profit depends on the market price L̃E

t,ω in period t ∈ T and scenario
ω ∈ Ω. In Denmark, the production of electricity by biomass is supported
with an incentive of I, while the production of electricity with any fuel is
taxed with TEP. Thus, the overall cost L̃t,ω e/MWe (MW electrical) is given

by L̃t,ω = TEP − I − L̃E
t,ω, where negative values of L̃t,ω are profits.
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Table 1: Sets and parameters (MWt = MW thermal, MWe = MW electrical,
pu = per unit)

J Set of biomass contracts j

W Set of weeks w
(
W = {1, . . . , |W|}

)

T Set of time periods t

Tw Set of time periods t in week w
Ω Set of scenarios ω

Πω Probability of scenario ω

D̃t,ω Heat demand in period t in scenario ω [MWt/period]

L̃t,ω Negative costs, i.e. profit, for selling electricity in period t in scenario ω

[e/MWe]

C̃AUX
t,ω Operational cost of auxiliary boiler in period t in scenario ω [e/MWt]

CCHP Operational cost of CHP plant [e/MWt]
CSU Start up cost for CHP [e/MWt]
CSD Shut down cost for CHP [e/MWt]
CI Inventory cost for biomass storage [e/MWt]
CO&M

AUX Operational cost for auxiliary boiler [e/MWt]

TEP Tax for electricity production [e/MWe]

TAUX Tax for production with auxiliary boiler [e/MWt]
TCO2 CO2 emission tax [e/MWt]
CB

j Cost for biomass in contract j [e/MWt]

CB+
j Cost for up-scaling biomass amount in contract j [e/MWt]

CB−

j Cost for down-scaling biomass amount in contract j [e/MWt]

Bj , Bj Minimum/maximum amount biomass offered per delivery by contract j [MWt]

Nj , Nj Minimum/maximum number of deliveries offered by contract j

Fj Frequency of deliveries in contract j [hours]

O+
j , O−

j Maximum up-scaling/down-scaling option offered in contract j [pu]

∆ Maximum biomass storage level [MWt]
∆t Safety storage level of biomass in period t [MWt]
∆F Maximum outflow from biomass storage per period [MWt/period]
∆W Time distance between deliveries to biomass storage [periods]

S, S Minimum/maximum thermal storage level [MWt]
SF Maximum in/outflow to/from thermal storage per period [MWt/period]

P , P Minimum/maximum production of CHP plant per period [MWe/period]

QCHP Maximum heat production of CHP plant per period [MWt/period]
ECHP

P Electric efficiency of the CHP plant [pu]
ECHP

Q Heat efficiency of the CHP plant [pu]

EB Calorific value of the biomass [MWt/tonnes]
Θ Fraction of power reduction
Ξ Maximum heat to power ratio
MU ,MD Minimum up time / down time of CHP plant [periods]
RU , RD Ramp-up and ramp-down limits of CHP plant [MWe/period]

QAUX Maximum heat production of auxiliary boiler per period [MWt/period]
EAUX Auxiliary boiler efficiency [pu]
PB Target percentage of heat produced by biomass [pu]
ΦSto Penalty for excess of storage at the end of time horizon [e]
ΦMiss Penalty for missed heat demand [e]
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The auxiliary boiler has a maximum capacity of QAUX with an efficiency
of EAUX. The operational costs C̃AUX

t,ω of the boiler consists of several com-
ponents and is dependent on the scenario ω due to the uncertain fuel (e.g.

gas or electricity) spot price C̃F
t,ω. Further components are the operation and

maintenance costs CO&M
AUX , taxes TAUX and CO2 taxes TCO2 . Thus, the overall

operational costs are given by C̃AUX
t,ω = C̃F

t,ω + CO&M
AUX + TAUX + TCO2 .

Both units can feed the thermal storage. In the beginning of the planning
horizon (period 0), the heat storage has a given level of s0,ω and the level has
to be always between S and S. The in-/outflow per period is limited to SF .

The producer is obliged to fulfill the heat demand in each period t ∈ T
in the district heating network D̃t,ω, which is modeled in scenarios ω ∈ Ω.
The probability of scenario ω ∈ Ω is given by Πω. To sum up the uncertain
parameters, a scenario ω resembles the heat demand D̃t,ω, the electricity price

L̃t,ω and the fuel spot price for the auxiliary boiler C̃AUX
t,ω .

The overall objective of the solution approach is to select the portfolio of
biomass contracts and their configurations to minimize the cost while fulfilling
the heat demand taking the technical characteristics of the plant into account.
In this paper, we consider a planning horizon of one year ranging from summer
to summer as it is often done in practice. Thus, the heating seasons lies in the
middle of the planning horizon. However, in general the method can be used
with any length of the planning horizon starting and ending at an arbitrary
point in time during the year.

4 Two-phase solution approach

The time scales in the above mentioned planning problem have a broad range.
As the contracts are often agreed for up to one year, this results in a medium-
term planning problem. However, many technical characteristics of the CHP
unit and the electricity market relate to an hourly level. Additionally, the
production does not need to be scheduled more than one week in advance,
because then information especially regarding the heat demand gets more
accurate. Therefore, we divide the overall planning problem into two-phases.
Each phase is modelled by a stochastic program to incorporate the relevant
uncertainties as scenarios into the planning.

Biomass contract selection: This model decides which suppliers should
be contracted for the next year and which amount of biomass they should
deliver (including options). These are the first-stage decisions of the two-stage
stochastic model. The model includes the production by the CHP plant on a
weekly time scale as second-stage decisions excluding ramping and unit com-
mitment decisions. The uncertainty in the model is based on heat demand
scenarios. The thermal heat storage is excluded from this model, because it is
not reasonable to model the flows on a weekly scale due the small size of those
storages. The goal of the planner is to cover most of the heat demand with
biomass production. Therefore, we do not consider the auxiliary boiler in this
model as it should be used in peak demand situations. The uncertain cost of
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the peak boiler should not influence the biomass contract selection for a long
planning horizon. The same holds for the uncertain income from the electric-
ity markets. Set T represents weekly periods in this model. The formulation
is presented in Section 4.1.

Operational planning problem: Here the input of biomass is fixed based
on the contracts selected in phase 1, but the amounts of contracts with agreed
options can still be altered. Therefore, the final delivery amounts are the first-
stage decisions. The model is solved week-by-week taking the input from the
previous week into account (storage levels, status of the unit). The second-
stage decisions model the production of the CHP plant and auxiliary boiler on
an hourly basis incorporating technical requirements and scenario-based price
and demand information. Set T represents hourly periods in this model. The
model formulation is described in Section 4.2.

Based on the scenario-based representation of the uncertain parameters,
both models are two-stage stochastic programs. The division of the planning
problem into two phases not only reduces the complexity of the problem,
but also resembles the planning process in practice in a more accurate way.
Furthermore, solving the operational planning problem week-by-week enables
us to make use of more recent information to update the scenarios for the next
week. We do not consider an integrated problem for the entire year in an hourly
resolution because the addition of such precise information can negatively
affect the solution of the problem towards the real realization of the uncertainty
due to forecasting inaccuracies. Furthermore, preliminary experiments showed
that the large number of integer variables makes the problem computationally
hard and not solvable in a reasonable amount of time. Both is also confirmed
by experiments with test cases having a planning horizon of 13 weeks (see
Section 6.3).

4.1 Biomass contract selection

The following model represents the biomass contract selection in phase 1.
Please note that this model has a weekly time-scale, therefore, the set of period
t ∈ T consists of weeks. The relevant parameters like capacities and flow
restrictions of the units and storage are scaled up to weekly values accordingly.
The set of scenarios Ω in this phase contains weekly data for the heat demand
D̃t,ω for the entire planning horizon of |T | periods.

