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5.5 ṄD Magnitudes for Ba The hot Ba detection rate ṄD (2.1) of the
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ABSTRACT

A Two-Photon E1-M1 Optical Clock

by

Emily A. Alden

Chair: Aaron E. Leanhardt

Innovations in precision frequency measurement advance popular technologies

such as global positioning systems (GPS), permit the testing of fundamental physics

constants, and have the potential to measure local variations of acceleration due to

gravity. Driving optical transitions for frequency measurement using an E1-M1 ex-

citation scheme in a hot mercury (Hg) vapor cell is viable and could be the basis of

a portable optical frequency standard with comparable accuracy to the most precise

atomic clocks in the world.

This dissertation describes in detail the new E1-M1 method of high-precision

frequency measurement in an optical, atomic clock. This two-photon scheme using

electric (E1) and magnetic (M1) dipole coupling could attain high levels of accuracy

and improve on existing systems through the simplicity of the experimental setup.

The optimal operating temperature for an E1-M1 clock using neutral Hg has been

calculated here to be 380 K, an accessible temperature for a hot vapor cell and

therefore convenient for a portable E1-M1 frequency standard. Such a portable optical

frequency standard would permit trace gravitational redshift measurement in far-flung

locations on earth and in space. Analysis of both the E1-M1 optical transition and

xx



thermal properties of the candidate clock atoms are presented. These models allow

a stability estimate of an E1-M1 optical clock and recommend experimental settings

to optimize the standard. The experimental work that has been performed in pursuit

of observing the E1-M1 clock transition in Hg is also discussed.

A clock is a time-keeping system composed of two essential components: an oscil-

lator and an oscillation counter. An atomic clock’s oscillator is a transition between

atomic energy levels that can be driven by an external resonator, for example a laser.

The cesium clock which defines our second has an internal resonance such that when

an external resonator excites that hyperfine transition (i.e. is resonant) then that

external resonator is defined to have a frequency of exactly 9,192,631,770 Hz. An

optical clock operates by making a precision frequency measurement of a laser that

has been brought into resonance with that clock’s oscillator: a high quality atomic

level transition. Group II type atoms, such as Hg, have the 1S0 → 3P0 clock transition

that is an ideal basis for a frequency standard.

The E1-M1 excitation scheme proposed here allows hot atoms to be used as clock

oscillators. Exciting an atom to the 3P0 clock level can be done by bringing a laser’s

frequency into resonance with a two-photon allowed transition 1S0
E1←→ 3P1

M1←→ 3P0.

This is in contrast to other optical clocks which use lasers to drive a single-photon

E1-type transition. Single-photon schemes must use ultracold atoms to reduce atomic

motion and eliminate Doppler broadening in order to attain high levels of accuracy.

It is difficult to produce ultracold atoms, so these clock systems operate with a single

atom (optical ion clocks) or at most a few thousand atoms (optical lattice clocks). The

equipment required to control ultracold atoms is bulky and cannot be easily trans-

ported. Driving the clock transition with a pair of degenerate counter-propagating

photons in an E1-M1 scheme reduces Doppler broadening effects without the need

for ultracold atoms. This allows frequency measurement to be performed at temper-

atures that have large atomic number densities ρ. For example, a typical Hg vapor

xxi



cell at T=400 K can contribute 1010 atoms for measurement in an E1-M1 optical fre-

quency standard. The advantage of increasing the number of addressed clock atoms

is an increase in statistical accuracy.

Atomic Hg is the ideal system for a hot E1-M1 optical clock. Hg has a particularly

large number density compared to other group II type atoms. A drop of Hg in a vapor

cell at room temperature will have a vapor number density fifteen orders of magnitude

larger than the next group II type atom, a property related to Hg’s unusual liquid state

at room temperature. The resonant frequency for Hg’s clock transition is an optimally

large PHz frequency; this is 100,000 times larger than the 9 GHz frequency of the Cs

atomic clock. The specific wavelength of the clock transition in Hg is readily available.

The monochromatic two-photon scheme operates at 531 nm, that is the same shade

of green found in hand-held laser pointers because it is the second harmonic product

of the common Nd:YAG laser system’s wavelength. Another advantage is that the Hg

clock’s detection channel cycles with the same wavelength used in Blu-Ray players

(405 nm). When resonant lasers for an atomic system are easily available off the shelf,

so too are the optics and detectors needed to assemble the excitation and detection

systems. These features in Hg position it as the ideal atomic system for a two-photon

E1-M1 optical clock.
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CHAPTER I

Precision Measurement with Atomic Systems

Recent advancements in Optical Frequency Standards (OFS) have seen three dif-

ferent systems hold the mantle of lowest stability (S) in the past year [10, 23, 8].

These lattice and ion OFSs have attained high levels of precision by reducing the

frequency uncertainty of clock atoms through exquisite control of the experimental

environment. Increases in accuracy advance popular technologies such as Global Po-

sitioning Systems (GPS), permit testing of fundamental physics constants, and have

the potential to measure variations in local gravity [11]. Most of these applications

will benefit from an OFS that is portable so that an individual, local measurement

can be compared to measurements from other locations. A map of the earth’s geodesy

measured locally with the precision of an optical frequency standard is one metrology

application that will require a mobile atomic clock. An optical frequency standard

using a portable vapor cell as the source of clock atoms can achieve high precision

with a two-photon E1-M1 Doppler-free spectroscopy scheme.

The E1-M1 optical clock is a frequency standard based on a two-photon excitation

from the ground state to the clock state by a pair of Electric Dipole (E1) and Magnetic

Dipole (M1) allowed transitions. This novel scheme is in contrast to the one-photon,

E1 transition that is currently used in lattice and ion systems [10, 23, 8]. Figure

1.1 diagramatically illustrates the E1-M1 optical transition scheme in group II type
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Figure 1.1: Two-Photon Clock Level Structure This is the prototypical, optical
clock level structure for group II type atoms with a 3P0 clock state. The electric field
of one photon and the magnetic field of a second, degenerate photon directly couple
the 1S0 ground state to the clock state via the intermediate 3P1 level. Detuning (∆)
by the excitation photons from the intermediate level impacts the two-photon Rabi
frequency and transition probability. A sample detection channel for a hot clock is

the 3P0
E1←→ 3S1, E1 allowed transition.

atoms.

An ideal optical frequency standard will be able reach its highest accuracy (its

minimum instability σν ) quickly. The benchmark by which all frequency standards

are compared is therefore stability S , the rate at which σν can be attained where

σν(τ) = S/
√
τ (1.1)

and τ is the total measurement time (usually the aggregate of many rapid frequency

measurements). The smallest instability σν measurement ever recorded in an OFS

is σν = 1.6 × 10−18. This was achieved in a Yb lattice clock after τ = 7 hours of

measurement time [23].

Stability S has units of
[√

Hz−1
]

and is fundamentally limited by
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S =
∆ν

ν

√

T
ND

(1.2)

where ν is the fundamental frequency of the standard, ∆ν is the effective linewidth of

the oscillator, T is the period of each detection cycle, and ND is the effective number

of atoms that are detected in each experiment period.

A specific advantage of the hot E1-M1 optical clock described here is a large

increase in ND and only a small increase in linewidth ∆ν compared with other ul-

tracold optical frequency standards. Specifically, we calculate that for an increase

of sample number ND by 107, we only observe an increase to the linewidth ∆ν by

105 compared to the Yb and Sr lattice clock systems [23, 8]. Other optical frequency

standards require extensive state preparation to remove first-order Doppler effects as

the largest broadening mechanism, a process that limits the number of atoms that

can be addressed and requires a laboratory full of equipment to control the frequency

measurement. In contrast, this E1-M1 scheme is able to reduce Doppler broadening

while addressing large numbers of atoms in a portable, vapor cell. The potentially

small S of the E1-M1 scheme could make it an ideal optical frequency standard for

portable metrology applications.

1.1 Precision Measurement

Any measurement of a magnitude A performed in a precise way will report the

mean magnitude measured Ā after a sequence of samples along with the statistical

error ε(A) of the measurement. The statistical error is a straightforward numerical

calculation from measurement data ε(A) = StDev(A)/
√
N , where StDev(A) is the

standard deviation of the data and N is the number of data points (sample size). It

turns out that all measurements can be compared to each other in terms of instability

σA, a dimensionless quantity that is the ratio of measurement error ε(A) over the mean
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magnitude Ā where σA = ε(A)/Ā and relatively small instability σA denotes a better

measurement.

Precision measurement systems (such as optical frequency standards) require small

instabilities, so it is useful to predict the statistical error of a measurement and

select a system with a large initial magnitude. The optical frequencies ν of the clock

transitions in group II type atoms have near PHz laser frequencies, this is a large

initial magnitude. Prediction of error ε(ν) is possible if characteristic features of the

system and sample size are known, for example the Gaussian distribution of thermal

velocities.

Estimation of frequency measurement error ε(ν) requires characterization of the

effective linewidth ∆ν and the potential number of detected atoms ND. The effective

linewidth ∆ν of the optical transition is the standard deviation of optical frequencies

that will excite the transition, usually dominated by a Gaussian probability distri-

bution from Doppler broadening. It is worthwhile to select atoms and experimental

settings that reduce this linewidth. Increasing the number of detected atoms ND or

increasing the sample number of the experiment τ/T are two methods that increase

the sample size and reduce instability σν . The sample size N of a long duration

measurement is the product of the number of detected atoms ND each cycle and

the number of cycles completed: N = NDτ/T . The instability σν limit depicted in

(1.1 and 1.2) presents the sample size contributions of cycle time and atom number

separately.

The natural variance in frequency of an optical transition (or any system) doesn’t

reduce over time or with more samples. Reduction of measurement error ε(A) benefits

from more measurement cycles (time) and increased sample size, as long as the ex-

perimental settings remaining static or well known. Figure 1.2 displays this behavior

diagrammatically for frequency measurements of the clock transition.

4



time

measured 3P
0   

ν

∆ν
linewidth

∆ν/√Ν
 error

ν
L
−ν

B

ε(  )  = 

Figure 1.2: Statistical Error Reduction in Optical Frequency Standards Di-
agrammatic example of the statistical reduction to error ∆ν/

√
N through increased

sample number N from an initial statistical width ∆ν. Each dot represents a single
frequency measurement, and the total number of dots displayed is the total measure-
ment number N .
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1.2 Precision Time Metrology

Precision time metrology is really precision frequency metrology. A clock is a time-

keeping system composed of two essential components: an oscillator and a oscillation

counter. A grandfather clock’s pendulum is its oscillator, and the gears which move

with each pendulum swing to advance the clock hands are oscillation counters. In

an optical atomic clock, the oscillator is the transition between two atomic energy

levels that has a characteristic transition frequency. The oscillation counter is a

measurement of a laser’s frequency when that laser has been brought into resonance

with the chosen atomic transition. Absolute measurements of laser frequency in OFSs

can be performed by frequency combs [50] and relative frequency measurements can

be performed between two different OFSs [44].

The oscillator component of an atomic clock is the focus of this dissertation.

Atoms are optimal oscillators because of the stability of their electronic levels, a sta-

bility so robust we use it do define our second. A microwave transition in the hyperfine

structure of Cs is the oscillator that defines our second, where an external resonator

that comes into resonance with that transition is defined to have 9,192,631,770 Hz

frequency. The invariance of atoms’ electronic levels is underpinned by Einstein’s

Equivalence Principle (EEP), where the presumed, absolute stability of the fine-

structure constant α renders all atoms of a common species and isotope identical.

Experimentally measured features in one atom should be exactly reproducible for all

atoms of matching species and isotope. The utility of this premise is powerfully re-

alized in group II type atoms which contain a desirable optical clock transition. The

so-called “clock transition” is between the 1S0 ground state and the 3P0 clock state,

shown in Figure 1.1. Appendix A contains a discussion of the “ 3P0” notation and

other nomenclature conventions in OFS. An explanation of why this clock transition

has ideal properties for a frequency standard can be found in Chapter II.

We evaluate the group II type atoms Be, Mg, Ca, Sr, Ba, Hg, Yb, and Ra for their
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Table 1.1: System stabilities S and realized instabilities σν
(bold denotes predicted values)

System S [
√
Hz−1] σν

Hg2γ 3.2 × 10−15

Sr[8] 3.1× 10−16 6.4× 10−18

Yb [23] 3.2× 10−16 1.6× 10−18

Al+ [12, 10] 3.7× 10−16 8.6× 10−18

Rb [51] 1.6× 10−14 6.5× 10−16

Cs [27] 2× 10−13 5× 10−16

Quartz 10−7

Chronometer 100.5

suitability in a hot E1-M1 optical frequency standard. Atoms with the 1S0 → 3P0

clock transition are referred to as clock atoms.

An attainable instability (accuracy) of a frequency standard depends on the same

features that determine accuracy in any measurement system: the sample size and

the natural precision (narrow linewidth) of the measurement. Sample size can be

increased either by addressing a larger sample or through prolonged measurement.

This is why S is a valuable comparison metric: in principle any system can achieve

arbitrarily small instability σν with infinite measurement time τ , but in practice it

is difficult to maintain system stability for long durations of time. The best optical

clocks in the world can cite stabilities that would maintain second accuracy for 5

billion years, but these claims defy verification. In fact, as one can readily calculate

from the attained instabilities in current OFSs [23, 8], these systems are operating for

less than 24 hours. Even though these systems are not operating for long durations

yet, achieving instability quickly (i.e. having small S ) is useful for contemporary

measurements and an attractive property in an OFS. This is accomplished in OFSs

by reducing the intrinsic variance (the linewidth ∆ν) through experimental control

of broadening mechanisms and by increasing the number of interrogated atoms Ntot.
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1.3 Research

This dissertation outlines the fundamental physics of an E1-M1 optical clock tran-

sition and finds that neutral Hg in a hot vapor cell is the optimal system for a portable

degenerate two-photon clock. While pursuing direct detection of the E1-M1 clock

transition in neutral Hg, I also worked to characterize thoroughly the environmental

and intrinsic factors of group II type atoms to compare the different systems and

estimate the viability of each as an OFS. This dissertation describes in detail the

parameter space needed to detect the E1-M1 transition in a hot vapor cell and cal-

culates the potential stability S . These calculations show that a hot monochromatic

E1-M1 Hg clock has the capacity for very small S and could fill the currently empty

niche of a portable optical frequency standard.

1.4 Applications

Should the estimated stability of this proposed monochromatic E1-M1 clock be

realized, it could be the basis for a portable optical frequency standard. We predict

that the stability S could be as low as 3.1× 10−15
√
Hz−1 in a vapor cell operating at

380 K . This is nearly as good as lattice and ion optical clocks (see Table 1.1), but

importantly it is much better than the current crop of portable clocks [18, 29].

Portable frequency combs have 1× 10−18 frequency sensitivity [15] and can easily

measure the PHz frequencies of optical clock transitions with a resolution that exceeds

the effective and natural linewidth of those transitions.1 A frequency comb is one type

of reference that could perform the oscillation counting required for a precise clock

measurement.

When an optical frequency standard achieves an instability σν = 1.1 × 10−16, it

becomes a gravitational redshift meterstick. Such an OFS is sensitive to changes in

1The PHz frequencies can be precisely measured because they are produced from IR wavelengths

that can be measured with these combs.
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altitude ∆h on earth of one meter. The ∆h sensitivity of a clock scales linearly with

instability, so the Yb lattice clock (σν = 1.6 × 10−18) could resolve 1.5 cm after the

requisite τ = 7 hours of measurement time at each elevation. A remarkable local red-

shift measurement was performed in 2010 with an Al+ OFS [10] where an elevation

shift of 33 cm was measured through an observed offset in resonant laser frequency.

However, these systems take “local” measurement too seriously, the state preparation

and environment control to make the clock atoms ultracold and mitigate other en-

vironmental broadening requires equipment that easily fills an entire laboratory and

prohibits portability of the clock. While the estimated stability of our monochro-

matic E1-M1 Hg OFS is not as precise as ultracold OFSs, it could achieve meterstick

sensitivity in 14 minutes and do so in a portable package making it a useful metrology

tool.
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1.5 Thesis at a glance

Since readers of this dissertation will certainly come from different backgrounds,

I include some tailored summaries with reading suggestions here. If you are reading

this digitally you will find that the section (§), figure, and table numbers are hyperlink

enabled.

