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Abstract—We propose a two-phase successive cancellation
(TPSC) decoder architecture for polar codes that exploits the
array-code property of polar codes by breaking the decoding

of a length-N polar code into a series of length-
√

N decoding
cycles. Each decoding cycle consists of two phases: a first
phase for decoding along the columns and a second phase
for decoding along the rows of the code array. The reduced
decoder size makes it more affordable to implement the core
decoder logic using distributed memory elements consisting of
flip-flops (FFs), as opposed to slower random access memory
(RAM), leading to a speed up in clock frequency. To minimize
the circuit complexity, a single decoder unit is used in both
phases with minor modifications. The re-use of the same decoder
module makes it necessary to recall certain internal decoder state
variables between decoding cycles. Instead of storing the decoder
state variables in RAM, the decoder discards them and calculates
them again when needed. Overall, the decoder has O(

√

N) circuit
complexity excluding RAM, and a latency of approximately 2.5N .
A RAM of size O(N) is needed for storing the channel log-
likelihood variables and the decoder decision variables. As an
example of the proposed method, a length N = 214 bit polar
code is implemented in an FPGA and the synthesis results are
compared with a previously reported FPGA implementation. The
results show that the proposed architecture has lower complexity,
lower memory utilization with higher throughput, and a clock
frequency that is less sensitive to code length.

Index Terms—Error correcting codes, polar codes, successive
cancellation decoding, decoding complexity.

I. INTRODUCTION

Polar codes were introduced in [1] as a class of codes that

achieve the capacity of binary-input memoryless symmetric

channels using low-complexity encoders and decoders. The

decoder used in [1] was a successive cancellation (SC) de-

coder. Some implementation aspects of the SC decoder were

discussed in an early follow-up work [2]. Since then the SC

decoder and many of its variants (including belief propagation

(BP) decoders) have been the subject of intense research,

aimed at improving the performance of the basic SC decoder.

This line of work was motivated by potential practical appli-

cations of polar coding and has emphasized efficient hardware

or software implementations. A notable work of this type is

[3], in which a VLSI implementation architecture was given

for the SC decoder. In related work, [4], a semi-parallel SC

decoder implementation was described, with synthesis results

for an FPGA and a TSMC 65 nm process. In [5], first results

concerning an FPGA implementation of a BP decoder for

polar codes was reported and the complexity of the resulting

implementation was compared with that of a decoder for the

IEEE 802.16e Convolutional Turbo Code (CTC) code, also

implemented on the same FPGA. That comparison showed a

complexity advantage in favor of polar codes.

In this work, we describe a new architecture for the im-

plementation of SC decoding. The proposed TPSC decoder

architecture exploits the fact that polar codes can be expressed

as product codes. As a result, the decoding of an N -bit polar

code can be divided into two phases where each phase a

shorter polar code is decoded. This approach gives rise to two

advantages. First, a smaller partial sum update logic (PSUL)

is used. The term PSUL, borrowed from [4], refers to the

propagation of decoder decisions to parts of the decoder circuit

where they are needed to enable further calculations. The

PSUL is indicated as the main cause of hardware complexity

and low clock frequency in [4]. The second advantage of using

smaller decoder units is to make it more affordable to use FFs

as storage elements integrated into the decoder fabric, instead

of the more abundant but slower RAM. Further details about

the decoder and its relation to previous work will be given in

the following sections.

The organization of the rest of the paper is as follows.

Section II gives a brief account of polar codes. Details of

the TPSC decoder are given in Section III with references to

earlier related work. Finally, synthesis results for the TPSC

decoder are given in Section IV and compared with an earlier

work.

II. POLAR CODES

A. Notation

The codes considered are over the binary field F2 and

so are all vector and matrix operations. Boldface uppercase

(lowercase) letters are used to denote matrices (vectors). For

any matrix A, A⊗n denotes the nth Kronecker power of A.

For any vector u = (u1, . . . , uN ) and set A ⊂ {1, . . . , N},

the notation uA denotes the sub-vector of u consisting of

coordinates in A, i.e., uA = (ui : i ∈ A). The function σ(x)
is defined as σ(x) = 0 if x ≥ 0 and σ(x) = 1 otherwise.
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B. Polar Encoding

For any N = 2n with n ≥ 1, a length-N polar code is

defined by the linear mapping

x = uGN , GN = F
⊗n, F =

[

1 0
1 1

]

, (1)

where u and x are row vectors of size 1×N , representing the

source word and the codeword, respectively. A rate K/N polar

code is specified by a K-element set A ⊂ {1, . . . , N} which

serves to split the source vector u into two parts: a part uA

which carries data and its complement uAc which is frozen.