The first-stage decision variables in this model decide on the contracts to
be selected (uj) as well as the number of deliveries in each week (dj,t) and
amounts (bj,t) including up- (b+j,t) and down-scaling (b−j,t) options for each
contract j ∈ J and period t ∈ T . Based on the second-stage variables, these
amounts can be altered with the variables b+j,t,ω and b−j,t,ω within the limits
of the selected options in the first-stage. Further second-stage variables relate
to the biomass storage (δt,ω) as well as heat (qCHP

t,ω ) and power production
(pt,ω). An overview of the variables and their domains is given in Table 2.
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Table 2: Variables

uj ∈ {0, 1} Equals 1, if contract j is used, 0 otherwise
dj,t ∈ N0 Number of deliveries by contract j in period t

d̂j,t ∈ {0, 1} Equals 1, if contract j delivers in period t, 0 otherwise

bj,t ∈ R
+
0 Amount of biomass contracted in contract j for period t [tonnes]

b+j,t ∈ R
+
0 Up-scaling option contracted in contract j for period t [tonnes]

b−j,t ∈ R
+
0 Down-scaling option contracted in contract j for period t [tonnes]

b+j,t,ω ∈ R
+
0 Actual amount used of up-scaling option in contract j [tonnes]

b−j,t,ω ∈ R
+
0 Actual amount used of down-scaling option in contract j [tonnes]

δt,ω ∈ R
+
0 Biomass storage level [MWt]

δ+t,ω ∈ R
+
0 Inflow to biomass storage [MWt/period]

δ−t,ω ∈ R
+
0 Outflow from biomass storage [MWt/period]

st,ω ∈ R
+
0 Thermal storage level [MWt]

s+t,ω ∈ R
+
0 Inflow to thermal storage [MWt/period]

s−t,ω ∈ R
+
0 Outflow from thermal storage [MWt/period]

xt,ω ∈ {0, 1} Equals 1, if CHP plant is on in period t, 0 otherwise
yt,ω ∈ {0, 1} Equals 1, if CHP plant is started up in period t, 0 otherwise
zt,ω ∈ {0, 1} Equals 1, if CHP plant is shut down in period t, 0 otherwise

pt,ω ∈ R
+
0 Power production by CHP [MWe/period]

qCHP
t,ω ∈ R

+
0 Total heat production by CHP [MWt/period]

q
CHP,N
t,ω ∈ R

+
0 Heat from CHP flowing to DH [MWt/period]

q
CHP,S
t,ω ∈ R

+
0 Heat from CHP to thermal storage [MWt/period]

qAUX
t,ω ∈ R

+
0 Total heat production by auxiliary boiler [MWt/period]

q
AUX,N
t,ω ∈ R

+
0 Heat from auxiliary boiler to DH [MWt/period]

q
AUX,S
t,ω ∈ R

+
0 Heat from auxiliary boiler to thermal storage [MWt/period]

qMiss
t,ω ∈ R

+
0 Missed heat demand [MWt/period]

δEX
t,ω ∈ R

+
0 Amount of biomass above storage capacity [MWt]

δTω ∈ R
+
0 Amount of biomass in excess at the end of the horizon [MWt]

The objective function is given in (1) and minimizes the expected cost of
the biomass contract selection. The first part (1a) contains the costs related
to the biomass supply and the contract selection. In (1b), operational costs of
the system and inventory costs for biomass are modeled. The third part (1c)
represents penalty costs. First, we penalize leftover biomass at the end of the
planning period (ΦStoδTω ), since we try to empty the storage at the end of the
year. Second, missed heat-demand (ΦMissqMiss

t,ω ) is penalized.

min
∑

t ∈T

[
∑

j∈J

(
CB

j bj,t + CB+
j b+j,t + CB−

j b−j,t +
∑

ω∈Ω

ΠωC
B
j (b

+
j,t,ω − b−j,t,ω)

)

(1a)

+
∑

ω∈Ω

Πω

(
CCHP

[
pt,ω −ΘqCHP

t,ω

]
+ CIδt,ω

)]
(1b)

+
∑

ω∈Ω

Πω

(
ΦStoδTω +

∑

t∈T

ΦMissqMiss
t,ω

)
(1c)
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Constraints (2) to (9) model the selection of biomass contracts. In con-
straints (2) the number of deliveries is restricted by the contract limits given
by N j and N j . Constraint (3) restricts the number of deliveries per week to
a maximum according to the frequency of the contract Fj . The left-hand side
sums over several weeks, if the minimum time between visits Fj is longer than
one week (168 hours). The right-hand side determines the maximum number
of deliveries in that period with at least one delivery or more if the time differ-
ence is less than 168 hours. The total amount including up- and down-scaling
options is limited between [Bj , Bj ] by constraints (4) and (5) and the use

of options to the allowed percentages of deviation O+
j and O−

j in constraints
(6) and (7). In constraints (8) and (9), it is ensured that the second-stage
alterations respect the first-stage decisions.

Njuj ≤
∑

t∈T

dj,t ≤ Njuj ∀j ∈ J (2)

t∑

τ=t−max {⌊
Fj

168
⌋,1}

dj,τ ≤ max

{
168

Fj

, 1

}
∀j ∈ J , ∀t ∈ T (3)

bj,t + b+j,t ≤ Bjdj,t ∀j ∈ J , ∀t ∈ T (4)

bj,t − b−j,t ≥ Bjdj,t ∀j ∈ J , ∀t ∈ T (5)

b+j,t ≤ O+
j bj,t ∀j ∈ J , ∀t ∈ T (6)

b−j,t ≤ O−
j bj,t ∀j ∈ J , ∀t ∈ T (7)

b+j,t,ω ≤ b+j,t ∀j ∈ J , ∀t ∈ T , ∀ω ∈ Ω (8)

b−j,t,ω ≤ b−j,t ∀j ∈ J , ∀t ∈ T , ∀ω ∈ Ω (9)

The biomass storage is modeled by constraints (10) to (14). The model ensures
that the storage level is kept within the limits [∆t, ∆] (10) and calculated
correctly based on the previous level and in- and outflows (11). The initial
storage level is given by δ0,ω, which is the same for all scenarios. The inflow
from supplier deliveries is calculated in constraints (12), where the incoming
biomass is converted from tonnes to MWt using the calorific value of the
biomass EB. The outflow is restricted to ∆F by constraints (13). Finally, the
storage level at the end of the planning horizon is determined in variable δTω
in (14) for penalty cost calculations.

∆t ≤ δt,ω ≤ ∆ ∀t ∈ T , ∀ω ∈ Ω (10)

δt,ω = δt−1,ω + δ+t,ω − δ−t,ω ∀t ∈ T , ∀ω ∈ Ω (11)

δ+t,ω =
∑

j∈J

(
bj,t + b+j,t,ω − b−j,t,ω

)
· EB ∀t ∈ T , ∀ω ∈ Ω (12)

δ+t,ω ≤ ∆F ∀t ∈ T , ∀ω ∈ Ω (13)

δ|T |,ω ≤ δ0,ω + δTω ∀ω ∈ Ω (14)
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The production capacities of the CHP plant are enforced by constraints (15)
to (18). In (15) the consumption of biomass from the storage for CHP produc-
tion is determined based on the corresponding efficiencies ECHP

P and ECHP
Q

for power and heat, respectively. The feasible region of the CHP, which was
previously presented in Figure 2, is modeled by constraints (16) to (18).

δ−t,ω =
pt,ω

ECHP
P

−Θ ·
qCHP
t,ω

ECHP
Q

∀t ∈ T , ∀ω ∈ Ω (15)

P ≤ pt,ω −Θ · qCHP
t,ω ≤ P ∀t ∈ T , ∀ω ∈ Ω (16)

Ξ · qCHP
t,ω ≤ pt,ω ∀t ∈ T , ∀ω ∈ Ω (17)

qCHP
t,ω ≤ QCHP ∀t ∈ T , ∀ω ∈ Ω (18)

Finally, the uncertain heat demand D̃t,ω is ensured in each period t and sce-
nario ω in constraint (19).