The central claim of this dissertation is that a hot Hg E1-M1 optical frequency

standard is viable and has several advantages. This dissertation aspires to explain

why the proposed system should be hot (5.6), why it should be Hg (Table 5.2),

why it should be an E1-M1 transition (2.1), what an optical frequency standard is

(2.2), why it is viable (5.7), and includes explanation of the claim that this system is

advantageous (8.2).

For the casual reader, the broad synopsis of this work is discussed at the start of

this chapter (I). Performing this research required building the most powerful clock

laser in the world, easily powerful enough to toast a marshmallow or be mistaken for

a light saber. This green laser is about 1000 times more powerful than a common

laser pointer. I have such fine frequency control over the laser that I can illuminate

a vapor cell of Iodine molecules brightly enough to be seen by the human eye, see

Figure 7.5.

For a clock scientist, the stability S estimates for the monochromatic E1-M1

scheme are listed for group II type atoms in Table 5.2. You can compare these

stabilities to other optical frequency standards in Table 8.1.

For an experimental atomic physicist, the laser system we built for this experiment

was robust and simple to assemble. The main virtue of this system was our ability to

implement a single-pass Second Harmonic Generation (SHG) scheme in a periodically

poled crystal with 23% single-pass efficiency.

For the reader interested in the dynamic behavior of monochromatic E1-M1 optical

excitation in a thermal environment, the calculation results displayed in the figures
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and tables of Chapter V show the excitation rate ṄD and stability S behavior for

each group II type atom. This is calculated for the dynamic parameters of laser-

beam radius ω0 and vapor cell temperature T .

A summary of this dissertation is as follows:

Chapter I describes the history and current research of precision measurements us-

ing atomic systems. It also defines the comparison metric stability S used to compare

optical frequency standards.

Chapter II explains the underlying theory of light-matter interaction as it applies

to using lasers for excitation of clock atoms. The essential properties of clock lasers

and clock atoms are described in terms of their optical properties. I present the two-

photon Rabi frequency ΩR2γ (2.3) and probability of optical transition P3P0
(2.4) for

the E1-M1 type transition.

Chapter III details the experimental environment’s impact on the interrogation

rate Ṅtot (3.10) of vapor cell atoms for a monochromatic E1-M1 excitation scheme.

Experimental parameters that can be optimized independently (such as laser power)

and parameters with interdependency (such as temperature and laser-beam radius)

are outlined. Prototypical experimental values are listed (Table 3.1) and detection

channels are briefly described.

Chapter IV also details the experimental environment of the atoms, but this time

to explain how those features impact a precision optical frequency measurement in

terms of line broadening ∆ν (4.1) and frequency shifts νB (4.2).

Chapter V contains the calculation results for monochromatic E1-M1 detection

rate ṄD and stability S of the group II type atoms in a hot vapor cell. This calculation

is performed with respect to two dynamic parameters: laser-beam radius ω0 and vapor

cell temperature T . Contour plots of ṄD and S across these dynamic parameter spaces

are included. Properties of the system at the optimized temperature T and laser-beam

radius ω0 are included for each atomic species.
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Chapter VI explores the bichromatic variation of an E1-M1 optical clock. The

bichromatic method introduces an opportunity to compensate for systematic fre-

quency shifts νB and produce an optical frequency standard that measures the true

natural frequency ν0 (4.2) of the atomic transition.

Chapter VII describes the experimental progress performed toward observing

a monochromatic E1-M1 optical transition in neutral Hg. A high-power narrow-

linewidth laser system was built (Section 7.4) and an efficient detection imaging

scheme was designed and assembled (Section 7.5).

I conclude in Chapter VIII with a summary the E1-M1 optical transition the-

ory developed here and calculation results. I compare the predicted stabilities S of

the monochromatic E1-M1 scheme with current, state-of-the-art optical frequency

standards (Table 8.1).

I’ve included two appendices:

Appendix A explains the Russell-Saunders notation that is commonly used in

this dissertation. I also detail some of the confusing and contradictory vernacular

conventions used to describe optical frequency measurements.

Appendix B makes explicit our treatment of the (already simplified) three-level

clock system as an effective two-level system through adiabatic elimination of the

intermediate level.
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CHAPTER II

Optical Transition Theory

The optical transition properties of group II type atoms underpin their viability

as optical frequency standards. The favorable properties of the forbidden 1S0 → 3P0

clock transition will be discussed in this chapter. The clock level excitation probability

for a single atom in an E1-M1 scheme will be presented. Figure 2.1 illustrates an

example of the E1-M1 excitation scheme in a vapor cell.

MirrorMMiirroor

λ/4
ẑ

B

F

Figure 2.1: Hot Optical Clock To satisfy the selection rules of the transition,
the counter-propagating laser must rotate polarization by 90-degrees. This can be
accomplished with a λ/4-plate and a retro-reflection mirror. The orthogonal electric
F and magnetic B fields are shown.
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2.1 Forbidden Transitions

The challenge for optical atomic clocks it to both preserve and overcome forbidden

transitions between atomic levels. Forbidden transitions create metastable states

whose long lifetimes are ideal for clock levels. Forbidden transitions also make optical

access to these clock levels difficult which is problematic for performing resonant

frequency measurements. Our clock scheme preserves the metastability of the clock

level while making the ”forbidden” level optically accessible. This feature is unlike

the one-photon direct excitation technique used in other optical frequency standards.

Forbidden transitions are disallowed for electric and magnetic coupling because

they don’t satisfy certain selection rules of quantum mechanics. By contrast, allowed

transitions in an atom can take place with electric or magnetic coupling and can be

dipole or multipole. Those allowed transitions permit excitation between levels that

have been defined by spin (S), orbit (L), and spin-orbit (J) coupling. See Appendix

A.1 for how the specific quantization of these features is represented in the level

structure notation.

Where an atomic level is well defined by the S, L, and J quantum numbers, then

an electric- or magnetic-allowed transition indicates that a quantized change to those

quantum numbers has occurred. Electric-dipole (E1) transitions are typically much

stronger than magnetic-dipole (M1) transitions.

A forbidden transition is desirable in a clock because the forbidden relaxation to

the ground state from a clock state renders that clock state metastable, which is to

say that relaxation only occurs rarely. The long lifetime of these metastable clock

levels is equivalent to a narrow-transition linewidth ∆νnat, which is a desirable feature

in OFSs because the initially narrow linewidth immediately improves the frequency

resolution and ultimately the S compared with standards based on broad linewidth

transitions.

For illustration, in Hg the weakly E1-allowed 1S0
E1←→ 3P1 transition has an 8
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MHz linewidth ∆νnat . For a single resonance laser frequency observation of this 3P1

transition there is a 99.99999% probability that the measurement will be more than

1 Hz away from the natural frequency ν0. For the even more weakly E1-allowed

1S0
E1←→ 3P0 transition in Fermionic 201Hg (with similar ν0 to the 3P1 level), the

linewidth is 0.45 Hz, which means that there is only a 3% probability of measuring

the resonance more than 1 Hz away from the natural frequency ν0. A clock level

(3P0) has higher resolution than similar E1-allowed level (like 3P1) in that the clock

level requires a more precise frequency to successfully drive optical transitions, and

this precision is virtuous in an OFS.

In common usage “forbidden” transition often refers only to an E1 forbidden

transition. A pure 1S0 → 3P0 clock transition is not only E1 forbidden, it is doubly

forbidden by all transition types because it is Jinitial = 0 ↔ Jfinal = 0 and Sinitial =

0↔ Sfinal = 1. The highly forbidden transition found in group II type atoms between

the ground state 1S0 and the metastable 3P0 clock level is an ideal oscillator for OFSs

because it has vanishingly small natural linewidth ∆νnat .

In reality, however, no levels are pristinely defined by spin features alone and so

“forbidden” transitions can be allowed. The extent to which a forbidden transition

is in fact allowed depends on mitigating interactions with nearby allowed levels. In

fact, all current optical frequency clocks directly drive the “forbidden” 1S0 → 3P0

transition with a one-photon, E1 transition. This is possible because the 3P0 level

mixes with the nearby 3P1 level, which has a weakly E1-allowed transition to the 1S0

ground state. This mixing can be done by selecting isotopes with hyperfine structure

[10] or by applying a magnetic field [2]. Fermionic isotopes of group II type atoms

possess nuclear spin which creates hyperfine-induced state mixing between the 3P0

and the 3P1 levels. While mixing the levels is necessary to make them electric dipole

coupled, it also reduces the lifetime. This can potentially limit the ultimate precision

of the clock. The 1S0
E1←→ 3P1 transition is E1 forbidden by the spin selection rule
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(∆S = 0 is not E1 allowed), but is effectively allowed through the spin-orbit coupling

of the 3P1 and 1P1 levels. For an example of this effect in Hg see [33].

Our novel E1-M1 excitation scheme from the 1S0 ground state into the metastable

3P0 clock level is allowed and preserves the metastability of the level. We do this by

driving a two-photon E1-M1 allowed transition that couples 1S0 and
3P0 through the

intermediate 3P1 level. Specifically, 1S0
E1←→ 3P1 is a weakly allowed E1 transition

and the 3P1
M1←→ 3P0 is an allowed M1 transition. Using two photons whose total fre-

quency matches the 1S0 → 3P0 transition frequency, we can drive the clock transition

using the electric and magnetic field components of a CW laser-beam. Driving the

transition with degenerate photons introduces a large detuning ∆ from the interme-

diate state, see Figure 1.1 for the frequency scale of ∆ compared to the transition

frequencies. This large ∆ reduces the two-photon Rabi frequency (2.3) and there-

fore the overall excitation rate compared with a resonant, bichromatic system. The

expected excitation probabilities are fortunately non-zero despite this detuning for

group II type atoms.

Forbiddenness is claimed as a virtue primarily because it increases the natural

quality factor Q of the frequency standard. Table 2.1 lists the natural Q’s of individual

group II type atoms. This table excludes the environmental perturbations introduced

when a frequency measurement is performed. You can see that the 1018 frequency

resolution found in frequency combs is in a useful resolution regime for OFSs [15].

2.2 Optical Clocks

The term “optical clock” refers to all atomic clocks that drive a 1S0 → 3P0 clock

transition, which is currently lattice and ion systems. The nomenclature refers to

the shift in technology from microwave frequency standards (Rb and Cs) to the UV

standards of today (Al+, Yb, and Sr). The dawn of atomic clocks in the mid-20th

century came with the availability of coherent microwave sources. Frequency sources
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Table 2.1: Natural Q of candidate E1-M1 clock atoms
System Q = ν0/2∆νnat

25Mg [36] 1.9× 1017
87Sr [56] 3.0× 1016

evenSr > 3.0× 1016
199Hg [36] 8.5× 1014
201Hg [36] 1.2× 1015

evenHg > 1.2× 1015
171Yb [36] 3.8× 1017
173Yb [36] 4.2× 1017

evenYb > 4.2× 1017

today reach far into the UV and with them we have gained optical access to the PHz

transition frequencies of today’s OFSs. The term “optical” is also evocative of the

spectrum of light in these systems which typically span the visible and UV wave-

lengths.

2.3 1S0 → 3P0 E1-M1 Transition

E1-M1 transition has been observed previously in highly charged ions [47, 28].

As an allowed transition, it provides optical access to all isotopes of group II type

atoms. This excitation can be implemented using either degenerate (monochromatic)

counter-propagating photons to eliminate first-order Doppler broadening or with non-

degenerate (bichromatic) frequencies chosen to offset light shifts. The monochromatic

scheme is the primary focus of this dissertation, but the bichromatic case is described

in Chapter VI.

The viability of a hot clock will depend on the effective rate of detected atoms:

ṄD = PD × Ṅ3P0
(2.1)
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where PD is the probability of detecting an atom in the 3P0 clock-level, and Ṅ3P0
is

the effective rate of atoms excited to the clock level. The two primary experimental

parameters with interdependency that require optimization are vapor cell temperature

T and laser-beam radius ω0. The effective rate of atoms excited to the 3P0-level is

given by:

Ṅ3P0
= P3P0

(T, ω0)× Ṅtot(T, ω0) (2.2)

where P3P0
is the probability an individual atom in the interrogation region has been

excited to the 3P0 level and Ṅtot is the rate of atoms flowing through the interroga-

tion region. The interrogation rate Ṅtot is discussed in Chapter III. The single-atom

excitation probability P3P0
is discussed in this chapter. In a thermal environment,

the interrogation time of an atom by the excitation laser is always much less than

the time required to coherently transfer the full population to the excited state (i.e.

no risk of Rabi flopping). Therefore, an increase in laser power is always beneficial to

P3P0
because it increases the two-photon Rabi frequency ΩR2γ and by extension the

probability of excitation the the 3P0-level in a time-limited measurement. The tem-

perature T and laser-beam radius ω0 contribution to the two-photon Rabi frequency

ΩR2γ will be explained in §2.4.

2.4 Two-Photon Rabi Frequency

E1-M1 excitation schemes can use either a single laser (monochromatic) or a pair

of far-detuned lasers (bichromatic) to drive the clock transition. In both cases, the

excitation laser frequencies are far off resonance from the intermediate 3P1 level. To

satisfy the selection rules of the transition, the electric-field vector of one excitation

photon must be parallel to the magnetic-field vector of the other excitation photon.
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This alignment can be realized utilizing either a Lin ⊥ Lin or σ+/σ− polarization

scheme [14]. These schemes not only satisfy the selection rules, they ensure that any

clock excitation is the product of counter-propagating beams and thus reduces or

eliminates first-order Doppler broadening.

A far-detuned E1-M1 system (∆ is large) satisfies the constraints of adiabatic

elimination [48, 9] described in detail in Appendix B. Specifically ∆ >> Ω1,Ω2, δ

where Ωi is the two-level Rabi frequency of each E1 and M1 transition, δ is the two-

photon detuning from the light shifted transition frequency, and ∆ is the minimum

detuning of an excitation photon’s energy from the intermediate 3P1 level, see Figure

B.1. In the limit where δ = 0, the two-photon Rabi frequency for an atom addressed

by a pair of photons is given by [38] :

ΩR2γ =
2I

~2c2ϵ0

⟨3P0||µ||3P1⟩M1⟨3P1||D||1S0⟩E1

∆
(2.3)

where I is the peak intensity of the excitation laser, ⟨3P0||µ||3P1⟩M1 is the reduced

matrix element for the magnetic dipole (M1) transition, and ⟨3P1||D||1S0⟩E1 is the

reduced matrix element for the electric dipole (E1) transition.

In group II type atoms, the E1-M1 coupling will also occur via the 1P1 interme-

diate level (see Figure 1.1). This is generally beneficial, and in the specific case of

Hg it will constitute as much as 37% of the Rabi frequency (an effective increase).

The 1P1 contribution is maximum for the degenerate excitation scheme. We omit

this favorable contribution from the ΩR2γ calculations for simplicity, but experiments

can anticipate an enhancement to rates ṄD and stability S . Observed and calcu-

lated reduced matrix elements are shown for the group II type atoms in Table 2.2.

Additionally, the calculated two-photon Rabi frequency is listed for the degenerate

two-photon case assuming the experimental parameters defined in Table 3.1. For
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Table 2.2: Reduced matrix elements for the electric-dipole ⟨nsnp3P 1||D||ns2 1S0⟩ in-
tercombination transition (E1) and the magnetic-dipole ⟨nsnp3P 0||µ||nsnp3P1⟩ tran-
sition (M1) for each candidate element. Matrix element values are in a.u. For
monochromatic excitation, the two-photon Rabi frequency ΩR2γ is shown for unit
intensity. A prototypical intensity for this scheme is 6× 106[W/m2].