The decoder knows the frozen part and tries to estimate the

free part. We assume throughout that the frozen part uAc is

fixed as zero. For capacity-achieving performance on a given

channel, the set A needs to be chosen with care, as described

in [1]; however, for the purposes of the present paper, the set

A can be anything.

C. Successive Cancellation Decoding

We consider a decoder architecture which is based on the

uniform graphical representation of polar codes as described

in [2], [5]. Specifically, we use the representation shown in

Fig. 1, which is one of several such representations given in

[5]. The decoding of polar codes will be described in relation

(0) (1) (2) (3)

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Fig. 1. Uniform decoding graph for an 8-bit SC decoder.

to this graph. For a polar code of length N = 2n, there are

N rows and n+ 1 columns in the associated graph. The left-

most column (numbered 0) corresponds to the source level and

the right-most column (numbered n) to the channel level. For

each 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ n, the node in the ith row

and the jth column is associated with two decoder variables:

a likelihood ratio (LLR) λi,j and a hard decision (HD) ûi,j .

The right-most LLR variables (λi,n : i ∈ {0, . . . , N − 1}) are

received from the channel and constitute the decoder input.

The remaining LLR values are calculated by the formulas

λi,j =

{

f(λ2i,j+1, λ2i+1,j+1), i < N/2;

g(λ2i,j+1, λ2i+1,j+1, ûi−N/2,j), i ≥ N/2,

where

f(a, b) = (1 − σ(ab))min(|a|, |b|)
g(a, b, û) = b + (1− 2û)a

(The function f is one of several possible approximations to

the exact LLR calculation. The method described here can be

applied with other approximations or the exact formula.)

The HD variables are calculated successively in accordance

with the following rules.

ûi,j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, j = 0 and i ∈ Ac;

σ(λi,j), j = 0 and i ∈ A;

ûi/2,j−1 ⊕ ûi/2+N/2,j−1, j �= 0 and i even;

û(i−1)/2+N/2,j−1, j �= 0 and i odd.

The specific order of calculations in SC decoding as described

in [1] ensures that the interdependencies among the LLR and

HD variables do not lead to a computational lock-up state.

In fact, a certain degree of freedom exists in the schedule of

calculations as mentioned in [1]. Specifically, the LLR values

{λi,j : 0 ≤ i ≤ N − 1} at level j can be calculated in batches

of size 2j , for any 0 ≤ j ≤ n. Such parallelization has been

exploited in [3] and [4] to give a range of implementation

options, offering trade-offs between time and hardware com-

plexity.

III. A TWO-PHASE SUCCESSIVE CANCELLATION

DECODER

In this section, we describe the TPSC decoder architecture

for polar codes. This architecture exploits the fact that polar

codes can be factored into the product of smaller polar codes.

We first make this notion more precise before describing the

details of the proposed decoder.

A. Polar Codes as Array Codes

An N -bit polar code can be constructed as a code that maps

a source array of size N1 × N2 to a codeword array of the

same size for any N1 and N2 such that N = N1N2. To see

this, write the source vector u in (1) in the form

u =

⎡

⎢

⎢

⎢

⎣

u0 u1 · · · uN1−1

uN1
uN1+1 · · · u2N1−1

...
...

. . .
...

u(N2−1)N1
u(N2−1)N1+1 · · · uN2N1−1

⎤

⎥

⎥

⎥

⎦

.

Encode this array row by row using the matrix GN1
to obtain

an interim array

v =

⎡

⎢

⎢

⎢

⎣

v0 v1 · · · vN1−1

vN1
vN1+1 · · · v2N1−1

...
...

. . .
...

v(N2−1)N1
v(N2−1)N1+1 · · · vN2N1−1

⎤

⎥

⎥

⎥

⎦

.
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Next, encode v column by column using GN2
to obtain

x =

⎡

⎢

⎢

⎢

⎣

x0 x1 · · · xN1−1

xN1
xN1+1 · · · x2N1−1

...
...

. . .
...

x(N2−1)N1
x(N2−1)N1+1 · · · xN2N1−1

⎤

⎥

⎥

⎥

⎦

.

It is not difficult to see that the array x, serialized into a vector,

satisfies (1).

B. The Two Phase Successive Cancellation Decoding Algo-

rithm

The TPSC decoder exploits the above structure by splitting

the decoding into two phases, first along the columns then

along the rows. The TPSC algorithm is most readily applicable

to polar codes for which the code length N = 2n is a power

of 4. Then, one considers the product-form representation

with N1 = N2 =
√
N and defines

√
N decoding cycles

(DCs). Each DC consists of a phase-1 (P1) decoding cycle,

which works column-wise on the code array, followed by a

phase-2 (P2) decoding cycle, which works row-wise. Every

DC terminates with the estimation of
√
N source bits. Fig. 2

illustrates the four DCs in decoding a code of length N = 16.