D̃t,ω = qCHP
t,ω + qMiss

t,ω ∀t ∈ T , ω ∈ Ω (19)

4.2 Operational planning

The operational planning model relates to the second phase of the solution
approach. For the overall solution approach, the model is solved consecutively
week-by-week with a rolling horizon to determine the production schedule and
to adjust the biomass deliveries, if possible. Therefore, the planning horizon
is |W| weeks with an hourly resolution. The week in focus is W1 and the
remaining weeks W2 to Ww are used in a rolling horizon manner to already
include predictions for future periods. Thus, the decisions for weeks W2 to Ww

can be altered again later, when the respective week comes in focus. Please
note that the set T consists of all hours in the rolling horizon. This is a
difference to the biomass contract selection problem where the set consisted
of weeks. The set Tw relates to the hours in the specific week w ∈ W. This
model considers the production of the auxiliary boiler as well as sales to the
electricity markets. Therefore, the uncertain parameter of the scenarios does
not only include heat demand but also fuel price for the auxiliary boiler and
the electricity price. Thus, the set of scenarios Ω in this phase contains hourly
data for the heat demand D̃t,ω, the electricity price L̃t,ω and the fuel price of

the auxiliary boiler C̃AUX
t,ω in the next |T | periods. The scenarios are updated

with new information before each optimization run.
The decision variables for this model decide the amount of biomass (bj,t,ω)

including up- and down- scaling options (b+j,t,ω and b−j,tω) and the actual

delivery times (d̂j,t,ω) for the deliveries of contract j. Further variables are
related to the biomass storage level (δt,ω), the thermal storage level (st,ω), the
heat and power production (qCHP

t,ω , qAUX
t,ω and pt,ω) and the commitment status

of the CHP plant (xt,ω, yt,ω and zt,ω). The variables are included in Table 2.
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Table 3: Input parameters from biomass contract selection

Uj,w ∈ N0 Number of deliveries of contract j in week w

Bj,w ∈ R
+
0 Contracted delivery amount of contract j in week w

B
+
j,w

∈ R
+
0 Contracted up-scaling of delivery amount of contract j in week w

B
−

j,w
∈ R

+
0 Contracted down-scaling of delivery amount of contract j in week w

Because the first week of the rolling horizon is the week in focus, the first-
stage decisions of the stochastic program are the delivery times and amounts
d̂j,t,ω, bj,t,ω, b+j,t,ω and b−j,tω for periods t in the first week T1. For all other
weeks, the decisions can be revised later and are second-stage decisions. To
ensure non-anticipativity, we include specific constraints.

The selection of biomass contracts and amounts are input parameters to
this model (given in Table 3) and determined by the biomass contract selec-
tion model in phase 1. Set J is reduced to only selected contracts for the
corresponding week to limit the number of variables.

Furthermore, the storage levels δ0,ω and s0,ω as well as the unit status of
the preceding week x0,ω are set as initial values, based on the outcome of the
previous week.

As in the biomass contract selection model, the objective function (20)
minimizes the expected costs composed of biomass contract costs (20a), opera-
tional costs (20b) and penalty costs (20c). However, the following changes have

to be made. First, the profit for electricity sales (L̃t,ω) and operational costs for

the auxiliary boiler (C̃AUX
t,ω ) are added to the objective function (20b). These

are uncertain and depend on the scenarios. Second, the operational cost (20b)
now include costs for starting up and shutting down the CHP plant. Third,
the term (20c) penalizes unfulfilled heat demand and exceeding the biomass
storage capacity in each period. Note that to resemble the total weekly cost
of the system, we keep the constant term CB

j Bj,w + CB+
j B+

j,w + CB−
j B−

j,w in
(20a).

min
∑

w∈W

∑

j∈J

(
CB

j Bj,w + CB+
j B+

j,w + CB−
j B−

j,w

∑

t∈Tw

CB
j (b

+
j,t − b−j,t)

)

(20a)

+
∑

t∈T

∑

ω∈Ω

Πω

(
CCHP

(
pt,ω −ΘqCHP

t,ω

)
−L̃t,ωpt,ω + CSUyt,ω + CSDzt,ω

)
(20b)

+
∑

t∈T

∑

ω∈Ω

Πω

(
C̃AUX

t,ω

qAUX
t,ω

EAUX
+ CIδt,ω

)
+
∑

t∈T

∑

ω∈Ω

Πω

(
ΦStoδEX

t,ω + ΦMissqMiss
t,ω

)

(20c)

The biomass deliveries are handled in constraints (21) to (28). Here we use
the input from the biomass contract selection model (see parameters in Table
3). If deliveries were scheduled for the weeks in the planning horizon by phase
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1, the operational model decides on the actual delivery times during the week
(21). The weekly contracted amount is split on the deliveries in constraints
(22). The delivery amount can be altered in the given limits of the options
(constraints (23) and (24)), but the total amount must be within the limits of
the contract (constraints (25) and (26)). Constraints (27) imposes a maximum
frequency Fj on the deliveries associated with each contract, while constraints
(28) ensures an elapsed time of at least ∆W periods between two deliveries
irrespective of the supplier.

∑

t∈Tw

d̂j,t,ω = Uj,w ∀j ∈ J , ∀w ∈ W, ∀ω ∈ Ω (21)

∑

t∈Tw

bj,t,ω = Bj,w ∀j ∈ J , ∀w ∈ W, ∀ω ∈ Ω (22)

∑

t∈Tw

b+j,t,ω ≤ B+
j,w ∀j ∈ J , ∀w ∈ W, ∀ω ∈ Ω (23)

∑

t∈Tw

b−j,t,ω ≤ B−
j,w ∀j ∈ J , ∀w ∈ W, ∀ω ∈ Ω (24)

bj,t,ω + b+j,t,ω ≤ Bj d̂j,t,ω ∀j ∈ J , ∀t ∈ T , ∀ω ∈ Ω (25)

bj,t,ω − b−j,t,ω ≥ Bj d̂j,t,ω ∀j ∈ J , ∀t ∈ T , ∀ω ∈ Ω (26)

t∑

τ=t−Fj

d̂j,τ,ω ≤ 1 ∀j ∈ J , ∀t ∈ T , ∀ω ∈ Ω (27)

∑

j∈J

t+∆W∑

τ=t

d̂j,τ,ω ≤ 1 ∀t ∈ T , ∀ω ∈ Ω (28)

As the decisions for the biomass delivery in the first week are first-stage de-
cisions of the stochastic program, we have to ensure that they have the same
values for each scenario ω for all periods t in the first week T1. This is forced
by the non-anticipativity constraints (29) to (30).

d̂j,t,ω = d̂j,t,ω′ , bj,t,ω = bj,t,ω′ ∀j ∈ J , ∀t ∈ T1, ∀ω, ω
′ ∈ Ω,ω 6= ω′ (29)

b+j,t,ω = b+j,t,ω′ , b−j,t,ω = b−j,t,ω′ ∀j ∈ J , ∀t ∈ T1, ∀ω, ω
′ ∈ Ω,ω 6= ω′ (30)

The inflow to the biomass storage in each period (31) is dependent on the
scheduled delivery and adjustments based on the options. The storage level is
given by equation (32). The outflow and capacity of the storage is limited in
constraints (33) and (34) by ∆F and ∆, respectively. The safety storage ∆t

for biomass is incorporated in constraints (35), but only for periods t in future
weeks in the rolling horizon, i.e. t ∈ Tw,w ≥ 2. In the current week T1, the
storage can be used for production (36).

δ+t,ω =
∑

j∈J

(
bj,t,ω + b+j,t,ω − b−j,t,ω

)
· EB ∀t ∈ T , ∀ω ∈ Ω (31)

δt,ω = δt−1,ω + δ+t,ω − δ−t,ω ∀t ∈ T , ∀ω ∈ Ω (32)
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δ−t,ω ≤ ∆F ∀t ∈ T , ∀ω ∈ Ω (33)

δt,ω ≤ ∆+ δEX
t,ω ∀t ∈ T , ∀ω ∈ Ω (34)

∆t ≤ δt,ω ∀w ∈ {2, . . . , |W|}, ∀t ∈ Tw, ∀ω ∈ Ω (35)

0 ≤ δt,ω ∀t ∈ T1, ∀ω ∈ Ω (36)

Constraints (37) to (40) regarding biomass consumption and feasible produc-
tion region of the CHP unit constraints are similar to constraints (15) to (18)
for the biomass selection problem. However, here the production depends also
on the status of the unit (xt,ω = 1 means the unit is on). The status of the
unit is determined by constraints (41) to (42) while constraints (43) and (44)
ensure minimum up- and down times MU and MD, respectively. The change
of production volume is restricted to the ramping requirements RU and RD in
constraints (45) and (46). The initial status of the CHP plant depends on the
previous week and is given by x0,ω and p0,ω as input parameters.