Atom n E1/ea
0

M1/µ
B

ΩR2γ/I[Hz]

Ra 7 1.2 [6]
√
2 [13] 7.1× 10−5

Ba 6 0.45 [17]
√
2 [13] 3× 10−5

Yb 6 0.54 [4]
√
2 [4] 2.5× 10−5

Hg 6 0.44 [30]
√
2 [13] 9.3× 10−6

Sr 5 0.15 [42]
√
2 [13] 8.8× 10−6

Ca 4 0.036 [42]
√
2 [13] 2× 10−6

Mg 3 0.0057 [42]
√
2 [30] 2.2× 10−7

Be 2 0.00024 [30]
√
2 [13] 9.3× 10−9

excitation intensity of 6 × 106 [W/m2], the two-photon Rabi frequencies ΩR2γ have

greater than Hz magnitudes in most group II type atoms. This illustrates the viability

of an E1-M1 excitation scheme.

2.5 Probability of Clock Excitation

With adiabatic elimination of the intermediate level (see Appendix B) we find

the probability of exciting the atom into the 3P0 clock level in this effective two-level

system [48, 9, 43] is given by

P3P0
(T, ω0) =

Ω2
R2γ

Ω2
R2γ + δ2

sin2





√

Ω2
R2γ + δ2

2
t̄



 (2.4)

where t̄ is the average interrogation time of the atoms and δ is the two-photon detuning

from the light-shifted resonant frequency ν0.

In our calculation of the E1-M1 system, we report excitation probability of a single

frequency measurement. To capture the reduction to signal from effective line broad-

ening, the single frequency we use is detuned from resonance by the characteristic

width of the first-order Doppler broadening (∆νD1). This detuning δ from first-order
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Doppler broadening ∆νD1 is much larger than the two-photon Rabi frequency ΩR2γ.

See §4.1.4 for a discussion of Doppler effects. In this small ΩR2γ limit, the excitation

probability P3P0
has two characteristic regimes. There is a time-limited regime, where

transit-time (time-of-flight) broadening (∆ν
TT

= 1/t̄) is the dominant scaling feature

of the excitation probability. Transit-time broadening dominates our system when

∆ν
TT
>> ∆νD1. The time-limited probability of excitation then scales quadratically

in time as

P3P0
≈

(

ΩR2γ t̄B
2

)2

. (2.5)

In this regime, experimental optimization that increases the time-in-beam is useful.

In a velocity-limited regime where ∆νD1 >> ∆ν
TT
, the probability of clock exci-

tation resembles a saturated system and can be simplified as:

P3P0
(T, ω0) ≈

Ω2
R2γ

δ2
. (2.6)

In this regime, experimental optimization that decreases velocity broadening is im-

portant.
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CHAPTER III

Atomic Environment and Excitation Rates

The unavoidable interaction of clock atoms with the experimental environment

affects the sample size of addressed atoms N . In this chapter the nuanced interaction

between vapor cell temperature T and laser-beam radius ω0 is explored and charac-

terized toward optimizing excitation rates Ṅ3P0
and stability S . The previous chapter

described the optical transition probability of a single atom, this chapter describes

the ensemble behavior of the clock atoms in a hot vapor cell.

3.1 Static Experimental Parameters

Most experimental parameters can be optimized independently. Table 3.1 lists

the static magnitudes we will assume for these independent experimental parameters.

The magnitudes were conservatively selected to match existing or easily attainable

levels. Importantly, these experimental magnitudes can be constructed in a portable

package which will permit mobile optical frequency measurements.

We estimate that narrow-linewidth power can be achieved at approximately the 10

W level. We have generated 8 W of portable, narrow-linewidth light for a monochro-

matic Hg experiment in a preliminary device and estimate that more power is possible

while preserving this portability, see Chapter VII for details of this system. The laser

power required to excite the E1-M1 transition will contribute a sizable light shift
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Figure 3.1: Hot Optical Clock This diagram of a monochromatic laser in a vapor
cell depicts the experimental system. The detection length is Lo and the laser-beam
radius is ω0. The Rayleigh range, 2zR, that limits the interrogation region is shown
in this graphic. The area enclosed by a box is the interrogation region of the atoms
and in this case is Rayleigh-limited.
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(νLS), but one that can be effectively quantified and eliminated in analysis. The light

shift is discussed in terms of stability S impact in §4.1.3.

All group II type atoms, with the exception of Hg, improve in overall excitation

rate ṄD and stability S with increased temperature because atom-atom interactions

are minimal. Since number density ρ increases exponentially with temperature, it was

necessary to impose in our calculations a temperature ceiling of 800 K as a damage

threshold for the physical optics and detectors of an experimental apparatus.

The physical size of the photon detector and imaging optics create an aperture

and depth of field which impose boundaries on the observable volume of the vapor cell

by the detection system. We are not limited by the depth of field in this experiment

due to the small radius of the excitation laser beam. The length of excitation laser

beam that we can observe is limited by the aperture of our detection system. In

our Hg experiment we used a detector with a 2 cm active diameter (MP1941), the

implementation of a 1:1 imaging system permits a detection length limit Lo of 2 cm

in the vapor cell. Figure 3.1 displays the detection length Lo in relation to other

experimental geometry parameters.

Misalignment of the counterpropagating laser-beams by an angle θ is anticipated.

Figure 3.2 illustrates an exaggerated misalignment in our proposed experimental ge-

ometry. We impose a 0.1 milliradian limit in our simulation which has been previously

Table 3.1: Experimental parameters used for the simulation of a hot, vapor cell E1-M1
optical clock.

Parameter Value

Power (CW) 10 W
Laser Linewidth 1 kHz
Retroreflection Misalignment θ 0.1 milliradian
Photon Collection Efficiency Ppc 1 %
Optical Damage Threshold 800 K
Temperature Instability σT̄ 0.1 K
Optical Detection Length Lo 2 cm
Experiment Period T 1 s
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realized in atom interferometry experiments [22]. In our experimental setup we es-

timated an alignment precision of 0.2 milliradians (see §7.3). Increased precision of

alignment will improve both the rates ṄD and the stability S by reducing residual

first-order Doppler broadening ∆νD1 (see §4.1.4.1). We do not include a threshold for

polarization rotation errors in this calculation although such experimental features

will degrade the rates Ṅ and stability S of the experiment.

Since the experiment takes place at the beam waist of the laser, the atoms will

experience the spatially dependent Gouy phase shift. This was not included in our

calculations.

θ

Figure 3.2: Alignment Angle θ The misalignment of a retroreflected laser beam
from the input beam by an angle θ is illustrated.

An optical frequency standard will necessarily limit itself to a single atomic iso-

tope. The natural abundance of the excluded isotopes will attenuate the excitation

rates Ṅ3P0
because our calculations are based on total atomic number density ρ which

includes all isotopes. Since isotope abundance is idiosyncratic to each atomic species,

our calculations do not include the reduction to the number density ρ that will be

present in an experiment.
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Figure 3.3: Simulation of Length in laser-beam Histogram of 160k Atoms’ Travel
Length in Cylinder with Radius ω0

3.2 Spatial Approximation

Length in Beam l̄

The probability of exciting an atom from the ground state to the clock state de-

pends on the amount of time an atom spends in the beam. Statistically characterizing

hot atom trajectories in a laser-beam is important to accurately predict excitation

rates in the experiment. For a region defined by a cylinder with radius ω0 we can

numerically calculate the average distance an ensemble of isotropically oriented atoms

travels through such a cylinder. Since not all atoms will pass through the center of

the beam, we take care to initialize the atoms at a variety of initial distances from

the beam center. Results from this simulation are shown in Figure 3.3.

Numerical simulation reveals that the average length in beam is 2.87×ω0 and the

most probable length is 2.00× ω0. We extrapolate from these results that the beam
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diameter is a valid approximation for the average length traveled by an atom in the

laser beam (l̄ = 2ω0).

To increase P3P0
, it is ideal for atoms to spend as much time in the beam t̄ as

possible. A first-order consideration of this system suggests that the optimal atom

path is co-linear with the laser-beam because that will enhance time in beam (we

define this orientation as the ẑ-direction, see Figure 2.1). For contrast, a suboptimal

path would glance across the edge of the excitation region. However, length in beam

is not the only experimental contribution atoms make. The experimental geometry

will effectively post-select atoms that travel along the ẑ-direction because such atoms

will have a comparatively enhanced P3P0
. This post-selection also favors atoms with

enhanced velocity in the ẑ-direction. A plot of this vz enhancement is shown in Figure

3.4. This is a noteworthy bias because first-order Doppler broadening ∆νD1 effects

(see §4.1.4.1) are created by atoms with velocity in the ẑ-direction. Our simulation

only considers average length in beam, so the effect of this bias is not captured in our

linewidth ∆νD1 calculations although it will introduce broadening in a experimental

measurement.

3.3 Dynamic Experimental Parameters

Vapor Cell Temperature T and Laser-Beam Radius ω0

While many experimental parameters can be optimized independently, the inter-

dependency of vapor cell temperature T and laser-beam radius ω0 requires careful

attention. It is convenient to numerically calculate the excitation rate ṄD and stabil-

ity S across a grid of temperatures and laser-beam radii. The resulting dependence

of ṄD and S on T and ω0 are presented as a series of figures in Chapter V. Using

thermal atoms instead of ultracold atoms increases the density and interrogation rate,

a statistical advantage for optical frequency standards. A disadvantage for thermal
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Figure 3.4: Simulation of v̂z Bias 1000 atoms v̂z-component of v̂ with respect to
length in beam ω0

atoms is atomic-mass-dependent thermal speed which both limits interrogation to the

transit time t̄ of the atom and introduces sensitivity to Doppler effects (∆νD1 and

∆νD2 ). Unencumbered motion also leads to non-zero atom-atom collision probability.

The interrogation time t̄ is the average time atoms spend passing through the exci-

tation region, illustrated in Figure 3.1. This is the volume of the laser-beam enclosed

by the Gaussian laser-beam radius ω0 and length of the excitation region. From the

calculations described in §3.2 we find that the beam diameter (2ω0) is a reasonable

approximation of the average distance l̄ an atom travels through the interrogation

region. The mean thermal velocity v̄ of an atom in the vapor cell depends on the

vapor cell temperature T . The interrogation time scales with temperature T and

laser-beam radius ω0 as

t̄ =
l̄

v̄
= 2ω0 ×

√

πM

8kBT
(3.1)

where kB is Boltzmann’s constant and M is the mass of the atom. Heavier atoms
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Table 3.2: Mass and natural optical transition frequency ν0 for each candidate el-
ement. The specific wavelength for the monochromatic excitation scheme, λ2γ, is
also listed. Citations are included when the clock transition has been experimentally
observed.

Atom m [amu] ν0 [Hz] λ2γ [nm]

Hg [35] 200.6 1.1× 1015 531
Be 9.1 6.6× 1014 910
Mg 24.3 6.6× 1014 915
Yb [24] 173.1 5.2× 1014 1157
Ca 40.1 4.5× 1014 1319
Sr [32] 87.6 4.3× 1014 1397
Ra 226.0 3.9× 1014 1529
Ba 137.3 3.7× 1014 1631

Table 3.3: Relative Time in Beam
Atom tB(T, ω0)[s]

Ra 0.21 ω0√
T

Hg 0.19 ω0√
T

Yb 0.18 ω0√
T

Ba 0.16 ω0√
T

Sr 0.13 ω0√
T

Ca 0.087 ω0√
T

Mg 0.068 ω0√
T

Be 0.041 ω0√
T

move more slowly than light atoms, and so enjoy longer interrogation times for a given

temperature T . Longer interrogation time t̄ enhances probability of clock excitation

P3P0
(2.4). The mass of each candidate atom is shown in Table 3.2 and the relative

time in beam t̄ with respect to temperature T is shown in Table 3.3.

For the degenerate (monochromatic) excitation case, mirror misalignment intro-

duces first-order Doppler broadening ∆νD1 to atoms with velocity v components

co-linear with the laser beam’s wavevector k (v · k ̸= 0). This inhomogeneous broad-

ening introduces an effective detuning δ to each atom from the natural transition

frequency and diminishes the probability of clock excitation P3P0
(2.4). This broad-

ening is included in our calculations as a constant detuning magnitude equivalent to

the mean velocity v̄:
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∆νD1(T, θ) =
k

2π
v̄(T ) sin(θ) (3.2)

where k is the wavenumber. The specific detuning ∆νD1 for the mean velocity of each

atomic species with respect to vapor cell temperature and misalignment is listed in

Table 3.4. Figure 3.5 illustrates in Ra the interplay between single-atom excitation

probability and the number density ρ, both shown with respect to effective detuning

in 1 kHz bins. The correct calculation of total transition rate is the convolution of

these two distributions. We find that a single frequency excitation probability where

that single frequency is one detuned from resonance by the effective width of the

residual Doppler broadening, the resulting transition rate is a good approximation of

a convolved solution.

Typical experimental parameters (Table 3.1) result in broadening of 10-100 kHz

for the candidate group II type atoms. This can be compared to the estimated natural

linewidth of 0.45 Hz for neutral 201Hg [36].

Table 3.4: Residual 1st-order Doppler broadening in an E1-M1 scheme introduced
by mirror misalignment θ. The milliradian misalignment threshold makes the small
angle approximation valid.

Atom ∆νD1(T [K],θ[rad]) [Hz]

Ra 6.3× 106
√
T × θ

Ba 7.6× 106
√
T × θ

Yb 9.6× 106
√
T × θ

Sr 1.1× 107
√
T × θ

Ca 1.7× 107
√
T × θ

Hg 1.9× 107
√
T × θ

Mg 3.2× 107
√
T × θ

Be 5.3× 107
√
T × θ

The total atom interrogation rate Ṅtot depends on the interrogation volume. The

volume of the interrogation region is limited either by the Rayleigh range or the

detection optics. Figure 3.1 depicts the Rayleigh range 2zR and the detection length
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Figure 3.5: Excitation Probability for Thermal Distribution Simulation of
Doppler effects and transition probability for neutral Ra in a monochromatic E1-M1
scheme. This assumes the experimental settings of Table 3.1, vapor cell temperature
T = 800 K, and laser beam radius ω0 = 6.3 mm. (a) Plot of neutral Ra’s num-
ber density with respect to effective resonance frequency due to first-order Doppler
broadening νD1. The thermal distribution of velocities (for this simulation T = 800
K) manifests as effective frequency shifts. The number density amplitudes are for 1
kHz frequency bins. The width of the 2νD1 is measured by a purple ruler. (b) Plot
of a single Ra atom’s excitation probability with respect to the laser’s detuning from
the atom’s effective resonance frequency. The probability of excitation at the mean
velocity shift ν̄D1 is reported and the 2νD1 width is marked (again in purple). (c) A
laser scan across the natural resonance of a transition would produce the convolution
of the first-order Doppler frequency distribution and the excitation probability, this
is modeled in (c). Our approximation for peak probability of excitation is close in
magnitude to the actual peak rate count from a convolution.
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Lo in a vapor cell setup. When the volume is limited by detection optics VLo
the

volume of addressed atoms is the laser-beam area multiplied by the detection length

Lo

VLo
= Lo × πω2

0 (3.3)

VLo
(ω0) ∝ ω2

0 (3.4)

where Lo is an experimental constraint unrelated to the laser-beam radius ω0.

In the Rayleigh range limit the volume VzR is given by:

VzR = 2zR × πω2
0 (3.5)

=
2πω2

0

λ
× πω2

0 (3.6)

VzR(ω0) ∝ ω4
0 (3.7)

where the Rayleigh range 2zR depends on the laser wavelength λ and beam radius

ω0. For tight focusing in the interrogation region, ω0 is the smallest radius of the

laser beam (the spot size), hopefully centered on the detection optics. From these

equations, we find the unsurprising result that a large laser-beam radius maximizes the

volume and the system favors utilizing the full Rayleigh range as long as 2zR ≤ Lo.

The number density of atoms ρ in the vapor cell can be calculated from published

vapor pressure curves [1, 25].1 Number density ρ [m−3] is shown in Figure 3.6 with

respect to temperature T . The number density ρ of all group II type atoms scales

exponentially with temperature and can be expressed generally as

1The number density of Ra in this temperature range is not known; we extrapolate the curve for

Ra from known high temperature values for vapor pressure and assumed similarity to other group

II type atoms.
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ρ(T [K]) ∝ e
−10

4

T . (3.8)
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Figure 3.6: Vapor Cell Density Number density of group II type atoms with respect
to vapor cell temperature. The high number density of Hg gives it a statistical
advantage for optical stability.