The active edges processed by the P1 and P2 decoders in each

DC are indicated by the blue and red colors, respectively.
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Fig. 2. Active edges in decoder graph in various DCs for a 16-bit code.

In general, the decoding graph consists of n+ 1 levels for

a code of length N = 2n. The P1 decoder works on code

segments between levels n/2 and n, while the P2 decoder

works between levels 0 and n/2. The two decoders interface at

level n/2 and exchange information with each other but they

are otherwise independent. There are two types of memory

used by the decoders: flip-flops (FFs) and random access

memory (RAM). FFs are faster than RAMs but the FF storage

capacity is nowhere as abundant as the RAM capacity in

typical FPGAs. In the proposed TPSC decoder, FFs are used

for calculations internal to P1 and P2 decoders. RAM is used

for storing the channel LLRs and the HDs exchanged at level

n/2 between the P1 and P2 decoders. The details of the P1 and

P2 decoders are described next, starting with the P2 decoder

since any standard polar decoder can be used as a P2 decoder,

while the proposed P1 decoder has some novel features.

1) Phase-2 Decoder: The P2 decoder receives LLR inputs

at level n/2 from the P1 decoder and terminates by generating√
N HDs at level 0. Here, we use a fully parallel decoder

for P1. To be more specific, we use the pipelined tree (PT)

decoder architecture proposed in [3], with some modifications

as shown in Fig. 3 for
√
N = 8. As in the original PT decoder,

the P1 decoder here has 2j processing elements (PEs) between

levels j and (j + 1), where each PE is capable of computing

the functions f and g.
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û4l+3,2
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k ∈ {0, . . . , N

2
− 1} l ∈ {0, . . . , N

4
− 1} m ∈ {0, . . . , N

8
− 1}

Fig. 3. P2 decoder architecture for
√

N = 8.

The modified PT architecture used here substitutes a special

PE (SPE) in place of a regular PE in order to improve latency.

The SPE calculates the HDs,

ûi,0 =

{

0, i ∈ Ac;

σ(λ2i,1)⊕ σ(λ2i+1,1), i ∈ A,

and

ûi+N

2
,0 =

{

0, i+ N
2 ∈ Ac;

σ(λ2i+1,1 + (1 − 2ûi,0)λ2i,1), i+ N
2 ∈ A.

in parallel, reducing the latency of the original PT decoder

from 2
√
N − 2 to 1.5

√
N − 2 CCs. The SPE also avoids
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Fig. 4. P1 decoder architecture for
√

N = 8.

calculating the LLRs λi,0 at level 0 since only their signs

are needed. The short-cut used in SPE is similar to the look-

ahead technique proposed in [7], [8]. Finally, the PSUL, which

concerns propagating the HDs to the right in the decoder

graph, is implemented in a manner similar to [4], except here

the PSUL uses a two-bit input since the SPE produces two

HDs in one CC.

The P2 decoder stores the LLRs and HDs in FFs (as opposed

to RAM) in order to improve the clock speed. At the end of

the decoding cycle, the P2 decoder hands over the HDs to the

P1 decoder through a RAM while it discards the LLRs. RAM

is also used by the P2 decoder to keep track of the identity

of the frozen source bits. As pointed out before, FFs are

faster but relatively scarce compared to RAM; so by breaking

the decoding of a length-N polar code into the decoding of

length-
√
N polar codes, the decoding architecture proposed

here makes FF storage more affordable.

Finally, we note that the P2 decoder employs (
√
N−2) PEs

and one SPE, for a total hardware complexity of O(
√
N).

2) Phase-1 Decoder : For P1 decoder, we aim for an

architecture that has the same order of complexity as the P2

decoder in terms of hardware and latency. We achieve this by

proposing a P1 decoder that is very similar to the P2 decoder.

The proposed P1 decoder is shown in Fig. 4 for
√
N = 8.

All PEs in the P1 decoder are identical, unlike the P2

decoder that has an SPE at level 0. The P1 decoder uses RAM

to store the channel LLRs and the HDs received from the

P2 decoder; it uses FFs to store the LLRs and HDs that it

computes internally. The inputs to the PSUL are read from

RAM and all partial sums are calculated in one CC. At the

end of each P1 decoder cycle, the LLRs at level n/2 become

inputs to the P2 decoder that takes over.

In this architecture, P1 and P2 decoders are mostly identical

and the same hardware with minor adjustments can serve for

both tasks. No provision is made for the P1 decoder to save

its LLRs at the end of the decoding cycle, other than passing

those LLRs at level n/2 to the P2 decoder. This necessitates

recalculation of the discarded LLRs when they are needed

again in the future. The alternative to discarding the LLRs

would be to save them in RAM, which might reduce the time

complexity if data can be transferred fast enough between the

FFs and the RAM.