δ−t,ω =
pt,ω

ECHP
P

−Θ ·
qCHP
t,ω

ECHP
Q

∀t ∈ T , ∀ω ∈ Ω (37)

P · xt,ω ≤ pt,ω −Θ · qCHP
t,ω ≤ P · xt,ω ∀t ∈ T , ∀ω ∈ Ω (38)

Ξ · qCHP
t,ω ≤ pt,ω ∀t ∈ T , ∀ω ∈ Ω (39)

qCHP
t,ω ≤ QCHP · xt,ω ∀t ∈ T , ∀ω ∈ Ω (40)

yt,ω − zt,ω = xt,ω − xt−1,ω ∀t ∈ T , ∀ω ∈ Ω (41)

yt,ω + zt,ω ≤ 1 ∀t ∈ T , ∀ω ∈ Ω (42)

t∑

τ=t−MU+1

yτ,ω ≤ xt,ω ∀t ∈ T , ∀ω ∈ Ω (43)

t∑

τ=t−MD+1

zτ,ω ≤ 1− xt,ω ∀t ∈ T , ∀ω ∈ Ω (44)

pt,ω − pt−1,ω ≤ RU · xt−1,ω + P · yt−1,ω ∀t ∈ T , ∀ω ∈ Ω (45)

pt,ω − pt−1,ω ≥ −RD · xt,ω − P · zt,ω ∀t ∈ T , ∀ω ∈ Ω (46)

Constraints (47) set the heat production capacity QAUX of the auxiliary boiler.
The heat storage is modeled by constraints (48) to (54). The inflow is deter-
mined by the heat from the CHP unit and auxiliary boiler inserted into the
storage (48). The current storage level depends on the inflow, outflow and
previous level (49) (s0,ω for the initial value) and has to satisfy the capacity
restrictions [S, S] (50). Outflow (51) and inflow (52) are limited to SF and the
inflow cannot directly flow out again (53). To avoid emptying the storage at
the end, the initial level s0,ω must be reached again at the end of the rolling
horizon, i.e. in period t = |T | (54).

qAUX
t,ω ≤ QAUX ∀t ∈ T , ∀ω ∈ Ω (47)

s+t,ω = q
CHP,S
t,ω + q

AUX,S
t,ω ∀t ∈ T , ∀ω ∈ Ω (48)
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st,ω = st−1,ω + s+t,ω − s−t,ω ∀t ∈ T , ∀ω ∈ Ω (49)

S ≤ st,ω ≤ S ∀t ∈ T , ∀ω ∈ Ω (50)

s−t,ω ≤ SF ∀t ∈ T , ∀ω ∈ Ω (51)

s+t,ω ≤ SF ∀t ∈ T , ∀ω ∈ Ω (52)

s−t,ω ≤ st−1,ω ∀t ∈ T , ∀ω ∈ Ω (53)

s|T |,ω = s0,ω ∀ω ∈ Ω (54)

The flow of heat is modelled in constraints (55) to (57). The heat production
by both units is used for filling the heat storage and covering the demand.
Therefore, the production is split up into those two components in constraints
(55) and (56). For fulfilling the uncertain heat demand D̃t,ω, heat directly fed
to the district heating network and heat from the thermal storage is used (57).
Any shortfall of heat is modelled by variable qMiss

t,ω penalized in the objective
function.

qCHP
t,ω = q

CHP,N
t,ω + q

CHP,S
t,ω ∀t ∈ T , ∀ω ∈ Ω (55)

qAUX
t,ω = q

AUX,N
t,ω + q

AUX,S
t,ω ∀t ∈ T , ∀ω ∈ Ω (56)

D̃t,ω = q
CHP,N
t,ω + q

AUX,N
t,ω + s−t,ω + qMiss

t,ω ∀t ∈ T , ∀ω ∈ Ω (57)

4.3 Overall solution approach

The overall planning tool for a large-scale CHP producer combines the two
above mentioned stochastic programming models. The selection of biomass
contracts for the next year has to be decided once a year for the entire coming
year. For this long-term planning problem, the producer would use the biomass
contract selection model that determines the best set of contracts based on
heat demand uncertainty and a weekly production planning. This model is
only solved once and the contracting decisions regarding the contract type,
options and amounts can not be changed later on (line 1 in Algorithm 1).

The second model, i.e., the operational planning problem, is a planning
tool the CHP producer uses for the weekly production planning throughout
the year. This means every week of the year, the operational models is solved
with updated scenarios using more accurate forecasting information regarding
the uncertainty of heat demand and electricity prices (line 2 to 6 in Algorithm
1). We refer to Section 5.2 and Appendix A for more details on the scenario
generation in each phase. The model contains a more detailed production plan-
ning on an hourly scale covering the market structure and technical require-
ments. The difference to other operational planning problems in literature is
the direct coupling of the model to the decisions of the biomass contract selec-
tions. The model uses the contracting decisions as input and can not change
those. If and only if biomass options were contracted for a particular week in
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Algorithm 1 Two-phase solution approach

1: Solve the biomass contract selection model (1)-(19)
2: for each week in the overall planning horizon do

3: Select the corresponding contract decisions from line 1 and set limits
4: Generate scenarios for the current rolling horizon
5: Solve the operational planning model (20)-(57)
6: end for

the biomass contract selection, these can be now utilized in the operational
production planning to change the final delivery amount of biomass.

5 Case studies

In the following we analyze test cases for two different municipalities in Den-
mark, named A and B, that are connected to the Aarhus district heating
network. We consider 52 weeks starting from 1st of June 2016 as the planning
horizon in the numerical results in Section 6. In total, we look at ten test cases
(five per municipality) that are created as follows. Test case AY and BY are
yearly test cases and cover the entire 52 weeks for the respective municipal-
ity. Test cases AQ1, AQ2, AQ3 and AQ4 look at quarterly test cases with
13 weeks planning horizon for municipality A starting in week 1, 14, 27 and
40, respectively. This means test cases AY is the concatenation of test cases
AQ1, AQ2, AQ3 and AQ4. Test cases BQ1, BQ2, BQ3 and BQ4 are generated
analogously for municipality B. We like to point out that the planning horizon
in practice would be one year ranging from summer to summer. We use the
quarterly test cases due to two reasons. First, because of the lack of further
practical data, we can increase the number of test cases by using these subsets.
Second, we can solve an biomass contract selection model with hours as time
periods only for the quarterly test cases due to the complexity of the problem.

5.1 Technical data

The heat demand data in the district heating networks is obtained from [1],
NordPools’ hourly electricity prices for DK1 zone from [15] and daily natural
gas prices from [26]. Extreme outlier values in electricity prices are limited to
a maximum or minimum of four standard deviations from the mean.

The technical parameters for the CHP and auxiliary units as well as the
operation costs are based on [24, 33, 20] and [10] and shown in Tables 4, 5 and
6. Both systems comprise a CHP unit and one auxiliary boiler. Municipality A
uses a gas boiler in addition to the CHP, while municipality B uses an electric
boiler. The biomass storage minimum level ∆t is divided in two values. In
weeks 20 - 45 (i.e. in the heating season), we have a higher minimum level as
in the remaining weeks of the year. The penalty costs for both case are the
same and set to ΦSto = 1000 and ΦMiss = 10000.