The rate of atom interrogation Ṅtot is the product of the excitation volume V ,

the number density at room temperature ρ, and the rate at which atoms refresh in

that volume. This refresh rate is the inverse of the average interrogation time t̄. In

curly brackets the different scaling behavior of detection- or Rayleigh-limited regimes

is preserved. The interrogation rate is as follows:
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Ṅtot = V × ρ

t̄

=

{

VLo

V2zR

}

× ρ

t̄
(3.9)

Ṅtot(T [K], ω0[m]) ∝
{

ω2
0

ω4
0

}

×
√
T

ω0

e
−10

4

T (3.10)

3.4 Detection Channels

Detection of 3P0 is difficult due to its metastability, it does not readily cascade

to the ground state to produce a photon signaling excitation. Detection channels for

this E1-M1 scheme in Hg are discussed in §7.6. In brief, collision induced relaxation

or secondary excitation from the clock state to a level that relaxes more readily are

both available options.

3.5 Probability of Clock Excitation

The two characteristic regimes of excitation probability P3P0
in a hot E1-M1 op-

tical clock are the time-limited and velocity-limited regimes, these follow from the

discussion in §2.5. The time-limited probability of clock excitation (2.5) in a hot

vapor cell can be written explicitly in terms of the vapor cell temperature and laser-

beam radius as

P3P0
(T, ω0) ≈ ΩR2γ(ω0)

2t̄(T, ω0)
2 ∝ 1

Tω2
0

. (3.11)

This approximation provides less than 1% disagreement with the P3P0
scaling behavior

for sub-millimeter laser-beam radii in simulation. This is the appropriate length scale

to verify because it contains the optimal radius for maximum detection rate ṄD.

The Doppler-limited probability of excitation (2.6) can also be written explicitly
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in terms of the vapor cell temperature and laser-beam radius:

P3P0
(T, ω0) ≈

ΩR2γ(ω0)
2

∆νD1(T )2
∝ 1

Tω4
0

. (3.12)

In both regimes a high excitation probability P3P0
favors small laser-beam radius

ω0 and low temperature T . Small laser-beam radius is an intuitive advantage here

because atoms aren’t interrogated long enough to undergo coherent Rabi flopping so

smaller laser-beam radius will enhance the two-photon Rabi frequency ΩR2γ (2.3).

Lower temperatures lead to reduced atomic speeds v̄ and longer interrogation times

t̄, which increase the probability P3P0
of exciting a single atom.

3.6 Clock Excitation Rate

The experimental parameters that maximize the excitation rate Ṅ3P0
are different

than those for optimum stability S . While minimal S is the ultimate goal of this

technology, it will be worthwhile to maximize Ṅ3P0
to experimentally quantify and

optimize broadening parameters ∆ν and transition probability P3P0
.

The effective clock excitation rate Ṅ3P0
(2.2) with a time-limited probability of ex-

citation P3P0
(3.11) and interrogation rate Ṅtot defined by (3.10) can now be reported

in terms of temperature T and laser-beam radius ω0:

Ṅ3P0
= P3P0

× Ṅtot (3.13)

Ṅ3P0
(T [K], ω0[m]) ∝ 1

Tω2
0

×
{

ω0

ω3
0

}√
Te

−10
4

T (3.14)

∝ e
−10

4

T

√
T

{

1
ω0

ω0

}

(3.15)

The curly brackets continue to denote the detection- (Lo) and Rayleigh-limited (2zR)

regimes of the experiment
{

Lo

2zR

}

(3.4,3.7). The optimal beam radius is the length
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Figure 3.7: Optimal laser-beam Size Plot of effective excitation rate, Ṅ3P0
, with

respect to beam waist size (2.2) for neutral Hg at 448 K. Displays the asymptotic
behavior in Rayleigh-limited and detection-limited regimes where the peak rates are
found when the Rayleigh range 2zR is set to match the detection length Lo, in Hg
this happens at 41 µm.

where the Rayleigh range 2zR matches the detection length Lo. Figure 3.7 show

that for small ω0, where 2zr << Lo, the overall rate increases with beam radius

until 2zR = Lo, at which point the volume is detection-limited and detection rates

begin to decrease with ω0. The detection length Lo is the effective aperture of the

detection system, any percent increase in Lo will lead to an equal percent in increase

in interrogation volume and rate.

3.7 Experimental Detection of 3P0 Atoms

The probability of detecting clock level occupation PD depends on the chosen

detection channel. Ideas for detection channels are explored in §7.6. We assume that

all excited clock atoms will be detected by subsequent photon scattering. The photon

collection efficiency of the imaging system (§7.5) impacts the probability of detection.

In our calculation we set this collection efficiency Ppc at 1% as listed in Table 3.1.
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Collisions are treated as a loss channel, so collision affects the PD in calculation.

Collision events occur with a rate proportional to the interrogation length l̄ = 2ω0 and

the mean free path of the particles (ρσ)−1 where ρ is the number density of the atoms

[m−3] and σ is the Van der Waals radius [m2]. The number density ρ exponentially

increases with temperature (3.8). The probability of no collision Pnc is given by

Pnc(T [K], ω0[m]) = e−ρ(T )σl̄(ω0) (3.16)

∝ e−ω0e
−10

4

T (3.17)

and primarily depends on the number density of atoms (see Figure 3.6). The risk of

collision increases with interrogation length and cell temperature, which is unlike the

rate behavior we’ve seen so far where increases in length and temperature increase

rates. Hg is the only atom with a non-negligible probability of collision for the

temperatures and interrogation lengths of this calculation, so optimal temperature

and laser-beam radius represent the threshold between large excitation probability

P3P0
and large probability of no collision Pnc. This is due to Hg’s considerably higher

density compared with the other species, but the higher collision rate of Hg does not

eliminate its viability as an optical clock. See §4.1.7 for details.

The final probability of detection PD is

PD = Ppc × Pnc. (3.18)

Using Ṅ3P0
and PD, the calculated detection rates ṄD for the group II type atoms,

with optimal temperature T and laser-beam radius ω0, are reported in Table 5.1 for

the prototypical experimental settings listed in Table 3.1.
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CHAPTER IV

E1-M1 Optical Clock Stability

Like the detection rate ṄD, the optimal clock stability S can be expressed in terms

of experimentally controlled parameters. Stability scales with the inverse square root

of the detection rate ṄD (2.1) and linearly with the linewidth ∆ν

S =
∆ν

νL

√

1

ṄD

. (4.1)

The goal of an optical frequency standard is to minimize S. The broadening mecha-

nisms ∆νi that in aggregate constitute the effective linewidth ∆ν of this system will

be discussed in detail in this chapter.

An optical frequency standard ultimately measures a resonant laser frequency νL.

As described in Section 1.2, we assume that the natural transition frequency ν0 is

equivalent for like atoms. But the measured resonance will be inevitably offset from

the natural transition frequency ν0 by shifts due to environmental interaction

νL = ν0 + νB. (4.2)

The total bias shift νB can be reduced or eliminated by reducing and offsetting individ-

ual experimental shifts ∆νi . The specific experimental settings that contribute to this

shift νB are discussed in this chapter. The specific broadening and shift mechanisms
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we consider are listed in Table 4.1. The individual broadening and shift mechanisms

for the optimal Hg clock are discussed explicitly. For the optimal monochromatic

E1-M1 clock in Hg, the total broadening and shift budget is shown in Table 5.19.

Table 4.1: The mechanisms that contribute to broadening ∆ν and the bias frequency
shift νB in a hot E1-M1 clock are listed. The broadening due to the light shift
∆νLS depends on the instability in laser intensity σĪ . Broadening due to black-body
radiation ∆νBB will occur for temperature instability σT̄ .

Mechanism ∆ν νB

Natural ∆νnat 0
Transit ∆νTT 0
Laserline ∆νLL 0
Doppler (1st-order) ∆νD1 0
Doppler (2nd-order) ∆νD2 νD2

Light Shift ∆νLS(σĪ) νLS
Blackbody Radiation ∆νBB(σT̄ ) νBB

Collision ∆νC νC

4.1 Broadening and Shift Mechanisms

4.1.1 Natural Width ∆νnat

The clock state has highly suppressed relaxation channels, leading to long lifetimes

and intrinsically narrow linewidths ∆νnat . See §2.1 for a more thorough discussion

of this forbidden relaxation property. Fermionic isotopes of the group II type atoms

discussed here have a weakly allowed E1 transition between the clock state 3P0 to the

ground state 1S0 due to hyperfine mixing with the 3P1 intermediate level. This weakly

allowed relaxation channel creates larger ∆νnat in the Fermionic isotopes than in the

Bosonic isotopes. A hot E1-M1 clock has fast atoms, and the short interrogation time

of these atoms makes transit-time broadening ∆νTT larger than the natural frequency

width in both Fermionic and Bosonic isotopes.

Fermionic isotopes of Hg have estimated natural linewidths ∆νnat of 0.5-0.7 Hz
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and the Bosonic isotopes have indefinite lifetimes [36].

4.1.2 Transit Broadening ∆νTT

The dominant broadening mechanism in an optimized hot E1-M1 scheme is transit-

time broadening ∆νTT . In fact, any clock should set its Fourier limited resolution

to match the next largest broadening mechanism. Transit broadening is defined by

∆ν
TT

= 1/t̄ and is introduced by the brief interaction time of the fast atoms through

the narrow laser-beam. As such, the optimal beam radius ω0 to minimize ∆νTT (and

S ) is large. Transit broadening scales with the dynamic parameters ω0 and T as:

∆ν
TT
(T, ω0) ∝

√
T

ω0

(4.3)

For a hot Hg clock at minimal S we calculate a mean interrogation time of 5µs, which

introduces a Fourier uncertainty of ∆νTT = 0.2 MHz.

4.1.3 Light Shift and Broadening νLS and ∆νLS

The high levels of laser intensity required for non-vanishing transition probabilities

P3P0
(2.4) will introduce a.c. Stark shifts (light shifts) to the clock 3P0 and ground

1S0 states. This will create a systematic bias νLS in the fundamental frequency of the

clock that scales with the intensity of the laser. Instability in laser intensity, σĪ , will

exhibit as a broadening to the system ∆νLS . Uncertainty in the absolute intensity

will manifest as an unknown fundamental bias. The dynamic dipole polarizability

difference ∆α(λ) between the 1S0 and 3P0 levels of Hg at 531 nm is 21 a.u. [52]1 .

The absolute shift scales with intensity as 2.25 kHz/ W
mm2 .

1Thanks to Guangfu Wang who provided the exact value at 531 nm.
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4.1.4 Doppler Effects

The motion of an atom with respect to a radiation source shifts that atom’s

resonance frequency from the natural frequency ν0 into νabs

νabs ≃ ν0 +
k

2π
· v − 1

2
ν0

(

v2

c2

)

+
hν20
2Mc2

(4.4)

where k is the wavevector, v and v are the vector and scalar velocities of an atom, c

is the speed of light, h is Planck’s constant, and M is the atomic mass. The second

term in (4.4) is the first-order Doppler shift νD1 ≈ k ·v, the third term is the second-

order Doppler shift νD2 = −1
2
ν0

(

v2

c2

)

, and the last term is the recoil shift which is

negligibly small in our system. Doppler broadening depends on one of the dynamic

parameters we elect to optimize: the vapor cell temperature T .

4.1.4.1 First-order Doppler Broadening ∆νD1

The primary measurement environment considered here is a hot vapor cell of

atoms moving freely and isotropically with thermal velocity distributions (as opposed

to ultracold trapped atoms). For the ensemble of atoms, the first-order Doppler

broadening introduces no absolute bias shift νB to the optical transition because

atomic velocities in the vapor cell are isotropically oriented. The distribution of

velocities does introduce a distribution of effective detunings from resonance. An

atom with velocity components in the direction of the wavevector k will experience

an individual frequency shift νD1 and the ensemble will have an aggregate distribution

of resonant frequencies that depends on the velocity distribution of the atoms. This

broadening is termed first-order Doppler broadening.

Single-photon optical frequency standards must operate with ultracold atoms be-

cause the first-order Doppler width is prohibitively large for room temperature atoms.

Table 4.2 shows the single-photon E1-type first-order Doppler broadening in terms
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Table 4.2: The ∆νD1 for E1-type atomic clock schemes. This table illustrates the
prohibitively large fist-order Doppler broadening in group II type atoms that requires
the use of ultracold atoms to construct a viable optical frequency standard.

atom νD1(T ) [MHz] νD1(300K) [GHz]

Be 160×
√
T 2.8

Mg 97×
√
T 1.7

Hg 58×
√
T 1.0

Ca 52×
√
T 0.9

Sr 33×
√
T 0.6

Yb 29×
√
T 0.5

Ba 23×
√
T 0.4

Ra 19×
√
T 0.3

of temperature dependence for the group II type atoms. The GHz shifts at room

temperature show it would be impractical to implement a single-photon E1 optical

frequency standard in a vapor cell.

The first-order Doppler broadening that plagues single-photon transitions can be

easily reduced in the two-photon transition of an E1-M1 optical standard. The first-

order Doppler shift in a two-photon transition is the sum of the first-order Doppler

shifts from each of the excitation lasers with wavevectors k1 and k2.

νD1 = k1 · v + k2 · v; (4.5)

where experimentally setting k1 = −k2 to implement a Doppler-free excitation of

an atom with any velocity orientation v is well known [7] and commonly performed.

For the experimental implementation of a monochromatic (|k1| = |k2|), Doppler-free

method, we must characterize error in alignment angle θ to obtain a bound on the

residual first-order Doppler broadening. Alignment of counter-propagating lasers can

be characterized by

k1 = −k2 cos(θ). (4.6)
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If we assume a misalignment of counter-propagating lasers by the angle limit listed

in Table 3.1, we find that residual first-order Doppler broadening is larger than the

natural linewidth of these atomic systems. The temperature T and alignment angle

θ dependence of first-order Doppler broadening for each atomic species is listed in

Table 3.4.

For the case of neutral Hg in a vapor cell with alignment angle θ = 0.0001 radians,

the residual first-order Doppler broadening is shown for T = 380K and T = 800K in

Figure 4.1. This figure illustrates that setting ∆νD1 equal to the mean velocity v̄ is

appropriate because v̄ ≈ 1.1vP .

0 25 50 75 100 125 150 175 200

Thermal Frequency Distribution [kHz]

800 K
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kv
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-
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-

×2π

Figure 4.1: Thermal Shift from Doppler Effects Diagram of neutral Hg with the
most probable frequency v̄P/λ for each temperature class shown. This illustrates that
mean velocity v̄ = 2v̄P is a good, conservative estimation of the velocity broadening.

The magnitudes of residual first-order Doppler broadening ∆νD1 found in hot

group II type atoms is an S limiting feature. This behavior is illustrated at the end

of this chapter in Figure 4.2.

The bichromatic E1-M1 scheme that can be implemented to eliminate the light

shift (see Chapter VI) requires that |k1| ̸= |k2|. While the misalignment angle θ
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(4.6) can be intentionally introduced to make |k1| = |k2 cos(θ)|, this will only elim-

inate first-order Doppler effects for a single velocity direction. In a vapor cell the

atom velocities are isotropic and so the optimal alignment angle to reduce Doppler

broadening is found at θ = 0.

In a thermal atomic beam, the velocity distribution has a significant orientation

along the atom beam path. A bichromatic excitation scheme may have smaller resid-

ual first-order Doppler broadening in an thermal beam than a vapor cell because laser

alignment can be oriented to that thermal beam direction.

4.1.4.2 Second-order Doppler Broadening ∆νD2

The temperature dependence of the second-order Doppler shift is given by

νD2(T ) = −ν
v̄(T )2

2c2
(4.7)

and the shift is linear in temperature.

Second-order Doppler shift νD2 and broadening ∆νD2 cannot be compensated for

with laser alignment like first-order broadening because these quantities scale with

atomic velocity squared (4.4). The negative sign in the second-order Doppler shift

νD2 imparts a red-detuning shift to the overall bias frequency of the system νB. If we

assume temperature stability of 0.1 K (see Table 3.1) we can place a firm estimate

on the mean shift νD2 at the optimal clock operating temperature. Instability of

drift in temperature will lead to broadening but will likely occur on long timescales

and therefore be easy to account for in analysis. Table 4.3 shows the second-order

Doppler shift νD2 of each of the group II type atoms in an E1-M1 schme with respect

to temperature T in Kelvin.

