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Abstract

We show that, given data from a mixture ofk
well-separated spherical Gaussians inR

n, a sim-
ple two-round variant of EM will, with high
probability, learn the centers of the Gaussians to
near-optimal precision, if the dimension is high
(n ≫ log k). We relate this to previous theoreti-
cal and empirical work on the EM algorithm.

1 Introduction

At present EM is the method of choice for learning mix-
tures of Gaussians. A series of theoretical and experimen-
tal studies over the past three decades have contributed to
the collective intuition about this algorithm. We will rein-
terpret a few of these results in the context of a new perfor-
mance guarantee.

A standard criticism of EM is that it converges very slowly.
Simulations performed by Redner and Walker (1984), and
others, demonstrate this decisively for one-dimensional
mixtures of two Gaussians. It is also known that given data
from a mixture of Gaussians, when EM gets close to the
true solution, it exhibitsfirst-order convergence. Roughly
speaking, the idea is this: givenm data points from a
mixture with parameters (means, covariances, and mixing
weights)θ∗, wherem is very large, the log-likelihood has
a local maximum at some set of parametersθm close toθ∗.
Let θ〈t〉 denote EM’s parameter-estimates at timet. It can
be shown (cf. Taylor expansion) that whenθ〈t〉 is nearθm,

‖θ〈t+1〉 − θm‖ ≤ λ · ‖θ〈t〉 − θm‖,

whereλ ∈ [0, 1) and‖ · ‖ is some norm.1 If the Gaussians
are closely packed thenλ is close to one; if they are very
far from one another thenλ is close to zero. These results

∗Work done while at University of California, Berkeley.
1This might not seem so bad, but contrast it withsecond-order

convergence, in which‖θ〈t+1〉 − θ
m‖ ≤ λ · ‖θ〈t〉 − θ

m‖2.

are the work of many researchers; a summary can be found
in the overview paper of Redner and Walker (1984).

Xu and Jordan (1995) present theoretical results which mit-
igate some of the pessimism of first-order convergence,
particularly in the case of well-separated mixtures, and they
note that moreover near-optimal log-likelihood is typically
reached in just a few iterations. We also argue in favor
of EM, but in a different way. We ask, how close does
θ〈t〉 have to be toθm for slow convergence to hold? Let
d(θ1, θ2) denote the maximum Euclidean distance between
the respective means ofθ1 and θ2. For one-dimensional
data, it can be seen quite easily from canonical experiments
(Redner and Walker, 1984) that convergence is slow even if
d(θ〈t〉, θm) is large. However, our results suggest that this
no longer holds in higher dimension. For reasonably well-
separated spherical Gaussians inR

n (whereseparationis
defined precisely in the next section), convergence is very
fast untild(θ〈t〉, θm) ≈ e−Ω(n). In fact, we can make EM
attain this accuracy in just two rounds. The errore−Ω(n) is
so miniscule for largen that subsequent improvements are
not especially important.

Practitioners have long known that if the data hask clus-
ters, then EM should be started with more thank centers,
and these should at some stage be pruned. We present a
simple example to demonstrate exactly why this is neces-
sary, and obtain an expression for the number of initial cen-
ters which should be used:O( 1

wmin
log k), wherewmin is

a lower bound on the smallest mixing weight. The typical
method of pruning is to remove Gaussian-estimates with
very low mixing weight (known asstarved clusters). Our
theoretical analysis shows that this is not enough, that there
is another type of Gaussian-estimate, easy to detect, which
also needs to be pruned. Specifically, it is possible (and fre-
quently occurs in simulations) that two of EM’s Gaussian-
estimates share the same cluster, each with relatively high
mixing weight. We present a very simple, provably correct
method of detecting this situation and correcting it.

It is widely recognized that a crucial issue in the perfor-
mance of EM is the choice of initial parameters. For the
means, we use the popular technique of picking initial



center-estimates randomly from the data set. This is shown
to be adequate for the performance guarantee we derive.
Our analysis also makes it clear that it is vitally important
to pick good initial estimates of the covariances, a sub-
ject which has received somewhat less attention. We use
a clever initializer whose origin we are unable to trace but
which is mentioned in Bishop’s text (1995).