A two-phase stochastic programming approach to biomass supply planning 19

Table 4: Technical parameters of the CHP unit

P P QCHP Θ Ξ RU RD ECHP
P ECHP

Q MU MD

A 13.24 3.8 20.8 -0.18 0.55 3.7 3.7 0.62 0.31 6 4
B 35.18 5.72 47.28 -0.12 0.64 4.6 4.6 0.64 0.29 8 5

Table 5: Technical parameters of the auxiliary unit and storages

Aux. boiler Thermal storage Biomass storage

EAUX QAUX S0 SF S S ∆F ∆0 ∆W ∆ ∆t EB

A 0.97 15 5 3 7 0 35 500 24 20000 4000 (20-45) 4.9971
2000

B 0.99 30 6.5 4.5 9.5 0 70 850 24 35000 7000 (20-45) 4.9971
3500

Table 6: Cost parameters

CHP Aux. boiler Storage

CCHP CSU CSD TEP I CO&M
Aux TAUX TCO2 CI

A 19.85 14250 0 55.62 20.25 0.07 28.22 6.34 0.0002
B 20.32 16870 0 55.62 20.25 0.5 52.07 0 0.0002

The parameters of the biomass contracts data are given in Table 7, where
they are organized from fixed contracts at the top of the table and gradually
going down to more flexible contracts. Both cases use the same set of contracts.
The biomass contracts are usually confidential. Therefore, the data for this
set of contracts has been determined by analyzing publications on market
prices for biomass and their plausibility has been confirmed by an energy
utility company in Denmark. Note that the minimum and maximum number
of deliveries, Nj ,Nj , in Table 7 are given for the yearly test cases AY and BY.
For the quarterly test cases, those were adjusted by dividing them by four to
have reasonable number of deliveries per quarter.

5.2 Scenario generation

Apart from the deterministic parameters mentioned in the previous section,
we have to handle uncertainty regarding heat demands, gas prices and electric-
ity prices to be used in the optimization. Since both municipalities are within
the same bidding region in Nordpool (DK1) and the same gas trading region,
the electricity and natural gas prices are identical. However, differences exist
regarding the heat demand. We use historical data from 1st June 2011 to 31st
May 2016 for electricity prices, natural gas prices and heat demands. Based on
this data, different techniques for scenario generation are implemented. The
resulting scenarios and expected values depend on the municipality due to the
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Table 7: Biomass contract data

Contract CB
j CB+

j CB−

j O+
j O−

j Bj Bj Fj Nj Nj

1 150.8 0 0 0 0 19000 18000 2016 4 4
2 156.4 0 0 0 0 17000 12000 1344 5 2
3 170.83 0 0 0 0 15000 11000 1008 8 4
4 181.31 30.56 30.56 0.1 0.1 12000 8000 504 17 15
5 181.43 24.45 24.45 0.15 0.15 12000 8000 504 15 15
6 183.59 30.56 30.56 0.25 0.25 5100 2380 336 25 24
7 183.43 36.67 36.67 0.25 0.25 5100 2380 336 25 15
8 201.89 18.34 18.34 0.5 0.5 1200 1200 168 50 50
9 202.17 18.34 18.34 0.5 0.5 1200 1000 168 50 25
10 204.29 28.12 28.12 0.5 0.5 850 850 120 60 50
11 202.24 28.12 28.12 0.65 0.65 850 500 120 60 30
12 202.05 12.22 12.22 0.75 0.75 350 100 48 100 80
13 202.64 12.22 12.22 0.75 0.75 350 100 48 100 50

different auxiliary boilers and heat consumption in previous years. Further-
more, the input time series varies with the phase of the solution approach
regarding time scales and need for scenarios. The scenario generation for both
phases is described in Appendix A and shortly summarized here. In phase 1,
the biomass contract selection, we use five scenarios based on the historical
data due to the long planning horizon. In phase 2, the operational planning
problem, we tested different methods to create the scenarios based on time
series analysis and historical data. Time series analysis was used here to take
advantage of the fact that we have a shorter planning horizon to predict and
that we can obtain recent data which allows us new forecasts every week.

The scenarios used in the evaluations are based on a combination of past
data and time series forecasts (see description in Appendix A). In the oper-
ational planning problem, the scenarios for prices and heat demand consist
five scenarios using a time series forecast for the rolling horizon and five sce-
narios using historical values (denoted as method F2+P). This means, the
total number scenarios in the operational model is ten. See Appendix B for a
comparison of different scenario generation methods.

5.3 Evaluation of solution approach

To evaluate our solution approach, we have to obtain the costs under different
realizations of the uncertainty. We use 11 samples, i.e, 11 different realizations
of uncertainty, for each test case. Because the samples are different for each
municipality, this results in a test set of 22 different samples in total. Please
note that these 22 samples do not include the scenarios used for optimiza-
tion. They are 22 new samples that are used in an out-of-sample setting to
evaluate the first-stage decisions in realizations of uncertainty that have not
been anticipated at the optimization stage. Sample 0 and 11 are the actual
realization of the heat demand, electricity prices and gas prices starting from
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1st June 2016 in municipality A and B, respectively. The remaining 20 sam-
ples (from 1 to 10 and 11 to 21) are a composite of different real data sets
obtained from the same sources as the previous data. The electricity and gas
prices are obtained from real data of 2015, 2016 and 2017 from other regions
in Nordpool and other European hubs, respectively. The heat consumption is
obtained from other municipalities in the Aarhus district heating system and
scaled to the size of the system capacity accordingly. The 22 samples can be
used for the yearly as well as the quarterly test cases. These leads to a total
of 110 evaluations per method (11 samples per test case and 10 test cases).

Evaluating one sample with a configuration of our method requires to ex-
tend Algorithm 1 by one step. Each week after the operational problem is
solved (line 5 in Algorithm 1), we fix the first-stage decisions and solve the
model using the realizations of the uncertainty of the first week. Thus, we
obtain the real costs for the first week and the initial status for the next week.

6 Experimental results

For the experimental evaluation, we implemented Algorithm 1 using Python
3.5.4 and Gurobi 9.0.0 (default parameters). All experiments are run on Intel
Xeon Processor E5-2660 v3 with 24 GB RAM on the DTU Computing Center2.
The objective values in this section comprise the real costs summed over all
weeks in the planning horizon. Furthermore, we set the length of the rolling
horizon to four weeks according to the analysis in Appendix C.

The results in this section are based on the test cases from the two munic-
ipalities and show that it is beneficial to use stochastic programming (Section
6.1) and a weekly biomass contract selection model (Section 6.3) in those 10
test cases using a thorough out-of-sample evaluation. The analysis of the real
data from the two municipalities (Section 6.2) further illustrates how the model
can be used in practice for optimization and evaluation of biomass contracts
and system operation.

6.1 Stochastic programming vs. expected value solution

To show the benefit of using stochastic programming instead of using an ex-
pected value approach, we compare the results in the following section. The ex-
perimental setup analyzes four different combinations of those two approaches.
Namely, StoSto, ExpExp, ExpSto and StoExp where the first three letters in-
dicate the method used for the biomass contract selection and the latter three
letters indicated the method used for the operational rolling horizon approach.
For example, StoExp means that we solved the biomass contract selection as
stochastic program while the operational problem is the expected value ap-
proach. The histograms in this analysis contain 110 data points, i.e., each of the

2 https://www.hpc.dtu.dk/
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5 test cases per municipality was evaluated for 11 samples in an out-of-sample
setting.

Figure 3 compares the outcomes of a pure expected value method (ExpExp)
versus a pure stochastic programming method (StoSto). The histogram shows
the difference of the objective value of ExpExp minus the objective value of
StoSto, i.e., negative differences meant that the stochastic method is better
than the expected value method and vice versa. The empirical distribution
of the difference shows that the StoSto method performs overall better than
ExpExp. In most of the cases, the difference is below zero. There are some
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cases of the 110 evaluations where the ExpExp performs slighly better. When
looking at the average objective values over all samples in the first row of Table
8, the performance of StoSto is confirmed.