The second-order Doppler effect also introduces broadening ∆νD2 to the resonance
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Table 4.3: The E1-M1 second-order Doppler broadening ∆νD2 for the group II type
atoms.

atom νD2(T ) [Hz]

Ra −0.04× T
Ba −0.06× T
Yb −0.07× T
Sr −0.11× T
Hg −0.13× T
Ca −0.26× T
Mg −0.62× T
Be −1.7× T

frequency of the transition. The velocity distribution of the thermal atoms leads to

a distribution of second-order Doppler shifts which manifests as a broadening. The

characteristic width of the velocity distribution is similar to the mean velocity, so we

assume ∆νD2 ≈ |νD2|.

First-order and second-order Doppler broadening both increase the linewidth of

the frequency standard. The temperature dependence of first-order Doppler broaden-

ing is described by (3.2). Figure 4.1 illustrates the effective frequency shift from the

first-order Doppler broadening in Hg. For the optimal Hg E1-M1 clock operating 380

K with misalignment angle θ less that 0.1 milliradians, the first-order Doppler broad-

ening ∆νD1 will contribute a maximum of 44 kHz of line broadening and second-order

Doppler broadening ∆νD2 will be 90 Hz

4.1.5 Laser-Line Broadening ∆νLL

The linewidth of the excitation laser contributes to the broadening of the sys-

tem. This is because the laser linewidth is the bottleneck through which all narrow

linewidth information passes to the oscillation counter in an optical frequency stan-

dard. If an optical transition has a kHz linewidth, but the resonant laser has a GHz

linewidth, then even if the laser is resonant with and centered on the transition,

the detector will not register resonance features narrower than a GHz. With transit
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broadening of nearly a MHz for all hot clock atoms in the E1-M1 scheme, excita-

tion lasers with sub-kHz linewidths will make a negligible contribution to the overall

broadening. Strictly speaking, the laser linewidth has a Lorentzian profile which does

not contribute to broadening quadractically. However, since we assume that the laser

linewidth is much smaller than the effective broadening of the system, we add it

quadratically for S calculation purposes.

4.1.6 Black-body Radiation Shift and Broadening νBB and ∆νBB

The estimated black-body radiation shifts and uncertainties have been cataloged

elsewhere [37]. In Hg at 380 K the shift is −1.63 Hz. Inaccuracy and instability σT̄ in

operating temperature can introduce an unknown systematic shift and broadening.

This is typically much smaller than other broadening and shift features due to the

overall small size of the black-body radiation shift.

4.1.7 Collision Shift and Broadening νC and ∆νC

In this calculation we treat collision as a loss channel so we exclude collision

broadening for the effective linewidth calculation. Collisions do introduce harm the

stability S in our calculation through reduced signal. This is an inaccurate approxi-

mation because it is not how collision dynamics contribute to signal, but this signal

loss approximation imparts more damage to the S than actual collision broadening

likely will. All the group II atoms, with the exception of Hg, have less than 0.1% prob-

ability of experiencing a collision in the excitation region. At the optimal operating

temperature for the hot Hg clock, the collision frequency is 33 MHz. Approximately

60% of Hg atoms in the excitation region N will experience a collision which can, in

the worst-case scenario, harm the stability of the clock by a factor of 1.3. The spe-

cific collision phase shift introduced by colliding 1S0 and 3P0 Hg atoms is unknown.

The worst-case estimate assumes a collided atom NC = 0.6 × N results in an even
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probability of a phase shift into (or out of) the clock level. We assume collided atoms

are not more likely than uncollided atoms to excite to the clock level. In that limit,

half of the collided atoms 0.5 × NC will present in the clock level and contribute

noise as the square root of that number. The signal-to-noise of a clock system with

0.4×N clock-level atoms, absent collision noise, should scale as
√
0.4×N . Then our

worst-case collision scenario suffers from a signal-to-noise reduction of

0.4×N√
0.4×N + 0.5× 0.6×N

=

√
0.4×N
1.3

(4.8)

which is 1.3 times more harmful to S than a system without collision noise. The

actual collision phase shifts are likely much less harmful to S . The true collision

dynamics must be measured experimentally to quantify broadening ∆νC and any

absolute collision shift νC .

4.2 Shift Mechanisms for Metrology

Gravitational Redshift νG

The previous section (4.1) outlined shift mechanisms which must be measured

precisely and compensated for during clock operation to achieve small S and accurate

characterization of bias shift νB. However, one of the opportunities of an optical

frequency standard with minimal S is sensitivity to environmental shifts that are

otherwise challenging to measure. The gravitational redshift is one such opportunity

and the sensitivity of a monochromatic E1-M1 clock to this shift is discussed.

When an oscillator changes elevation by ∆h then that oscillator experiences a

shift in frequency νG as

νG
ν0

=
g∆h

c2
(4.9)

where ν0 is the natural frequency of the oscillator and g is local acceleration due to

gravity [11]. To clarify the sign convention, when an oscillator is at a lower elevation
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it experiences a redshift. The elevation sensitivity of an optical frequency standard

with stability S operated for a total measurement time τ is given by

∆h(τ) =
c2S
gτ

(4.10)

An OFS becomes a meterstick on earth (i.e. is sensitive to ∆h = one meter) with

only 1 second of experiment time τ when the stability S = 1.1 × 10−16. Table 5.20

displays the time each group II type atom’s hot E1-M1 clock will attain meterstick

precision.

4.3 Optimal Clock Stability

Optimal stability S for each group II type atom can be achieved by balancing the

effects of laser-beam radius ω0 with vapor cell temperature T . Figure 4.2 illustrates

the asymptotic behavior of effective broadening ∆ν of the hot monochromatic E1-M1

clock scheme in neutral Ra at T = 800K. The dependence of ∆ν on ∆νTT and ∆νD1

and its overall scaling with respect to laser-beam radius ω0 in Ra is characteristic for

all the group II type atoms, with the exception of Hg which has heightened sensitivity

to collisions.

As you can see in Figure 4.2, the ideal laser-beam radius ω0 for minimum S is

closely related to the crossover point between time-limited ∆νTT (4.3) and velocity-

limited ∆νD1 (3.2) broadening regimes. The slight difference is due to the competing

advantage of increased excitation rate Ṅ3P0
at smaller ω0 in this detection-limited

regime. Since optimal S occurs in a detection-limited volume, we use the Lo scaling

of the effective clock excitation rate Ṅ3P0
(3.15). We compare the scaling behavior

of the time- and velocity-limited regimes with respect to laser-beam radius ω0 and

temperature T to determine the minimum S (4.1):
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Figure 4.2: Asymptotic Behavior of ∆ν in Ra Calculation results for laser-beam
radius ω0 dependence of the transit broadening ∆νTT , first-order Doppler broadening
∆νD1 , and total broadening ∆ν for Ra at vapor cell temperature 800 K .

S ∝
{

∆νTT

∆νD1

}

×
√

1

Ṅ3P0

(4.11)

S(T [K], ω0[m]) ∝
{√

T/ω0√
T

}

×
√

ω0

√
T

e
−104

T

∝
√

T
√
T

e
−104

T

{

1
ω0

ω0

}

. (4.12)

Curly brackets no longer denote the geometry limits of (3.10), instead they are the

time- and velocity-limited behavior
{

∆νTT

∆νD1

}

. As when we maximize excitation rate

Ṅ3P0
(3.15), optimally small S favors high temperature T . Unlike maximum Ṅ3P0

, op-

timal S favors a larger laser-beam radius ω0 than the one that matches the Rayleigh

range to the detection-limit. This is due to S ’s sensitivity to transit-time broadening

∆νTT (4.3). The beam size ω0 for all candidate atoms (except Hg) is best increased

until transit broadening is comparable with the residual first-order Doppler broaden-
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ing. The specific beam size recommendations listed in Table 5.2 therefore reflect the

transition from a ∆νTT to ∆νD1 dominated regime for the non-Hg atoms.

Hg is affected by collision broadening and thus is optimized at a lower temperature

T and smaller beam radius ω0 than predicted by the collision-free model (4.12). The

plot of ∆ν for Hg is shown in Figure 4.3 where it can be seen that S min occurs at a

much smaller radius ω0 than the crossover point.
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Figure 4.3: Asymptotic Behavior of ∆ν in Hg Calculation results for laser-beam
radius ω0 dependence of the transit broadening ∆νTT , first-order Doppler broadening
∆νD1 , and total broadening ∆ν for Hg at vapor cell temperature 380 K .

Systematic shifts νB are inevitable, but for a well known system they can be

monitored and offset in analysis. These absolute frequency shifts contribute linearly

to the bias frequency, so the final νB is a sum of the systematic shifts of the E1-M1

experiment listed in Table 4.1.

The broadening components contribute in a more nuanced fashion. For S calculations,

we aggregate the broadening in quadrature in keeping with the predominantly Gaus-

sian nature of the broadening mechanisms.

We show in Chapter V that hot clock stabilities for group II type atoms are
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competitive with current cold standards. These stabilities S can be achieved with a

single excitation laser driving a degenerate two-photon E1-M1 transition and in the

case of Hg using commercially available laser and optics systems.
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CHAPTER V

Monochromatic E1-M1 Optical Clock

Detection Rates and Stability

5.1 Calculation Results

The calculated detection rates ṄD and clock stabilities S for the hot monochro-

matic E1-M1 scheme are presented for the group II type atoms Hg, Sr, Yb, Ca, Mg,

Be, Ra, and Ba. The optimal temperature T and laser-beam radius ω0 for both

detection rate ṄD (2.1) and stability S (4.1) are presented.

While S is the most important parameter to consider for the ultimate perfor-

mance of an optical frequency standard, the immediate work in developing an E1-M1

standard will require experimental quantification of all the assumptions made in this

model (to name a few: collision broadening ∆νC , transition probability P3P0
, and

light shift νLS). To precisely characterize these quantities it will be useful to operate

at maximum detection rate ṄD.

Calculations from the models developed in this dissertation produce ṄD and

Smagnitudes over the dynamic parameter space of laser-beam radius ω0 and va-

por cell temperature T . These are presented in contour plots which reveal the ṄD

maximum and Sminimum for each species. These optimal spaces are denoted by the

darkest color on the plot. For both ṄDmax and S min, neutral Hg performs the best
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Table 5.1: The detection rate of clock atoms, ṄD, at the optimal vapor cell temper-
ature T and laser-beam radius ω0 for each group II type atom. The optimal ω0 in
all cases is the radius where the Rayleigh range matches the detection length, Lo, of
the detection optics which maximizes ṄD. These are not the values for optimal clock
stability.

Atom T [K] ω0[µm] ṄD [s−1]

Hg 448 41.0 1.8× 10+12

Yb 800 60.0 6.4× 10+10

Ra 800 70.0 4.3× 10+10

Sr 800 67.5 8.4× 10+8

Ba 800 72.5 4.6× 10+8

Mg 800 55.0 6.3× 10+6

Ca 800 65.0 3.8× 10+6

Be 800 55.0 1.0× 10−7

of the group II type atoms.

For comparison between group II type atoms, the optimal experimental settings

and maximum excitation rate ṄD are listed for all atoms in Table 5.1. Likewise the

optimal stability (small) S settings and results are listed in Table 5.2. All calculations

use the experimental assumptions in Table 3.1. The optimal temperature for Hg

stands out in each table because it is uniquely optimized at a lower temperature than

the damage threshold of the optics. This difference from the other elements is due to

its higher number density ρ and subsequently higher collision rate.

When comparing atoms, insensitivity to transit broadening ∆νTT is important

because it reduces S in a hot E1-M1 clock. Relative insensitivity to transit broadening

scales with atomic mass. Table 3.4 shows relative first-order Doppler broadening

between the group II type atoms. It is noteworthy to point out that as a hot E1-M1

optical clock Be is a worse frequency standard than a quartz oscillator.
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Table 5.2: The vapor cell temperature T and laser-beam radius ω0 to achieve minimum
S for each group II type atom is listed. Stability S is defined in (1.2) and characterizes
how quickly a frequency standard can achieve a chosen absolute instability σν . Please
see Table 3.2 for a list of the monochromatic excitation wavelengths λ2γ.

Atom T [K] ω0[mm] S [
√
Hz−1]

Hg 382 0.5 3.1× 10−15

Ra 800 6.3 7.1× 10−15

Yb 800 2.9 8.4× 10−15

Sr 800 5.1 8.4× 10−14

Ba 800 7.1 8.5× 10−14

Ca 800 5.7 1.7× 10−12

Mg 800 1.9 2.4× 10−12

Be 800 4.0 1.9× 10−5

5.2 Detection rate ṄD results for group II type atoms

In this section you will find contour plots of each group II type atom’s detection

rate ṄD magnitude with respect to temperature T and laser-beam radius ω0. In

calculation, laser-beam radius ω0 was varied from 10 µm up to a few mm and vapor

cell temperature T was evaluated from room temperature (300 K) up to the optical

damage threshold of 800 K. The subset of laser-beam radii and temperatures imme-

diately surrounding the local maximum of detection rate ṄD are displayed. The Hg

temperature and radius result is remarkably distinct from the other group II type

atoms due to collision effects.

For insight into these contour plots, the vertical slice behavior is dominated by the

detection- and Rayleigh- limited regimes of Ṅ3P0
for all group II type atoms shown

with respect to laser-beam radius ω0 in Figure 3.7.

Horizontal-slice scaling follows the number density ρ of atoms most strongly, shown

with respect to temperature in Figure 3.6.
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Figure 5.1: ṄD Magnitudes for Hg The hot Hg detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 1.8× 1012 s−1 is found at ω0 = 41µm and T = 448 K.

Table 5.3: Hg parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 1.8×10+12 s−1

ω0 laser-beam radius 41 µm
T vapor cell temperature 448 K
P3P0

excitation probability (2.4) 1.1×10−5

Ṅtot atom interrogation rate (3.10) 4.4×10+19 s−1

ΩR2γ two-photon Rabi frequency (2.3) 1.8×10+4 Hz
t̄ interrogation time (3.1) 0.38 µs
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Figure 5.2: ṄD Magnitudes for Ra The hot Ra detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 4.3× 1010 s−1 is found at ω0 = 70µm and T = 800 K.

Table 5.4: Ra parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 4.3×10+10 s−1

ω0 laser-beam radius 70 µm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.4×10−4

Ṅtot atom interrogation rate (3.10) 3.1×10+16s−1

ΩR2γ two-photon Rabi frequency (2.3) 4.6×10+4 Hz
t̄ interrogation time (3.1) 0.51 µs
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Figure 5.3: ṄD Magnitudes for Yb The hot Yb detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 6.4× 1010 s−1 is found at ω0 = 60µm and T = 800 K.

Table 5.5: Yb parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 6.4×10+10 s−1

ω0 laser-beam radius 60 µm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.8×10−5

Ṅtot atom interrogation rate (3.10) 3.5×10+17 s−1

ΩR2γ two-photon Rabi frequency (2.3) 2.2×10+4 Hz
t̄ interrogation time (3.1) 0.38 µs
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Figure 5.4: ṄD Magnitudes for Sr The hot Sr detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 8.4× 108 s−1 is found at ω0 = 67.5µm and T = 800 K.

Table 5.6: Sr parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 8.4×10+8 s−1

ω0 laser-beam radius 67.5 µm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 8.8×10−7

Ṅtot atom interrogation rate (3.10) 9.6×10+16 s−1

ΩR2γ two-photon Rabi frequency (2.3) 6.1×10+3 Hz
t̄ interrogation time (3.1) 0.31 µs
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Figure 5.5: ṄD Magnitudes for Ba The hot Ba detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 4.6× 108 s−1 is found at ω0 = 72.5µm and T = 800 K.