Our central performance guarantee requires that the clus-
ters actually look spherical-Gaussian, more specifically
that the data points are drawn i.i.d. from some (unknown)
mixture of spherical Gaussians. We show that if the clus-
ters are reasonably well-separated (in a precise sense), and
if the dimensionn ≫ log k then only two rounds of EM are
required to learn the mixture to within near-optimal preci-
sion, with high probability1− k−Ω(1). Our measure of ac-
curacy is the functiond(·, ·) introduced above. The precise
statement of the theorem can be found in Section 3.4, and
applies not only to EM but also to other similar schemes,
including for instance some of the variants of EM andk-
means introduced by Kearns, Mansour, and Ng (1997).

Performance guarantees for clustering will inevitably in-
volve some notion of theseparationbetween different
clusters. There are at least two natural ways of defining
this. Take for simplicity the case of twon-dimensional
GaussiansN(µ1, In) andN(µ2, In). If each coordinate
(attribute) provides a little bit of discriminative informa-
tion between the two clusters, then on each coordinate the
meansµ1 andµ2 differ by at least some small amount, say
δ. TheL2 distance betweenµ1 andµ2 is then at leastδ

√
n.

As further attributes are added, the distance between the
centers grows, and the two clusters become more clearly
distinguishable from one another. This is the usual ratio-
nale for using high-dimensional data: the higher the dimen-
sion, the easier (in an information-theoretic sense) cluster-
ing should be. The only problem then, is whether there
are algorithms which can efficiently exploit the tradeoff be-
tween this high information content and the curse of dimen-
sionality. This viewpoint suggests that theL2 distance be-
tween the centers ofn-dimensional clusters can reasonably
be measured in units of

√
n, and that it is most important to

develop algorithms which work well under the assumption
that this distance is some constant times

√
n. On the other

hand, it should be pointed out that if‖µ1 − µ2‖ = δ
√
n

for some constantδ > 0, then for largen the overlap in
probability mass between the two Gaussians is miniscule,
exponentially small inn. Therefore, it should not only be
interesting but also possible to develop algorithms which
work well when theL2 distance between centers of clusters
is much smaller, for instance some constant independent of
the dimension (as opposed toO(

√
n)).

Where do EM’s requirements fall in this spectrum of sepa-
ration? We show that EM works well in at least a large part
of this span, when the distance between clusters is bigger
thann1/4.

In the final section of the paper, we discuss a crucial issue:
what features of our main assumption (that the clusters are
high-dimensional Gaussians) make such a strong statement
about EM possible? This assumption is also the basis of
all the other theoretical results mentioned above, but can
real data sets reasonably be expected to satisfy it? If not, in
what way can it usefully be relaxed?

2 High-dimensional Gaussians

A spherical GaussianN(µ, σ2In) assigns to pointx ∈ R
n

the density

p(x) =
1

(2π)n/2σn
exp

(

−‖x− µ‖2
2σ2

)

,

‖ · ‖ being Euclidean distance. IfX = (X1, . . . , Xn) is
randomly chosen fromN(0, σ2In) then its coordinates are
i.i.d. N(0, σ2) random variables. Each coordinate has ex-
pected squared valueσ2 soE‖X‖2 = E(X2

1+· · ·+X2
n) =

nσ2. It then follows by a large deviation bound that‖X‖2
will be tightly concentrated aroundnσ2:

P(|‖X‖2 − nσ2| > ǫnσ2) ≤ e−nǫ2/24.

This bound and others like it will be discussed in Sec-
tion 4. It means that almost the entire probability mass of
N(0, σ2In) lies in a thin shell at a radius ofσ

√
n from the

origin. This does not contradict the fact that the density of
the Gaussian is highest at the origin, since the surface area
at distancer from the origin,0 ≤ r ≤ σ

√
n, increases

faster than the density at distancer decreases (Bishop,
1995, exercise 1.4).

It is natural therefore to think of a GaussianN(µ, σ2In)
as having radius σ

√
n. We say two Gaussians

N(µ1, σ
2
1In), N(µ2, σ

2
2In) in R

n arec-separatedif

‖µ1 − µ2‖ ≥ cmax{σ1, σ2}
√
n,

that is, if they arec radii apart (Dasgupta, 1999). A mix-
ture of Gaussians isc-separated if the Gaussians in it are
pairwise c-separated. In general we will letcij denote
the separation between theith and jth Gaussians, and
c = mini6=j cij . We can reasonably expect that the dif-
ficulty of learning a mixture of Gaussians increases asc
decreases. For non-spherical Gaussians this definition can
be extended readily by thinking of the radius ofN(µ,Σ) as
being

√

trace(Σ).