We compare the other two possible method setups StoExp and ExpSto to
StoSto in Figure 5 and 4, respectively. The figures show that StoSto is better
when the biomass contract selection model uses an expected value approach
(see Figure 4). When only the operational model is solved using an expected
value method, the difference becomes smaller (see Figure 5). These observa-
tions are also confirmed by the average objective values in Table 8. From this
we can conclude that it is important to use a stochastic program especially
for the long-term contract decisions. Furthermore, Table 8 shows also the
unfulfilled heat demand. Due to the fact that this value does not change with
the type of the model used, the improvement of using stochastic programming
cannot be explained by avoiding infeasible solutions, i.e., penalty costs, com-
pared to the expected value case. The improvement can rather be explained
by the fact that the stochastic solution makes use of options while the ex-
pected value solution does not contract any options. For a visualization of the
decisions regarding options, we refer to Figure 6 in Section 6.2. The options
have a large impact on the operational planning problem, because contracts
without any options do not leave any space for reactions in the operational
planning problem. The benefit of using options is illustrated in Table 8. If
the biomass contract selection model is the expected value model (Exp* ), the
actual biomass delivery amount throughout the year equals the contracted
biomass amount, i.e., no options are contracted and used. When the biomass
contract selection is solved as a stochastic program (Sto* ), the actual deliv-
ery is different than the contracted amount which means that the options are
actually used. This results in lower cost for the biomass in the end, although
we have to pay a slightly higher price for the options in the biomass contract
selection. The flexibility of the options in the stochastic setting also leads to
a lower biomass storage level at the end of the year, i.e., less unused but
paid biomass. Finally, the flexibility of the options allows the model to shift
more production to the auxiliary boiler if it is cheaper the cheaper alternative
leading to lower production costs. This is in particular the case, if also the op-
erational planning problem is solved as a stochastic program (*Sto), because
the stochastic model includes fuel price scenarios of the auxiliary boiler. The
usage of the options is also investigated in the next section for the two samples
with real data.

6.2 Interpretation of results for real data from 2016-2017

In this section, we describe the results of the contract selection and operational
planning in more detail. As an example, we analyze sample 0 for test case AY
and sample 11 for test case BY, which contain the real data from 1st June
2016. We would like to point out that the conclusions drawn in this section
coincides with the observations from the other samples.
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Table 8: Objective value, missing heat demand, biomass contract, delivery and
storage values as well as heat production values for the different combinations
of models. The values are averaged over all 11 samples per test case. All values
are summed over the entire planning horizon except the storage level.
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Fig. 6: Biomass contracts selected for yearly instances

Figure 6 shows the selected biomass contracts for municipalities A and B in
the stochastic (Sto) and expected value solution (Exp), respectively. The con-
tracts are valid for all samples. The data points show the contracted biomass
amount and the vertical lines that extent from some of the crosses are the
amount of upward and downward options bought, i.e., in which range the
delivery amount can be changed during the operational planning problem.
Because we can decide to buy options for each delivery individually only some
of the deliveries have contracted options. We see that only the solutions ob-
tained by the stochastic approach make use of options. As the expected value
solution has no scenarios and assumes the expected values of uncertain pa-
rameters as deterministic, the contracts are selected in such a way that the
solution fits these expected values. Thus, no use of options is reasonable in this
case. However, when other biomass amounts are needed in the course of the
year, the options contracted in the stochastic solution bring an advantage and
reduce the overall cost (see Table 8). From Figure 6 also the difference in the
delivery patterns for the two municipalities can be seen. The selected contract
for municipality A (contract 12) has smaller amounts but more frequent deliv-
eries. Whereas municipality B has two contracts, one with larger amounts and
less deliveries, which relates also to the higher heat demand in municipality
B (contract 7). It also uses contract 13 for smaller frequent deliveries to use
biomass between the large deliveries.

The actual delivery amounts, i.e., after making use of options, and the
biomass storage level are depicted in Figure 7 for the real data starting from
1st June 2016. The amounts are accumulated per week. Furthermore, the
contracted delivery amount is depicted to show if the options are actually used
in the course of the year. For both municipalities the operational problem
uses the options, for example, in week 3 for municipality A and week 4 in
municipality B.

The heat production from June 2016 to May 2017 for municipality A and
B is shown in Figure 8. In both cases the heat demand was always fulfilled and
the production follows similar behavior. At start of the season, the demand
can be covered by the biomass-fired CHP. During the winter periods with a



26 Daniela Guericke et al.

1 11 21 31 41 51

0

1000

2000

3000

4000

5000

6000

Week

B
io

m
a

s
s
 [

M
W

h
]

Actual delivery SSDelivery SSDelta

(a) Test case AY (Sample 0)

1 11 21 31 41 51

0

5000

10000

15000

20000

25000

30000

Week

B
io

m
a

s
s
 [

M
W

h
]

Actual delivery Contracted delivery Storage level

(b) Test case BY (Sample 11)

Fig. 7: Biomass storage level and deliveries for the real realization of uncer-
tainties from 1st June 2016
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Fig. 8: Heat production for real realization of uncertainties from 1st June 2016

high demand, the auxiliary boiler is used in addition to the CHP to cover the
heat demand. Furthermore, at the end of the season the boiler is used more
often as in the beginning of the season due to a slightly higher demand and the
biomass contract decisions contracting less biomass in the end of the season.

6.3 Hourly vs. weekly biomass contract selection

By using a weekly time scale in the biomass contract selection, some of the
technical details of the operation of the plants are lost. For example, capacities
are considered on a weekly scale and no commitment decisions for the CHP
are included. Furthermore, the thermal storage are excluded from the weekly
model.

In this section, the difference of using an hourly model for the biomass
contract selection compared to the weekly model are investigated. We perform
this analysis only for the quarterly instances, i.e., AQ1, AQ2, AQ3, AQ4, BQ1,
BQ2, BQ3 and BQ4. The method used is StoSto. Thus, the analysis contains
88 evaluations per method (hourly or weekly).

The model for solving the biomass contract selection model with hourly
time periods is a combination of the biomass contract selection in Section 4.1
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Fig. 9: Difference [%] (Hourly-Weekly) in the rolling horizon setting

using hours instead of weeks and the operational model in section 4.2 without
the auxiliary boiler. The objective function and biomass contract constraints
are used from the biomass contract selection model (1),(2) and (4)-(9). The
technical constraints for the system are taken from the operational model
(27),(28), (31)-(46), (48)-(55) and (57) excluding auxiliary boiler related vari-
ables. In the out-of-sample evaluation of the biomass contract solutions, we
aggregate the solution of the hourly model to weekly contract decisions as it
described in Table 3. Thus, deliveries in the hourly model do not need to be
planned for a specific hour months in advance, which resembles the approach
in the weekly model and in practice.

The results in Figure 9 show that using an hourly model with more techni-
cal details does not necessarily perform better in the out-of-sample evaluation.
Actually, the weekly model performs better in many cases. In very few cases,
the biomass contract decisions of the hourly model even lead to missing heat
demand as the large negative difference shows in Figure 9. This observation
can also be seen from the average objective values in Table 9. In the rolling
horizon setting, the weekly model performs better on average. We can also
solve the operational model for the entire sample at once, i.e., no rolling hori-
zon approach. In this case, we assume to know the sample data for the entire
planning horizon in the beginning of the quarter (which would not be the case
in practice). In this case, the hourly model is more profitable in three of the
eight test cases.

To explain why the weekly model often works better, the heat production,
thermal storage usage and contract decisions for both the hourly and weekly
model are given in Table 10. The table shows that the heat production of the
CHP as well as the contracted biomass amounts are similar for both models.
Also the total amount of biomass contracted in options is very similar. How-
ever, the weekly model contracts upward and downward options, while the
hourly model only makes use of upward options. This is due to the representa-
tion of the thermal storage in the hourly model. In this model, the production
from excess biomass can be stored in the thermal storage for later use making
downward options not so valuable. This is not possible in the weekly represen-
tation. However, in the out-of-sample evaluation of the contract decisions, this



28 Daniela Guericke et al.

Table 9: Average objective values [x100,000e] (averaged over all 11 samples)
for the out-of-sample evaluation solving the operational model in a rolling hori-
zon approach or at once for the entire sample using the the biomass contract
decisions from the hourly (H) and weekly (W) model, respectively.