Table 5.7: Ba parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 4.6×10+8 s−1

ω0 laser-beam radius 72.5 µm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.4×10−5

Ṅtot atom interrogation rate (3.10) 3.3×10+15s−1

ΩR2γ two-photon Rabi frequency (2.3) 1.8×10+4 Hz
t̄ interrogation time (3.1) 0.41 µs
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Figure 5.6: ṄD Magnitudes for Ca The hot Ca detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 3.8× 106 s−1 is found at ω0 = 65µm and T = 800 K.

Table 5.8: Ca parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 3.8×10+6 s−1

ω0 laser-beam radius 65 µm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 2.2×10−8

Ṅtot atom interrogation rate (3.10) 1.8×10+16 s−1

ΩR2γ two-photon Rabi frequency (2.3) 1.5×10+3 Hz
t̄ interrogation time (3.1) 0.20 µs
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Figure 5.7: ṄD Magnitudes for Mg The hot Mg detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 6.3× 106 s−1 is found at ω0 = 55µm and T = 800 K.

Table 5.9: Mg parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 6.3×10+6 s−1

ω0 laser-beam radius 55 µm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 2.3×10−10

Ṅtot atom interrogation rate (3.10) 2.8×10+18 s−1

ΩR2γ two-photon Rabi frequency (2.3) 2.3×10+2 Hz
t̄ interrogation time (3.1) 0.13 µs
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Figure 5.8: ṄD Magnitudes for Be The hot Be detection rate ṄD (2.1) of the
E1-M1 transition is plotted for laser-beam radius ω0 and vapor cell temperature T .
The maximum ṄDmax = 1× 10−7 s−1 is found at ω0 = 55µm and T = 800 K.

Table 5.10: Be parameters at the ṄDmax.
Parameter Value

ṄDmax detection rate (2.1) 1.0×10−7 s−1

ω0 laser-beam radius 55 µm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.5×10−13

Ṅtot atom interrogation rate (3.10) 6.5×10+7 s−1

ΩR2γ two-photon Rabi frequency (2.3) 9.7 Hz
t̄ interrogation time (3.1) 0.08 µs
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5.3 Stability results for group II type atoms

In this section you will find contour plots of each group II type atom’s stability

Smagnitude with respect to temperature T and laser-beam radius ω0. In calcula-

tion, laser-beam radius ω0 was varied from 100 µm up to a 15 mm and vapor cell

temperature was evaluated from room temperature (300 K) up to the optical damage

threshold of 800 K. The subset of laser-beam radii and temperatures immediately

surrounding the local minimum of stability S are displayed. The Hg result is remark-

ably distinct in temperature and radius from the other group II type atoms due to

collision effects.

For insight into these plots, a characteristic example of a how ∆ν in Ra scales for

the non-Hg group II type atoms is shown in Figure 4.2 at 800 K, plotted with respect

to laser-beam radius ω0. The linewidth ∆ν contributes linearly to the vertical-slice

behavior of the contours displayed below. The equivalent ∆ν plot for Hg is shown in

Figure 4.3.

Insight into horizontal-slice scaling follows the number density ρ of atoms most

strongly, shown with respect to temperature in Figure 3.6.
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Figure 5.9: S Magnitudes for Hg The S (4.1) of a hot Hg E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 3.1× 10−15
√
Hz−1 is

found at ω0 = 0.54 mm and T = 382 K.

Table 5.11: Hg parameters at the Smin.
Parameter Value

S min stability (4.1) 3.1×10−15
√
Hz−1

ω0 laser-beam radius 0.54 mm
T vapor cell temperature 382 K
P3P0

excitation probability (2.4) 7.5×10−8

Ṅtot atom interrogation rate (3.10) 3.8×10+19 s−1

∆ν effective linewidth - Table 4.1 1.9×10+5 Hz
ΩR2γ two-photon Rabi frequency (2.3) 1.0×10+2 Hz
t̄ interrogation time (3.1) 5.38 µs
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Figure 5.10: S Magnitudes for Ra The S (4.1) of a hot Ra E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 7.1× 10−15
√
Hz−1 is

found at ω0 = 6.3 mm and T = 800 K.

Table 5.12: Ra parameters at the Smin.
Parameter Value

S min stability (4.1) 7.1×10−15
√
Hz−1

ω0 laser-beam radius 6.3 mm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.6×10−8

Ṅtot atom interrogation rate (3.10) 2.8×10+18 s−1

∆ν effective linewidth - Table 4.1 2.8×10+4 Hz
ΩR2γ two-photon Rabi frequency (2.3) 5.7×10+0 Hz
t̄ interrogation time (3.1) 46.02 µs
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Figure 5.11: S Magnitudes for Yb The S (4.1) of a hot Yb E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 8.4× 10−15
√
Hz−1 is

found at ω0 = 2.9 mm and T = 800 K.

Table 5.13: Yb parameters at the Smin.
Parameter Value

S min stability (4.1) 8.4×10−15
√
Hz−1

ω0 laser-beam radius 2.9 mm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 7.7×10−9

Ṅtot atom interrogation rate (3.10) 1.7×10+19 s−1

∆ν effective linewidth - Table 4.1 6.0×10+4 Hz
ΩR2γ two-photon Rabi frequency (2.3) 9.6×10+0 Hz
t̄ interrogation time (3.1) 18.54 µs
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Figure 5.12: S Magnitudes for Sr The S (4.1) of a hot Sr E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 8.4× 10−14
√
Hz−1 is

found at ω0 = 5.1 mm and T = 800 K.

Table 5.14: Sr parameters at the Smin.
Parameter Value

S min stability (4.1) 8.4×10−14
√
Hz−1

ω0 laser-beam radius 5.1 mm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.5×10−10

Ṅtot atom interrogation rate (3.10) 7.2×10+18 s−1

∆ν effective linewidth - Table 4.1 5.3×10+4 Hz
ΩR2γ two-photon Rabi frequency (2.3) 1.1 Hz
t̄ interrogation time (3.1) 23.20 µs
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Figure 5.13: S Magnitudes for Ba The S (4.1) of a hot Ba E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 8.5× 10−14
√
Hz−1 is

found at ω0 = 7.1 mm and T = 800 K.

Table 5.15: Ba parameters at the Smin.
Parameter Value

S min stability (4.1) 8.5×10−14
√
Hz−1

ω0 laser-beam radius 7.1 mm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.4×10−9

Ṅtot atom interrogation rate (3.10) 3.2×10+17 s−1

∆ν effective linewidth - Table 4.1 3.3×10+4 Hz
ΩR2γ two-photon Rabi frequency (2.3) 1.9 Hz
t̄ interrogation time (3.1) 40.43 µs
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Figure 5.14: S Magnitudes for Ca The S (4.1) of a hot Ca E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 2.7× 10−12
√
Hz−1 is

found at ω0 = 5.7 mm and T = 800 K.

Table 5.16: Ca parameters at the Smin.
Parameter Value

S min stability (4.1) 1.7×10−12
√
Hz−1

ω0 laser-beam radius 5.7 mm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 2.7×10−12

Ṅtot atom interrogation rate (3.10) 1.5×10+18 s−1

∆ν effective linewidth - Table 4.1 7.5×10+4 Hz
ΩR2γ two-photon Rabi frequency (2.3) 1.9×10−1 Hz
t̄ interrogation time (3.1) 17.54 µs
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Figure 5.15: S Magnitudes for Mg The S (4.1) of a hot Mg E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 2.4× 10−12
√
Hz−1 is

found at ω0 = 4 mm and T = 800 K.

Table 5.17: Mg parameters at the Smin.
Parameter Value

S min stability (4.1) 2.4×10−12
√
Hz−1

ω0 laser-beam radius 1.9 mm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 1.9×10−13

Ṅtot atom interrogation rate (3.10) 9.7×10+19 s−1

∆ν effective linewidth - Table 4.1 2.4×10+5 Hz
ΩR2γ two-photon Rabi frequency (2.3) 1.9×10−1 Hz
t̄ interrogation time (3.1) 4.55 µs
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Figure 5.16: S Magnitudes for Be The S (4.1) of a hot Be E1-M1 clock is plotted

for laser-beam radius ω0 and vapor cell temperature T . S min = 1.9 × 10−5
√
Hz−1 is

found at ω0 = 4 mm and T = 800 K.

Table 5.18: Be parameters at the Smin.
Parameter Value

S min stability (4.1) 1.9×10−5
√
Hz−1

ω0 laser-beam radius 4 mm
T vapor cell temperature 800 K
P3P0

excitation probability (2.4) 2.7×10−17

Ṅtot atom interrogation rate (3.10) 4.7×10+9 s−1

∆ν effective linewidth - Table 4.1 2.3×10+5 Hz
ΩR2γ two-photon Rabi frequency (2.3) 1.8×10−3 Hz
t̄ interrogation time (3.1) 5.86 µs
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5.4 Broadening Budget

Table 5.19: Broadening and shift budget for the monochromatic E1-M1 Hg clock at
the temperature (380 K ) and laser-beam radius (0.6 mm) where the minimum S is
found.

Mechanism Broadening [Hz] Shift [Hz]

Transit 2×105 0
Doppler 1st 4×104 0
Doppler 2nd 90 -90
BBR 10−16 -1.7
Stark 314 1.6×104
Natural 0.45 0

∆ν 2×105
νB 1.6×104

5.5 Gravitational Redshift Sensitivity

We can report the time-to-meterstick and one second elevation sensitivity of each

of these hot group II type clocks. See §4.2 for a discussion of the gravitational redshift

νG sensitivity of oscillators.

Table 5.20: Gravitational Redshift Sensitivity
Atom Time-to-meterstick [hrs] 1 s elevation resolution [m]

Hg 0.23 29
Ra 1.2 65
Yb 1.6 77
Sr 170 770
Ba 170 780
Ca 6.4× 104 1.5× 104

Mg 1.4× 105 2.2× 104

Be 8.6× 1018 1.8× 1011

5.6 Why Hot Atoms?

We find that most atoms have optimally small S and optimally large ṄD at high

temperatures. This is because, for most atoms, the statistical advantage of a larger
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sample size outweighs the harm from broadening due to thermal effects. These species

improve with arbitrarily high heating. The exception is Hg, which prefers the hotter

than room temperature (273 K) thermal environment of 380 K. Hg is optimized at less

than the optical damage threshold of 800 K because it is more sensitive to collisions

at these temperatures than the other group II type atoms. The incidental benefit of

optimal S at these high temperatures is the portability advantage it introduces.

5.7 Viability of a Hg Standard

Hg is a very desirable species for a hot E1-M1 clock. Its high number density

ρ is the main virtue that catapults it to the best species for both ṄD and S . The

off-the-shelf availability of the monochomatic scheme’s wavelength (531 nm) and the

3P0 → 3S1 detection wavelength (405 nm) is convenient. So is the availability of off-

the-shelf steering and filtering optics, such as mirrors, waveplates, and interference

filters. Finally, heating a vapor cell to 380 K (the optimal T for minimal S ) is easy

and can be done in a portable set-up. Together these features make developing and

deploying an E1-M1 standard in hot Hg a viable scheme.
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CHAPTER VI

Bichromatic E1-M1 Optical Clock

Elimination of Light Shift

Introducing a second excitation laser frequency in the E1-M1 clock scheme creates

an opportunity to eliminate the light shift νLS completely. Light shift is discussed in

§4.1.3.

Current lattice clocks use the clock atom’s magic wavelength for atom trapping

to balance the dynamic light shift of the ground and clock levels due to the lattice

laser [49, 41]. These systems remain subject to a light shift from the excitation beam,

although this is fairly small due to the low laser powers required to drive the transition,

and especially small when compared to the large shift of the E1-M1 scheme. The

magic wavelength is the wavelength where the dynamic dipole polarizability of the

1S0 ground state, α1S0
(λ), and the 3P0 clock-state, α3P0

(λ), are equal. Even though a

light shift occurs in both levels while they are addressed by a light field at the magic

wavelength, the shifts are equal in magnitude and sign so the effective transition

frequency matches the natural transition frequency. The magic wavelength has been

calculated for many group II type neutral atoms [52, 16]. Methods to mediate the

impact of the light shift on an optical clock transition by the excitation light have

been explored directly [55] or by extension [26, 54].

Complete elimination of the light shift during excitation is possible in an E1-M1
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clock with dual frequencies. Wavelengths (λ) can be selected to together resonate

with the transition and the laser intensity for each λ can be chosen to offset light

shift differences perfectly. The dynamic dipole polarizabilities of neutral Hg have

been calculated across optical wavelengths above and below the two-photon transition

wavelength 2λ3P0
= 531 nm [52] which is adequate to evaluate magic wavelength pairs

that will fully eliminate the light shift during optical excitation of the clock transition

in Hg.

6.1 Bichromatic E1-M1: Hg

From dynamic polarizability calculations performed elsewhere that found the one-

photon (E1 scheme) magic wavelength in Hg [52], we can determine pairs of excitation

wavelengths that can be chosen to offset the light shift during excitation. The dynamic

polarizability introduces a shift to the energy E of the system as:

∆E = −α(ω)F 2 + · · · (6.1)

where F is the electric field.

Figure 6.1 plots the dynamic dipole polarizability difference in Hg, ∆α(λ) =

α3P0
(λ) − α1S0

(λ). This difference has been measured as zero at 362.53 nm [53], the

magic wavelength used for trapping neutral Hg for a lattice clock. The goal is to

find wavelength and laser intensitiy pairs that together offset the light shift. The

matching pair of wavelengths must together be resonant with the clock transition.

The two-photon transition wavelength is λ2γ = 531 nm, and a bichromatic pair of

resonant wavelengths will be found on opposite sides this wavelength. We plot all the

pairs of wavelength which are resonant with the transition frequency in Figure 6.2

(a).

For the specific case of two, equal intensity beams, there exists a pair of magic
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wavelengths where for equal intensity beams this resonant photon pair exactly offsets

the light shift, shown in Figure 6.2 (b) where ∆α(λ1) − ∆α(λ2) = 0. See Table 6.1

for the calculated ∆α(λ) of this particular case in Hg.

Table 6.1: A magic wavelength pair for neutral Hg is shown. This pair of wavelengths
(λ1 and λ2) eliminate the light shift when the electric field F of each laser is equal in
magnitude. The dynamic dipole polarizability of the ground state α1S0

(λ) and clock
state α3P0

(λ) are listed along with the dynamic dipole polarizability difference ∆α(λ).
These values were calculated in [52].

λ[nm] α1S0
(λ) [a.u.] α3P0

(λ) [a.u.] ∆α(λ)
376 39 10 −29
905 32 61 +29

A bichromatic scheme enjoys a smaller intermediate detuning ∆ from the 3P1 level

than the monochromatic scheme, this will lead to a relative increase in the resonant

two-photon Rabi frequency ΩR2γ (2.3). The specific two-photon Rabi frequency of the

magic pair solution in Table 6.1 will be a factor of 4.9 larger than the monochromatic

solution of the hot Hg clock. Excitation probability P3P0
estimates based on adiabatic

elimination of the intermediate level may begin to degrade [9] with reduced interme-

diate detuning ∆. Implementation of a bichromatic method to eliminate a light shift

will elevate first-order Doppler broadening to unacceptable levels in a hot clock by

degrading the Doppler free spectroscopy with |k1| ̸= |k2|, see §4.1.4.1. A bichromatic

E1-M1 clock will require ultracold atoms. Conveniently, either excitation beam can

serve as a red-detuned optical dipole trap cycling on the 265 nm 1S0
E1←→ 3P1 transi-

tion. The trap laser can combine with its magic pair from another laser to complete

a bichromatic E1-M1 excitation. These lasers introduce offsetting light shifts and

completely negate the light shift bias νLS while exciting the transition.

Offsetting light shift νLS requires accurate laser power metrology. With such

metrology, other wavelength pairs can be selected with unequal laser powers that

have been scaled to balance dynamic dipole polarizability differences.
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CHAPTER VII

Experimental Equipment

7.1 Experimental Accomplishments

We were able to build a high-power, narrow-linewidth laser and scan over the

known transition frequency of 201Hg [40]. We explored two detection schemes and

achieved excellent signal-to-noise potential in our system. Alas, we did not detect

the E1-M1 transition despite building many excellent tools toward that goal. This

chapter discusses those efforts and the technologies developed.