As for the latency of the P1 decoder, note that it takes n
2 +1

CCs for the first LLR to appear at the output (level n/2). The

remaining
√
N − 1 LLRs at level n/2 are calculated in the

next
√
N − 1 CCs. Therefore, the latency of the first phase is√

N + n
2 .

The P1 decoder employs (
√
N − 1) PEs and has a total

hardware complexity of O(
√
N).

C. Overall Latency and Complexity

The latency of one DC is the sum of the latencies of P1

and P2 decoders, which is 2.5
√
N + n

2 − 2 CCs. Since there

are
√
N DCs, the total latency is 2.5N +

√
N(n2 − 2) which

is approximately 2.5N for large N .

The overall circuit complexity of the TPSC decoder equals

the complexity of the P1/P2 decoder, which is O(
√
N), plus

the complexity of the RAM units, which is O(N). The sub-

linear complexity O(
√
N) relates to the most expensive logic

elements, such as FFs and look-up tables (LUTs).

D. Heuristics to Improve Latency

In each decoding cycle the P2 decoder encounters a polar

code of some rate which varies between 0 and 1. When the

P2 decoder encounters a code of rate 0 or 1, a short-cut in

decoding can be introduced as in [6]. If the code rate is 0, the

HDs in that cycle can be pre-computed. If the code rate is 1,

one can simply turn the LLRs at P2 decoder input to HDs.
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The additional hardware required for taking advantage of these

short-cuts is insignificant compared to the overall complexity.

An empirical study on the number of occurrences of rate 0

and 1 codes at the input of the P2 decoder are given in Table I.

Each polar code in the table is constructed using the formulas

for a binary erasure channel with erasure probability 0.5. This

table shows that the special cases occur often enough that they

can reduce the latency significantly.

TABLE I
FREQUENCY OF RATE 0 AND 1 CODES IN P2 DECODING

Code Rate 1/3 1/2 2/3 3/4

P2 Code Rate 0 1 0 1 0 1 0 1

N
64 3 1 1 1 1 3 0 4

1024 12 1 7 7 1 12 1 14
16384 53 6 35 35 6 53 0 55

IV. SYNTHESIS RESULTS AND COMPARISONS

This section reports some FPGA synthesis results for the

TPSC decoder and compares them with those for the semi

parallel successive cancellation (SPSC) decoder of [4], which

is the only reference we could find with a comparable imple-

mentation study. The results are presented in Table II. The

FPGA used for synthesis was an ALTERA STRATIX IV

EP4SGX530KH40C2 device. All decoders in the table use

a Q = 5 bit precision for representing the LLRs. The table

shows that TPSC fares better than SPSC in several respects:

it uses fewer FPGA resources (LUT, FF, RAM), has a faster

clock speed f , and a better throughput (T/P) for any coding

rate R. Furthermore, the clock frequency of TPSC decreases

with increasing code length at a significantly slower rate than

that of SPSC.

TABLE II
FPGA SYNTHESIS RESULTS FOR TPSC AND SPSC.

Decoder N PE LUT FF RAM (bits) f (MHz) T/P (Mbps)

TPSC 64 8 620 338 320 240 > 87R

TPSC 1024 32 1940 748 7136 239 > 112R

SPSC 1024 16 2888 1388 11904 196 87R

SPSC 1024 64 4130 1691 15104 173 85R

TPSC 16384 128 7815 3006 114560 230 > 118R

SPSC 16384 64 29897 17063 184064 113 53R

To explain these results several remarks are in order. First,

it should be noted that the TPSC used in this study uses

the heuristic method mentioned in III-D, which explains why

TPSC has a better throughput than SPSC. Second, the lower

RAM usage of TPSC is explained by the fact that TPSC resorts

to recalculations instead of storing LLRs in RAM. Third, the

faster clock speed of TPSC is explained by the fact that TPSC

uses a PSUL of size O(
√
N) while SPSC uses a PSUL of

size O(N). In [4], the PSUL size is identified as an important

factor in determining the clock speed, which explains the better

performance of TPSC in this regard. Fourth, the smaller PSUL

of TPSC also helps bring down its complexity significantly;

this is most evident in the comparison between TPSC and

SPSC at block-length 16384 where TPSC uses twice as

many PEs but has a smaller LUT/FF consumption; the larger

LUT/FF utilization of SPSC can only be attributed to PSUL.

V. FUTURE WORK

The TPSC decoder architecture presented in this study

was based on the representation of a polar code as a two-

dimensional array code. It would be of interest to study the

extension of the ideas presented in this paper to the case where

a polar code of length N = N1N2 · · ·Nm is represented as

an m-dimensional array code with a code of length Ni along

the ith dimension.
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