Scale AQ1 AQ2 AQ3 AQ4 BQ1 BQ2 BQ3 BQ4

Rolling horizon
H 10.86 20.40 43.65 24.20 23.34 41.04 93.96 49.44
W 10.37 19.72 34.29 23.51 20.63 39.33 73.46 47.47

Entire Sample
H 10.66 20.20 34.17 24.08 23.34 41.00 73.49 49.44

W 10.11 19.35 34.37 24.14 22.18 39.17 73.39 50.38

can lead to a negative effect of the hourly model solution, because the sample
can have a heat demand which makes the downward options profitable. There-
fore, the weekly model performs better in the out-of-sample evaluation. When
knowing the entire sample in advance, the biomass contracts do not require
so much flexibility. Which explains, the three cases where the hourly model
performs better for the entire sample (see 9).

Finally, Table 10 also shows the computational time and remaining MIP
gaps of the hourly and weekly biomass contract selection models. The timeout
for the calculation was 24 hours. Compared to the weekly biomass contract
selection model, the hourly model takes substantially longer. While the hourly
model hits the timeout in 50% of the test cases, the weekly model is solved
in less than 2 seconds for all cases. This is also the reason why we could not
perform this analysis for the test cases AY and BY, where the solver did not
find any solution in the given computational time (72 hours).

We conclude that using a weekly time scale in the biomass contract selec-
tion problem not only has significantly shorter computation times, but also
adds more flexibility to the operational decisions leading to a better perfor-
mance in unknown cases.

6.4 Runtime analysis

Figure 10 shows the runtimes for the yearly test cases AY and BY over the
11 samples per municipality. For most of the cases, the runtime to solve the
operational model for one week is less than 60 seconds. Also, the biomass con-
tract selection model is solved in less than 10 seconds for both municipalities
(see week 0 in Fig. 10). The corresponding model sizes are given in Table 11.

For the few cases with a high runtime the average lies below 400 seconds
(see Fig. 10a), which is short enough for a weekly planning problem to be used
in practice. The weeks with higher runtime relate to samples where the heat
demand is higher than expected in the biomass contract selection phase, which
leads to a shortage of biomass in the subsequent weeks (in the beginning of
the year in municipality A and in the end of the year in municipality B). Due
to this shortage the model tries to avoid penalties for getting below the safety
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Table 10: Comparison of biomass contract selection solution features for hourly
(H) or weekly (W) time-scale. CHP heat and thermal storage inflow are aver-
aged values over all five scenarios.

Scale AQ1 AQ2 AQ3 AQ4 BQ1 BQ2 BQ3 BQ4

CHP Heat
[MWh]

H 11968.7 23441.4 38923.6 27997.5 25742.1 51293.2 93385.3 62561.1
W 11969.1 23541.6 39266.6 28174.6 25761.1 51426.2 94621.7 62844.0

Thermal storage
inflow [MWh]

H 330.48 1096.40 346.46 369.86 1060.08 1065.00 1467.88 1744.90
W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Contracted
biomass [t]

H 3917.8 6977.7 11948.5 8566.9 8880.2 16509.9 27432.2 19179.8
W 3562.8 6720.1 12166.8 8735.4 8311.9 15498.0 27026.0 19399.6

Upward
options [t]

H 359.49 1166.87 314.13 1078.40 2128.33 2623.93 3329.83 3460.67
W 278.27 968.81 154.34 144.79 277.17 1513.72 2458.18 1050.00

Downward
options [t]

H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
W 58.89 303.44 107.87 995.86 1765.12 1217.95 1332.23 2515.62

# Deliveries
H 19 31 5 28 28 23 10 17
W 21 23 5 28 37 6 10 18

Runtime [s]
H 86470.2 51076.9 3532.0 17562.2 86462.3 86469.4 86468.2 8325.9
W 0.7 5.4 0.4 0.6 0.9 1.5 0.8 1.0

Gap [%]
H 4.5% 0.0% 0.0% 0.0% 4.0% 0.4% 0.0% 0.0%
W 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Fig. 10: Average runtimes per week (week 0 corresponds to biomass contract
selection, averaged over all samples)

Table 11: Model sizes

Cont. var. Int. var. (thereof bin. var.) Constraints NZs

Biomass selection 10,878 689 (13) 1,3812 40,479
Operational - 4 weeks 60,500 13,440 (13,440) 117,675 550,340

storage level while producing as much as possible with the CHP to get income
from the electricity market. As the production is not possible in all hours, the
model has to select the hours with highest expected electricity prices making
it harder for the solver to find the best solution as the electricity prices are
close to each other.
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7 Summary and outlook

In this work, we propose a solution approach that optimizes the biomass sup-
ply planning for a large-scale CHP producer using biomass. The decision-
making process is divided into two phases both using two-stage stochastic
programs. The first model, named biomass contract selection, is solved for a
long-term horizon with weekly periods and configures the contracts from a set
of biomass suppliers. Those decisions are used in the second model, named op-
erational planning, to optimize the heat production. This solutions approach
corresponds to the planning process in practice. We evaluate our method on
two case studies with 10 test cases and realistic requirements and historical
data to create scenarios. We analyze several scenario generation possibilities
to create the scenarios based on past data and different forecasting tools. Our
analysis investigates the results obtained for 22 samples of realizations of un-
certainty.

In practice, biomass contracts are often selected based on one scenario, e.g.,
expected demand or worst case demand. Our approach shows that by just con-
sidering one scenario, a mismatch of needed amounts and ordered amounts can
happen. However, our stochastic programming approach can model contrac-
tual options to avoid this and add more flexibility for the operator. We show
that applying stochastic programming is required to make use of the options,
yielding better results than in the expected value case where no options are
purchased in most of the cases. Furthermore, the analysis shows that using a
weekly timescale for the long-term biomass contract selection is working well
and can even lead to better results than using more technical details on an
hourly timescale.

We envision four future research directions. First, further uncertainties
regarding the delivery of biomass such as amount and quality variations could
be included in a supply chain planning model. Second, an economic analysis
of the options and different types of contracts should be made to assess their
benefit for the producer. That is from both supplier’s and producer’s points of
view.Third, the performance of the method should be confirmed using further
test cases. Finally, the comparison of different long-term forecasting tools with
the use of data from previous years to create long-term scenarios is another
future research direction.
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Appendix A Scenario generation

In this section, we describe the different approaches used for scenario genera-
tion in biomass contract selection and operational planning problem, respec-
tively.

A.1 Biomass contract selection

In phase one of the solution approach, scenarios for the heat demand and the
expected value for auxiliary boiler costs and electricity prices are part of the
model. In this tactical planning problem, we use the heat consumption of the
five previous years (i.e. 1st June 2011 - 31st May 2016) from summer to summer

of the respective community as heat demand scenarios (D̃t,ω) resulting in five
scenarios. The probability for each scenario is determined based on the year
while giving a higher probability to more recent years (first three years: 0.15,
last two years: 0.275).

The expected values for electricity and natural gas prices are obtained
by calculating a linear combination of the observations of the last five years
weighted by the probability (x̂t =

∑5

i=1 Πωi
xt,i where xt is the price for time

period t ∈ T in year i). Due to the weekly time periods, the values are averaged
per week.

A.2 Operational planning problem

In the operational planning more recent information is available for the sce-
nario generation, because we obtain new observations after each week. Further-
more, we are closer to the actual delivery time than in the biomass contract
selection problem. Consequently, we can use time series analysis to predict the
uncertainties more accurately by updating the models in every week.

There are different possibilities to obtain scenarios for the operational
model. We implement and analyze five different types of scenario generation:

Using past data as predictions (P) Data from previous years is used to built
scenarios analog to the biomass contract selection scenarios. The scenarios
consist of the data from the respective week(s) in previous years.
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Combining time series models and past data as predictions (F1) In this method,
we use time series models to predict the first week of the rolling horizon and
use data from previous years for the remaining weeks of the rolling horizon.
The time series model uses the most recent observations to update the fore-
cast for the following week. Heat demand and electricity prices (especially in
the short-term horizon) have an autocorrelation and seasonality that can usu-
ally be detected using time series models [34]. For this specific case, we use
an ARMAX model [22] where the weekly seasonality of prices and consump-
tion is introduced using Fourier series in the form of exogenous parameters.
The models have been fitted following the Box-Jenkins methodology [5], where
we distinguish between model identification, estimation and diagnosis. Since
ARMA models rely on past observations to predict future events, we use past
data for the remaining weeks of the rolling horizon because they are further
into the future and the risk of inaccurate predictions is higher. To create sce-
narios from the time series model, we follow the scenario generation process
described in Conejo et al. [9]. More specifically, we generate 2500 equiprobable
scenarios using Monte Carlo simulation and cluster them using the k-medoid
algorithm to obtain five representative scenarios [17]. The forecasted scenarios
for the first week have to be combined with data from previous years to get
a scenario for the entire rolling horizon. Therefore, we add the data from the
most recent year to the scenario with the highest probability.