7.2 Iodine Spectroscopy

We were confident that our laser system could scan over the 201Hg clock transition

because we were able to scan over a known molecular Iodine resonance and we knew

the exact transition frequency of the Fermionic isotopes due to single-photon clock

work performed by [40]. A successful scan of the Iodine (R126(36-0)) line is shown in

Figure 7.2. This Iodine line is useful due to its proximity to the known and estimated

lines of neutral Hg, the spectra of molecular Iodine and Hg are shown together in

Figure 7.1 [21, 40].

The Iodine spectroscopy also confirmed that we had, at most, a 1 MHz laser

linewidth. The ability to resolve spectral features at the frequency resolution of our
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Figure 7.2: Iodine signal with clock laser at 531-nm Please note the displayed
frequency is the reported directly from the wavemeter which had a large absolute
frequency shift but a negligible relative shift over the frequency window we scanned.
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wavemeter indicates that the laser being measured has a frequency linewidth that is

at most the detection resolution of that frequency measurement system. In the worst

case scenario of 1 MHz actual laser linewidth (larger than the 1 kHz specified) we

would still expect signal, although diluted by factor of five from the effective transition

linewidth of 200 kHz (See Table 5.19) divided by the laser linewidth (1 MHz). The

effective laser intensity driving an optical transition is only the resonant intensity.

The 201Hg transition frequency overlaps the thermal (300 K) Iodine reference line

(R126(36-0)), and is offset from the center of that line by about 400 MHz. We

implemented a two-stage AOM frequency shift scheme to permit a methodical scan

for the Hg reference that was ultimately abandoned due to the adequate resolution

of our wavemeter (High Finesse - WS Ultimate 10 MC8). An Iodine locking scheme

would be helpful if a two-degree-of-freedom search were required for implementation

of the 3S1 detection scheme discussed in section 7.6.

7.3 Alignment Angle θ precision

The optical path length from the SHG crystal to the interrogation and detection

region is approximately 1.2 m. We can set the retroreflection polarization rotation

such that some light returns to the SHG crystal. We can visually overlap the retro-

reflection beam to the input beam with an estimated resolution of 0.5 mm. This

allowed us to experimentally assume an alignment angle θ of 0.2 milliradians. This

introduces a factor of 2 increase to the ∆νD1 calculated magnitudes of this disserta-

tion. Figure 3.2 depicts the alignment angle in a vapor cell geometry.

7.4 Monochromatic E1-M1 Laser System

The viability of the monochromatic E1-M1 optical frequency standard relies on

the construction of a high-power, narrow-linewidth, resonant system. We constructed
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Figure 7.3: Schematic of Laser System The high-power narrow-linewidth laser
system has three components, an infrared (IR) seed laser, an IR amplifier, and a SHG
crystal that produces CW 531 nm green light needed to excite the E1-M1 transition.

an 8 W, 531 nm, and sub-kHz laser source.

An auspicious feature of neutral Hg is the ubiquity of its E1-M1 scheme wave-

lengths. The degenerate two-photon resonant excitation is at 531 nm. Hand-held

laser pointers are 532 nm because that is a simple frequency conversion from the

commonly found Nd:YAG wavelength of 1064 nm. We were able to purchase a high

power 1062 nm system because a line-center difference of 2 nm in the infrared is well

within the construction capability of most laser manufacturers.

Narrow-linewidth is also an essential feature in an excitation laser because excita-

tion probability is the convolution of the effective linewidth of the atomic system and

the laser frequency linewidth. The two-photon Rabi frequency only depends on reso-

nant laser intensity, so when ∆νLL>>∆νnat only a subset of the total laser intensity

contributes to excitation probability.

The final laser system we constructed was able to meet both experimental require-

ments of being high power and narrow linewidth. It is a three-stage system with an
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extremely narrow-linewidth seed laser at 1062 nm. That infrared seed is amplified up

to 50 W with no measurable increase in linewidth. Finally, that high power beam is

frequency doubled after a single-pass through a periodically poled crystal.

7.4.1 Narrow-linewidth Seed Laser

The laser system begins with a narrow-linewidth 1062 nm laser. Narrow-linewidth

immediately demands a CW laser (as opposed to a pulsed laser). The magnitude

“narrow” is only meaningful in comparison with the linewidth of the transition. Free-

running CW cavity lasers can have off-the-shelf linewidths of about 1 MHz. Free-

running simply means no external control corrects the laser cavity length which is

how the frequency stability is usually maintained.

The seed laser (Orbits Lightwave - Ethernal) was delivered with a free-running

specification of sub-kHz linewidth. This laser is the size of a small, paperback book

and is therefore portable. We were only able to confirm MHz level resolution with an

external system using an Iodine reference cell, see §7.2. We didn’t have an independent

means of confirming the sub-kHz laser linewidth specification, but never observed

contradicting evidence. The seed laser system contained external locking mechanisms

which had the potential to reduce the linewidth further with the help of an external

resonator. For a hot Hg E1-M1 clock, the dominant broadening mechanism in the

atomic system is transit broadening ∆TT with a magnitude of approximately 200 kHz,

see Table 5.19. This transit broadening is far greater than the estimated free-running

laser linewidth.

7.4.2 High-power Infrared Amplifier

The laser amplifier (IPG YAR-50K-1064-LP-SF) can amplify between 2 and 10

mW of 1062 nm light up to 50 W of output power. This amplifier is about the size of

a suitcase, less than 0.1 m3 in volume, and therefore maintains the portability of this
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experiment. A member or our group performed homodyne detection on the system,

comparing the input seed lasers frequency to output light from the amplifier that

had been offset slightly with an Acousto-Optic Modulator (AOM). The homodyne

detection method involved interfering amplified and offset IR light with the seed IR

light and looking at the frequency width of the beat note. The frequency resolution

of detection was measured by applying a random noise source directly to a secondary

arm of the seed laser that was offset and then interfering that modulated arm with

the unmodulated arm of the seed in the interferometer. The applied noise had a noise

floor of 4 kHz and the detector was sensitive to that small signal. When the amplifier

output replaced the artifically noisy arm of the homodyne system, less than 10 Hz of

noise was observed. This does not guarantee that the fundamental linewidth is this

small, but it does guarantee that the amplifier can protect a narrow linewidth source.

7.4.3 Single Pass SHG

The final stage of the monochromatic laser system is frequency doubling by SHG.

We were able to use a logistically simple, single-pass periodically-poled crystal. The

efficiency of SHG is measured in %/W where the laser-beam radius in the crystal

is captured by the separately reported focusing parameter ξ. The most common

variety of periodically-poled crystal is PPLN; the specific crystal type we selected has

robust properties for high laser intensities. We used Periodically Poled MgO-Doped

: Stoichiometric Lithium Tantalate (PPMgO:SLT) as our SHG crystal with period

7.87 µm. The PPMgO:SLT-type of SHG crystal has measured conversion efficiencies

of 1.7%/W at 1064 nm in a 30 mm crystal (the focusing parameter was ξ = 2.48

in a 30 mm crystal which matched the Rayleigh range to the crystal length) [46].

Since conversion efficiency increases with incident power, increasing the power of the

pump laser is important. Pulsed sources (like in a hand-held laser pointer) have high

instantaneous intensities and can achieve high conversion efficiency with only one trip
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through an SHG crystal to produce green output light. In low-power CW systems, a

generic SHG crystal can be placed in a multi-pass cavity. High output powers can be

achieved with active locking of the multi-pass cavity length, a complex and expensive

scheme.

We must use a continuous-wave source in a frequency standard, which limits our

peak intensity compared with pulsed systems, but the required high powers for E1-

M1 transitions have high conversion efficiencies in a simple single-pass SHG setup.

Single-pass is the self-explanatory alternative to multi-pass where a pump beam passes

through the crystal only once and does not require active cavity-locking electron-

ics. Periodically-poled materials have improved enough to tolerate high power pump

lasers. While we achieved as much as 8 W of 531 nm, we more commonly operated

with 6 W of green light from 26 W of 1062 nm, IR light in a single-pass system, an

efficiency of 23%. This was measured using a Coherent LabMax TOP detector with

the PM30 thermopile sensor head.The synthetic construction of periodic crystals for

second harmonic generation is an old technology [19]. Materials have advanced such

that the quantum efficiency of conversion and damage threshold are at a level where

it is appropriate to expect a 10 W laser in a portable package [46].

7.5 Imaging System - Detection

For an estimate of 10 W of resonant green laser power (that is effectively 20

W in the cell with retro-reflection) we expect 1012 clock atom scattering events in

the blue per second. This compares to the 1027 green photons in the interrogation

window from the 20 W of excitation light during the same period. Fortunately the

spatial collimation of the laser means that most excitation light doesn’t enter the

detection imaging system. We must still contend with Rayleigh scattered and surface

scattered light arriving at the detector. To detect any blue signal we needed to

implement filtering. Optical Depth (OD) is a metric that characterizes how much
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8W

Figure 7.4: Physical Experiment A 60 cm × 60 cm area contained the final, SHG
stage of the laser, the hot vapor cell, and the detector.

Figure 7.5: Illuminated Iodine The narrow-linewidth, 531 nm laser was able to
scan a resonance of molecular Iodine (R126(36-0)) and scatter green light.
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light is extinguished by a medium where 10−OD is the light attenuation. An OD of

1 is equivalent to 90% extinction of signal. To characterize the collection efficiency

of the system we keep track of the OD of each stage because OD magnitudes add

linearly.

PMT
MP1943

Vapor Cell

Lens: 
d - diameter

f- focal length

2f 2f

Ω = d2/16f2

Lo = PMT aperture

Figure 7.6: A 1:1 Imaging System An example detection system, with a UV
sensitive PMT, filters, and an imaging lens placed 2f from the image and object
planes.

A 1:1 imaging system is an efficient way to map a detection region onto a detector.

A lens of diameter d is placed two focal lengths f away from the detection region, see

Figure 7.6.

7.5.1 Collection Angle

The proximity of the lens and the diameter of the lens limit the percentage of solid

angle that we can observe. For the 1:1 imaging system we implemented with 2.5 cm

diameter lens with focal length of 2.5 cm located 5 cm away. We collect 6.8% of the

solid angle, this collection solid angle is equivalent to an OD of 1.2. For detection by

NH3 relaxation, there is no dipole radiation pattern to enhance a region of solid angle.
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For a 3S1 detection, the 3S1 → 3P1 detection line is a Ji = 1 → Jf = 1 transition

without the dipole radiation enhancement that can be created in Jf = 0 systems.

7.5.2 Filters

We implemented narrow-band, 531 nm filters to extinguish scattered green light

from the excitation beam at the detector. Through multiple filters and quantum

inefficiency at 531 nm by the detector, we were able to extinguish green background

with an estimated OD of 20. We were unable to test the full OD suppression because

it would require direct incidence of the laser onto the optics which would exceed the

damage threshold of those filtering optics. There is no need to filter direct laser

incidence because the only light we are concerned with is ambient scattered green

light.

The interference filters (AT350 and NT49-817) were quite transparent at our wave-

lengths of interest. We had a 385 nm laser and were able to confirm that the OD of

the filter system was < 2.2. The total filtering of the system is shown in Table 7.1

Table 7.1: Optical attenuation of signal (300-400 nm) and noise (531 nm) for the NH3

system
Filtering Element 531 nm OD 350 nm OD

Solid Angle Ω 1.2 1.2
Detector (MP1943) 1.3 0.7
3×Filter (AT350) 3×5 3×0.8
Filter (NT49-817) 4 0.05

ODtot 21.5 4.4

Signal-to-noise was further improved by encapsulating the Photo-multiplier Tube

(PMT) and the interrogation region with an opaque enclosure. Small holes (1 cm

diameter) were drilled into the enclosure to give the laser access to the vapor cell.

This process resulted in a green photon counting rate of 190 Hz for 6 Watts of incident

excitation laser power.
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7.6 Detection Channels

We explored two detection schemes to observe 3P0 occupation in neutral Hg.

We tried a passive scheme where a buffer gas of NH3 can relax atoms with clock

level occupation through collision and produce a relaxation signal photon in the UV.

We also began the exploration of an active, subsequent excitation from the clock

level 3P0 → 3S1. Hg is a well studied system and the 3P0 → 3S1 transition has

been observed in discharge lamp experiments from the turn of the 20th century, see

the quicksilver ”Quecksilberlichtbogen” spectra observed in [31]. These schemes are

discussed here.

7.6.1 Passive: NH3

Vapor cells of Hg with a buffer gas of NH3 have been able to directly detect 3P0

clock level occupation [39]. The branching behavior of highly excited Hg includes

relaxation into the dark 3P0 clock level. To recover the dark 3P0 branching fraction;

[39] observed that a buffer gas of NH3 induced excimer relaxation of 3P0 with a signal

photon in the UV. The spectrum of this cascade channel is broad, 300-400nm. We

included a buffer gas of NH3 in our Hg cell and selected a detector (MP1490) with

high quantum efficiency in the UV to detect these relaxation photons that would

signal clock level occupation.

Our best effort to drive and detect the E1-M1 transition the NH3 scheme had a

background count uncertainty of 40 counts per second after 70 minutes of experiment

time. Our imaging system for this measurement had an effective OD 4.4, see Table

7.1. True scattered signal would be attenuated by this factor of 10−4.4 ≈ 4 × 10−5.

This measurement was performed in a Hg vapor cell at lab temperature (T = 298

K). We had 6 W of laser power and a 1-mm laser-beam radius ω0. For these setting,

we expected Ṅ3P0
= 9.7 × 109 [Hz]. We binned the data in 3 MHz windows, so for

a 100 kHz effective linewidth at 298 K, we would expect an effective OD of 1.5. In
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Figure 7.7: NH3 Detection Scheme Collision of a 3P0 Hg atom with NH3 is known
to relax in the UV.

total this gave us an estimated detection rate ṄD = 1.2 × 104 Hz, well above the

background noise. While our estimated signal-to-noise made this experiment seem

viable, no signal was detected with this method. This may be due to the increased

collision effects from NH3 that are not included in the excitation rate estimates Ṅ3P0

but could conceivably attenuate an E1-M1 detection rate through collision effects.

7.6.2 Active: 3S1

An alternative detection avenue is an E1-allowed transition between 6s6p3P0 →

6s7s3S1, see Figure 1.1 for the level structure. The 3P0 level is coupled to the 3S1

level by a 405 nm photon, which is the Blu-Ray wavelength and therefore a ubiquitous

diode laser. The 3S1 relaxation is through a unique wavelength (436 nm) and so can

be filtered from the excitation (531 nm) and probe (405 nm) light for detection.

The initial E1-M1 excitation of atoms in motion to the 3P0 clock level will need

to be time separated from the detection of still moving 3P0 atoms to avoid additional

light shift from the 405 nm light and natural broadening from the 3S1 linewidth.

Sequencing excitation and detection harms the duty cycle of the experiment compared

with concurrent measurement methods. The 3S1 transition has a linewidth of 20 MHz

[5], so the detection time can be brief. The 3S1 level cascades to the ground level

predominantly through the 6s6s 3P1 intermediate level [5]. This cascade channel
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radiates at 436 nm, a wavelength distinct from all others in the system.

We obtained a Blu-Ray laser diode and attempted blind cycling on this transition.

The laser was free-running, which is risky because broad-band lasers do not emit at all

frequencies under the larger frequency envelope. The 3P0 → 3S1 transition frequency

may have been dark in the laser.

Free-running was a good first step because there are challenges with the narrow

linewidth of a cavity locked laser. Specifically, a 3S1 detection scheme for the novel

detection of the E1-M1 transition would require the primary search for the exact

(and in some cases unknown) isotope transition frequencies between 1S0 → 3P0 and

a concurrent secondary search for the completely unknown 3P0 → 3S1 transition

frequencies. This would mean detection of an E1-M1 clock excitation would be a two

degree-of-freedom walk across 531 nm and 405 nm space to find the clock resonances

and the detection resonances.

Our detection attempts included the implementation of a crude Hg discharge lamp

setup to excite the 3P0 → 3S1 transition, but that was flawed because it also radiated

at our signal wavelength of 436 nm.
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CHAPTER VIII

Conclusion

8.1 An Undetected Transition

Efforts to observe the E1-M1 transition in are detailed in §7.6.1. In short, despite

operating in a favorable parameter space where an estimated signal of 10 kHz above

noise of 40 Hz, we did not observe the E1-M1 optical transition. This begs the

question: why not? The best model for the E1-M1 excitation scheme is outlined in

this dissertation. Here is a heuristic explanation of what may have gone wrong.