Using time series models as predictions (F2) This method is similar to F1,
because it also uses time series models for predictions and uses Monte Carlo
simulation and clustering for generating scenarios. However, in this case we
make predictions for the entire rolling horizon and do not combine with past
data. The time series models, forecasts and scenarios are obtained following
the same method as for F1.

All three above mentioned methods result in five scenarios for the opera-
tional planning problem. As two further possibilities for scenario generation,
we use combinations of these methods. Namely, we combine the scenarios ob-
tained from historical data (P) with the two time-series-based methods (F1
and F2 ) resulting in ten scenarios. Note that the probabilities are normalized
to result in a sum of one again. These methods are denoted by P+F1 and
P+F2.

Note that the above mentioned scenario generation is used for electricity
prices and heat demands. For the gas prices in case study A with the gas
boiler, we also use an expected value in the operational model. This is due to
the fact, that gas prices are daily prices and are not as volatile as, e.g., the
electricity price, and we deem the expected value as accurate enough for this
model.
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Table 12: Objective value [x100,000e] for each mode of scenario generation
averaged over 1, 2, 3 or 4 weeks of rolling horizon

S. Test case AY S. Test case BY

P F1 F1+P F2 F2+P P F1 F1+P F2 F2+P

0 87.59 87.59 87.59 87.64 87.59 11 172.41 172.26 172.22 172.16 172.17
1 88.38 88.42 88.37 88.43 88.41 12 179.84 178.76 179.74 178.86 179.72
2 85.28 85.30 85.28 85.30 85.27 13 168.74 168.78 168.66 168.69 168.64

3 88.06 88.10 88.10 88.13 88.10 14 179.25 178.89 179.10 179.22 179.04
4 85.74 85.76 85.74 85.76 85.73 15 172.41 172.67 172.41 172.61 172.40

5 86.83 86.83 86.99 86.84 87.00 16 173.94 173.17 173.01 173.14 173.00

6 85.74 85.70 85.74 85.75 85.74 17 171.98 172.19 171.95 172.17 171.94

7 90.11 90.11 90.14 90.19 90.15 18 175.68 174.95 175.39 175.19 175.41
8 84.91 84.92 84.91 84.91 84.91 19 168.34 168.42 168.30 168.23 168.29
9 85.91 85.91 85.91 85.95 85.90 20 173.56 173.45 173.36 173.35 173.33

10 86.55 86.56 86.55 86.56 86.49 21 169.40 169.43 169.40 169.78 169.33

Appendix B Analysis of scenario generation methods

In this section, we compare the different methods for scenario generation. The
results show the performance of the different scenario generation methods
described in Section A of this Appendix for the operational planning problem.

Table 12 shows the results for each sample of both municipalities. The value
shown is the average overall costs per scenario generation method averaged
over different lengths of the rolling horizon (one, two, three or four weeks). The
analysis of different rolling horizon lengths is described in Appendix. Based on
Table 12, the best of the implemented scenario generation methods is F2+P,
i.e., updating the scenarios every week by forecasting the next weeks of heat
demand and additionally using previous years data as scenarios. Method F2+P
achieves the best result in 4 out of 11 samples for municipality A and in 6 out
of 11 cases for municipality B. For the remaining cases, no common favorable
method can be determined, as it differs per case.

Based on these results, we conclude for our test cases that it is benefi-
cial to update the scenarios every week and using previous years’ data. For
application in practice, this should be evaluated individually. Our scenario
generation methods can be easily replaced with already existing proved and
tested forecasting methods of the operator.

Appendix C Analysis of length of rolling horizon

Table 13 shows the objective value and penalty costs for test cases AY and
BY using scenarios generated by method F2+P for different lengths of the
rolling horizon, namely one, two, three and four weeks. Note that in no case,
penalty costs for exceeding the biomass storage capacity occurred and these
are therefore omitted from the table. The most important result is that the
objective values are best using four weeks of rolling horizon in most of the
cases. This is mainly due to the reduction in penalty costs for not fulfilling
the heat demand (see Table 13) and the opportunity of using of options. If the
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Table 13: Objective value and penalty costs [x100,000e] for different lengths
of rolling horizon

Sample Objective Penalty qmiss

1 2 3 4 1 2 3 4

T
es
t
ca

se
A
Y

0 88.19 87.39 87.38 87.40 1.70 1.38 1.38 1.38
1 89.19 88.29 88.11 88.05 0.00 0.00 0.00 0.00
2 86.63 84.86 84.81 84.80 0.24 0.00 0.00 0.00
3 89.15 87.96 87.65 87.62 0.00 0.00 0.00 0.00
4 86.84 85.39 85.36 85.34 0.00 0.00 0.00 0.00
5 88.06 86.65 86.65 86.64 1.55 1.01 1.01 1.01
6 86.12 85.61 85.62 85.62 0.00 0.00 0.00 0.00
7 90.98 89.87 89.87 89.87 2.90 2.90 2.90 2.90
8 84.89 84.93 84.92 84.91 0.00 0.00 0.00 0.00
9 86.88 85.58 85.58 85.58 0.00 0.00 0.00 0.00

10 86.99 86.34 86.33 86.29 0.13 0.13 0.13 0.13

T
es
t
ca

se
B
Y

11 173.33 171.91 171.73 171.69 1.30 1.30 1.30 1.30
12 181.96 179.01 178.97 178.93 2.33 0.00 0.00 0.00
13 170.13 168.44 168.06 167.92 0.00 0.00 0.00 0.00
14 180.76 179.14 178.17 178.08 0.00 0.00 0.00 0.00
15 173.24 172.20 172.15 172.03 0.00 0.00 0.00 0.00
16 173.42 172.90 172.87 172.80 1.33 1.33 1.33 1.33
17 172.37 171.84 171.81 171.73 0.00 0.00 0.00 0.00
18 175.80 175.32 175.27 175.24 0.00 0.00 0.00 0.00
19 168.70 168.26 168.12 168.07 0.00 0.00 0.00 0.00
20 174.25 173.07 173.04 172.95 0.00 0.00 0.00 0.00
21 170.07 169.20 169.05 169.00 0.00 0.00 0.00 0.00

rolling horizon already considers scenarios for weeks after the current week, we
make use of this information now. If the biomass contract selection (phase 1)
scheduled a delivery only in the current week, but not in the next week, having
a longer planning horizon can be beneficial. If we only consider the current
week, we may not make use of an option, because it is not needed now.

For a rolling horizon of more than one week, the results are quite similar. In
a few cases, a longer horizon can lead to slightly poorer results due to the fact,
that the heat demand is still uncertain and we may make use of an upward or
downward option that corrects the delivery amount according to the uncertain
scenarios. If the scenarios show a wrong trend in later weeks, it can be more
beneficial to just include a second week (e.g. sample 8, test case AY). The
penalty cost for missing the heat demand is ΦMiss = 10000 [e/MWh], which
means we miss at most 29.04 MWh of heat in sample 7 for municipality B
in an entire year. In all cases with penalty cost, the missing demand occurs
in periods with an exceptionally high demand close to the capacity of the
system. Those very high demands are often not covered by the scenarios and
therefore wrong planning decisions may cause a shortage of biomass and a
penalization for not satisfying the heat demand. Note that in practice a lack
of supply in the district heating network would never occur, because the heat
producer can gradually decrease the supply temperature or reduce the water
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flow to increase the demand covered. However, these cases must be avoid and
therefore we penalize them in the objective.
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