The collision broadening and collision loss rate models were based on a very simple,

billiard-ball model of the atoms. It may be that there are collision dynamics at play

which profoundly reduce the excitation rates.

The detection channels are the least understood systems. While we know NH3

facilitates clock level relaxation in Hg, we don’t know how the presence of NH3 will

affect the Hg excitation rate. Preliminary implementation of the 3S1 coupled detection

path did not generate signal. The 405 nm laser diode was free running, and such diode

lasers typically have very broad frequency linewidths. Those frequency envelopes are

also usually non-uniform, meaning there are enclosed frequencies that are dark. It’s

possible that the resonance frequency required for detection was in a dark frequency

window of the laser. Implementation of an ECDL locking scheme would have given us

the ability to scan methodically for 405 nm resonance, but this would have required
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a two-degree-of-freedom walk through the unknown 1S0 → 3P0 transition and the

unknown 3P0 → 3S1 transition.

8.2 Comparision of E1-M1 to E1 Schemes

A hot E1-M1 Hg vapor cell can achieve small S , comparable to the current min-

imum found in the Sr lattice clock [8]. Table 8.1 summarizes this along with other

state-of-the-art frequency standards. We include the Rb chip [29] to allow comparison

of an E1-M1 scheme to the best portable standard.

Table 8.1: The stability S and accuracy σν of current frequency standards. The
fundamental frequency ν, linewidth ∆ν, and detected atom number N are also listed
for these systems.
(bold denotes predicted values)
fn - fountain, cp - chip, ion - ion, lt - lattice,
vp - hot vapor cell

Atom ν [Hz] ∆ν [Hz] N [#] S
√
Hz−1 σν

Rbcp[29] 6.8[9] 6[−11] 6[-12]
Csfn[27] 9.1[9] 1[7] 2[-13] 5[-16]
Hgvp 5.6[14] 2[5] 1.1[10] 3.1[−15]
Al+ion[12, 10] 1.1[15] 7 1 3.7[−16] 8.6[−18]
Yblt [23] 5.2[14] 6 5[3] 3.2[−16] 1.6[−18]
Srlt [8] 4.3[14] 6− 50 2[3] 3.1[−16] 6.4[−18]

8.3 Looking Forward

I think it would be prudent as a next step to prepare a cold Hg sample and probe

the E1-M1 clock transition this way. Ultracold Hg samples [34] (including a Hg lattice

clock [35]) have already been developed. This would allow experimental verification of

the E1-M1 optical transition properties (Chapter II) and some of the optical stability

properties (Chapter IV). Detection would be trivial because ultracold samples can

readily report ground state population and a reduction in ground state population

could indicate clock state excitation.

92



With the goal of ultimately returning the E1-M1 standard to a hot setting, the cold

system could help determine the exact transition frequencies for the clock transition

1S0 → 3P0. Then the detection channel frequencies 3P0
E1←→ 3S1 for each isotope of

Hg could be searched for. When an E1-M1 resonance is found in the cold sample,

the same light could be applied to a hot sample to explore NH3 relaxation dynamics,

which is desirable because it could be the basis of a passive detection scheme.

8.4 Conclusion

The prospects of a hot monochromatic E1-M1 clock as a portable frequency stan-

dard are compelling. The Hg system enjoys a large number of addressed atoms which

improve its precision through statistics, but it suffers from a large, absolute frequency

shift due to the intensity of the incident beam. The accuracy of this standard will

require precise laser power metrology.

A frequency standard unbiased by the light shift due to excitation is achievable

with a bichromatic E1-M1 scheme. This two-photon excitation scheme may enable

current cold systems to completely eliminate systematic frequency bias. Such an

absolutely accurate frequency standard can be used to place firm local and temporal

bounds on acceleration due to gravity.

In this dissertation I have characterized the E1-M1 clock. I have shown how the

clock-level excitation rates for each group II type atom depend on the experimentally-

controlled parameters of vapor cell temperature T and laser-beam radius ω0. Based

on these calculations, neutral Hg is the optimal atomic system for a hot E1-M1

optical clock. With the conservative experimental parameters assumed in this paper,

we calculate the stability for a hot Hg clock could be as low as 3.1 × 10−15
√
Hz−1.

This stability is competitive with other optical frequency standards while offering the

portability of a vapor cell.
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APPENDIX A

Symbol Conventions

A.1 Spin Notation - Russell Saunders Coupling Scheme

The atomic levels are referred to using the Russell Saunders coupling scheme

notation [45]. For example, the clock level is referred to as 3P0. This notation is a

summary of the Spin-Spin (S), Orbit-Orbit (L), and Spin-Orbit (J) coupling of the

denoted level. The specific notation is 2S+1
LJ , where when L= 0, 1, 2, 3 we denote it

as L = S, P,D, F .

A.2 Optical Frequency Standard Nomenclature

The language of optical frequency standards is remarkably imprecise. Any optical

frequency standard result can be filtered into two metrics, the stability S and the

instability σν , and the community is converging on this nomenclature. However,

in practice these metrics can be found under a variety of names. As a reminder,

instability σν is the final, statistical error in a resonant frequency measurement of

an oscillator. Usually what is published as absolute σν is the result a long duration

measurement, perhaps hours, days, or months. The stability S is the extrapolated
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rate at which the instability was achieved (1.1). The best stability Smeasured in a

clock can comes from a shorter measurement times τ than the best instability σν .

If you are not sure which metric is being referenced, the instability σν is dimen-

sionless and stability has units
√
Hz−1. Beware the reported Smagnitude because it

is sometimes reported in units of
√
days. “Fractional frequency instability” is used

in the literature to describe both instability and stability, but dimensional analysis

readily repairs the confusing landscape this creates.

Table A.1: Aliases for Instability σν
Instability σν
Accuracy
Fractional Frequency Uncertainty (ffu)
Fractional Frequency Instability [20]
1/Q
Allen Deviation

Table A.2: Aliases for Stability S
Stability S [

√
Hz−1]

Precision
Fractional Frequency Instability [3]

Accuracy usually is interchanged with instability σν , and precision with stability

S . I use that nomenclature swap casually in this dissertation, but it is a problem-

atic representation because both σν and S have properties that can be meaningfully

characterized in terms of accuracy and precision.

Good optical frequency standards attain low/small/minimal stabilities and insta-

bilities. This is a confusing because “minimal stability” evokes a poor quality, but on

the contrary it denotes an optimal quality.

In this dissertation I use the ∆- prefix to ν to denote a linewidth ∆ν and I use

an isolated ν to denote an absolute frequency, including a frequency shift. This has

the potential to be confusing since a single ∆ and δ denote a frequency offset in

discussions and level diagrams of transition energy.
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APPENDIX B

Modeling the Three-Level System

If we treat the clock system as a closed three-level Λ system, we can easily express

the system in the Schrödinger picture so the probability amplitudes of the chosen

eigenstates can be calculated numerically. The time-dependent Schrödinger equation

is

i~
δ

δt
Ψ(t) = HΨ(t) (B.1)

where the H is

H = H0 +V(t). (B.2)

The unperturbed Hamiltonian H0 is

H0 = ~













ω1S0
0 0

0 ω3P1
0

0 0 ω3P0













(B.3)

and the interaction Hamiltonian V(t) is
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ω 1S
0

ω 3P
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−2κ Ω 1

ϖ
Ω

2

ω
1

ω
2

δ
∆

Figure B.1: Level Structure, Frequencies, and Coupling in a Λ System This
diagram shows the frequency scale and coupling of the clock system for modeling.

V(t) = ~













0 |Ω1| cos(ω1t) 0

|Ω1| cos(ω1t) 0 |Ω2| cos(ω2t)

0 |Ω2| cos(ω2t) 0













. (B.4)

where I have made the dipole approximation. I also assume that Rabi frequency Ωn

and phase of the laser do not vary with time. I articulate the bichromatic case where

laser frequencies ω1 ̸= ω2 in the interaction Hamiltonian. I have implicitly assumed

that the bichromatic solution frequencies ω1 and ω2 are the dominant oscillators

coupling the 3P1 − 1S0 and 3P1 − 3P0 respectively. I will express the time-varying

component of each Ψi(t) as the probability amplitudes ai(t) of the static eigenstate

ψi, specifically

Ψ(t) = a(t)ψ (B.5)

Now I can solve for the probability amplitudes of this closed, Λ system
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i~













ȧ1(t)

ȧ2(t)

ȧ3(t)













= ~













ω1S0
|Ω1| cos(ω1t) 0

|Ω1| cos(ω1t) ω3P1
|Ω2| cos(ω2t)

0 |Ω2| cos(ω2t) ω3P0

























a1(t)

a2(t)

a3(t)













. (B.6)

If simulation time-steps, t, are chosen to be smaller than the characteristic fre-

quencies of the system, then the Hamiltonian can be treated as time-independent and

the probability amplitudes can be evolved according to

ai(t0 + t) = e−iHt/~ai(t0) (B.7)

B.0.1 Adiabatic Approximation

The adiabatic approximation can be described as the assumption that if a two-

photon transition coupled to an intermediate level is driven by photons that are

each far detuned from that intermediate level, then we can assume the time-varying

probability amplitude of the intermediate level will oscillate rapidly and average to

zero ȧ2 = 0 [48, 9]. The probability amplitude of the intermediate level will be small,

but non-zero enabling us to solve (B.6).

As is customary, I will also define (and invert) the energy levels such that −2κ =

ω3P1
− ω1S0

such that when ω1S0
→ κ then ω3P0

→ −κ. I will also simplify Ωi =

|Ωi| cos(ωit) and ϖ = −κ+ (ω3P1
− ω3P0

). This results in re-writing (B.6) as

iȧ1 = κa1 + Ω1a2 (B.8)

iȧ2 = Ω1a1 − κa2 + Ω2a3 (B.9)

iȧ3 = Ω2a2 +ϖa3 (B.10)
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When we implement the assumption that ȧ2 ≈ 0 we find (B.9) can be simplified

to

Ω1a1 − κa2 + Ω2a3 ≈ 0 (B.11)

a2 =
Ω1

κ
a1 +

Ω2

κ
a3 (B.12)

When we express a2 in terms of a1 and a3 in equations (B.8) and (B.10), this

produces an effective two level system

iȧ1 = κa1 + Ω1

(

Ω1

κ
a1 +

Ω2

κ
a3

)

(B.13)

iȧ3 = Ω2

(

Ω1

κ
a1 +

Ω2

κ
a3

)

+ϖa3 (B.14)

A characteristic frequency in the E1-M1 system is the two-photon Rabi frequency

ΩR2γ (2.3) where

ΩR2γ :=
Ω1Ω2

κ
(B.15)

and if your eyes haven’t glazed over in this equation landscape, you will see ΩR2γ

start to appear in (B.13) and (B.13). That pair of equations has the form

iȧ1 = Aa1 + ΩR2γa3 (B.16)

iȧ3 = ΩR2γa1 +Ba3 (B.17)
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where

A := κ+
Ω1

2

κ
(B.18)

B := ϖ +
Ω2

2

κ
(B.19)

These coefficients A and B reveal the effective light shifts to the ω1S0
and ω3P0

levels by Ω1
2

κ
and Ω2

2

κ
respectively. This approximation of the light shift is for the

simplified three-level system.

The coupled equations (B.16) and (B.17) for an effective two-level system have

well known solution [43]. If we assume all population is in the ground state initially

(a1(0) = 1), then we can report the probability amplitude of a3(t) at time t as

a3(t) = −i
ΩR2γ

√

δ2 + Ω2
R2γ

sin





√

δ2 + Ω2
R2γ

2
t



 (B.20)

where δ is the detuning from the light shifted resonance. We implement this result

in our E1-M1 analysis to determine the probability of clock excitation (2.4) where

P3P0
= a∗3a3.
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Symbols
Ωn = −dF/~ Rabi Frequency
d reduced dipole matrix element
F Electric field
ai(t) time-varying amplitude in Schrdinger picture
ωi laser frequency i
H0 unperturbed Hamiltonian
H Hamiltonian
V(t) interaction Ham
Λ three level structure like ...

δ
ω1S0

−ω3P1

2

κ the detuning from the light shifted resonance
ΩR2γ two-photon Rabi frequency
Ωi |Ωi| cos(ωit)
ϖ −κ+ (ω3P1

− ω3P0
)

Table B.1: Symbols in Appendix B for Λ-type system atom-photon dynamics
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[50] T. Udem, R. Holzwarth, and T. W. Hänsch. Optical frequency metrology. Nature,
416(6877):233–237, 2002.

[51] C. Vian, P. Rosenbusch, H. Marion, S. Bize, L. Cacciapuoti, S. Zhang, M. Ab-
grall, D. Chambon, I. Maksimovic, P. Laurent, et al. BNM-SYRTE foun-
tains: recent results. Instrumentation and Measurement, IEEE Transactions
on, 54(2):833–836, 2005.

[52] A. Ye and G. Wang. Dipole polarizabilities of ns2 1S0 and nsnp 3P0 states and
relevant magic wavelengths of group-IIB atoms. Phys. Rev. A, 78(1), July 2008.

[53] L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize. Optical Lattice Trapping
of 199Hg and Determination of the Magic Wavelength for the Ultraviolet 1S0−3P0

Clock Transition. Physical Review Letters, 106(7), February 2011.

[54] V. Yudin, A. Taichenachev, C. Oates, Z. Barber, N. Lemke, A. Ludlow, U. Sterr,
Ch. Lisdat, and F. Riehle. Hyper-Ramsey spectroscopy of optical clock transi-
tions. Phys. Rev. A, 82(1), July 2010.

[55] T. Zanon-Willette, A. Ludlow, S. Blatt, M. Boyd, E. Arimondo, and J. Ye.
Cancellation of Stark Shifts in Optical Lattice Clocks by Use of Pulsed Raman
and Electromagnetically Induced Transparency Techniques. Phys. Rev. Lett.,
97(23):233001, December 2006.

[56] T. Zelevinsky, M. M. Boyd, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido,
and J. Ye. Optical clock and ultracold collisions with trapped strontium atoms.
Hyperfine Interactions, 174(1-3):55–64, 2007.

108


	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ABSTRACT
	Precision Measurement with Atomic Systems
	Precision Measurement
	Precision Time Metrology
	Research
	Applications
	Thesis at a glance

	Optical Transition Theory
	Forbidden Transitions
	Optical Clocks
	1S03P0 E1-M1 Transition
	Two-Photon Rabi Frequency
	Probability of Clock Excitation

	Atomic Environment and Excitation Rates
	Static Experimental Parameters
	Spatial ApproximationLength in Beam 
	Dynamic Experimental ParametersVapor Cell Temperature T and Laser-Beam Radius 0
	Detection Channels
	Probability of Clock Excitation
	Clock Excitation Rate
	Experimental Detection of 3P0 Atoms 

	E1-M1 Optical Clock Stability
	Broadening and Shift Mechanisms
	Shift Mechanisms for Metrology Gravitational Redshift G
	Optimal Clock Stability

	Monochromatic E1-M1 Optical Clock Detection Rates and Stability 
	Calculation Results
	Detection rate D results for group II type atoms
	Stability results for group II type atoms
	Broadening Budget
	Gravitational Redshift Sensitivity
	Why Hot Atoms?
	Viability of a Hg Standard

	Bichromatic E1-M1 Optical Clock Elimination of Light Shift 
	Bichromatic E1-M1: Hg

	Experimental Equipment 
	Experimental Accomplishments
	Iodine Spectroscopy
	Alignment Angle  precision
	Monochromatic E1-M1 Laser System
	Imaging System - Detection
	Detection Channels

	Conclusion
	An Undetected Transition
	Comparision of E1-M1 to E1 Schemes
	Looking Forward
	Conclusion

	APPENDICES
	Spin Notation - Russell Saunders Coupling Scheme
	Optical Frequency Standard Nomenclature

	BIBLIOGRAPHY