A 2-separated mixture contains clusters with almost no
overlap. InRn for large n, this is true even of a 1

100 -
separated mixture, because for instance, two spheres of ra-
dius

√
nwith centers 1

100

√
n apart share only a tiny fraction

of their volume. One useful way of thinking about a pair of
c-separated Gaussians is to imagine that on each coordinate
their means differ byc. If c is small, then the projection of



the mixture onto any one coordinate will look unimodal.
This might also be true of a projection onto a few coordi-
nates. But for largen, when all coordinates are considered
together, the distribution will cease to look unimodal. This
is precisely the reason for using high-dimensional data.

What values ofc can be expected of real-world data sets?
This will vary from case to case. As an example, we ana-
lyzed a canonical data set consisting of handwritten digits
collected by USPS. Each digit was represented as a vector
in [−1, 1]256. We fit a mixture of ten (non-spherical) Gaus-
sians to this data set, by doing each digit separately, and
found that it was0.63-separated.

3 A two-round variant of EM: the case of
common covariance

It is instructive and convenient to start with the subcase in
which data is drawn from a mixture ofk Gaussians with the
same spherical covariance matrixσ2In, for some unknown
σ2. We will show that ifn ≫ log k, EM can be made to
work well in just two rounds.

3.1 The EM algorithm

Given a data setS ⊂ R
n, the EM algorithm (for a mixture

of k Gaussians with common spherical covariance) works
by first choosing starting valuesµ〈0〉

i , w
〈0〉
i , σ〈0〉 for the pa-

rameters, and then updating them iteratively according to
the following two-step procedure (at timet).

E step Let τi ∼ N(µ
〈t〉
i , σ〈t〉2In) denote the density of the

ith Gaussian-estimate. For each data pointx ∈ S, and
each1 ≤ i ≤ k, compute

p
〈t+1〉
i (x) =

w
〈t〉
i τi(x)

∑

j w
〈t〉
j τj(x)

,

the conditional probability thatx comes from theith

Gaussian with respect to the current parameters.

M step Now update the various parameters in an intuitive
way. Denote the size ofS by m.

w
〈t+1〉
i =

1

m

∑

x∈S

p
〈t+1〉
i (x)

µ
〈t+1〉
i =

∑

x∈S x p
〈t+1〉
i (x)

mw
〈t+1〉
i

σ〈t+1〉2 =
1

mn

∑

x∈S

k
∑

i=1

‖x− µ
〈t+1〉
i ‖2 p〈t+1〉

i (x)

3.2 The main issues

It will turn out that when the separation of a mixture inRn

is c ≫ n−1/4 then the chance that two points from differ-
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Figure 1: For this mixture, the positions of the center-
estimates do not move much after the first step of EM.

ent Gaussians are closer together than two points from the
same Gaussian, is tiny,e−Ω(poly(n)). Therefore an exami-
nation of interpoint distances is enough to almost perfectly
cluster the data. A variety of different algorithms will work
well under these circumstances, and EM is no exception.

Suppose the true number of Gaussians,k, is known. LetS
denote the entire data set, andSi the points drawn from the
ith true GaussianN(µi, σ

2In). A common way to initial-
ize EM is to pickl data points at random fromS, and to
use these as initialcenter-estimatesµ〈0〉

i . How large should
l be? It turns out that if thesel points include at least one
point from eachSi, then EM can be made to perform well.
This suggestsl = Ω(k log k). Conversely, if the initial cen-
ters miss someSi, then EM might perform poorly.

Here is a concrete example (Figure 1). Letn denote
some high dimension, and place thek true Gaussians
N(µ1, In), . . . , N(µk, In) side by side in a line, leaving
a distance of3

√
n between consecutive Gaussians. As-

sign them equal mixing weights. As before letSi be the
data points from theith Gaussian, and choose EM’s initial
center-estimates from the data. Suppose the initial centers
contain nothing fromS1, one point fromS2, and at least
one point fromS3. The probability of this event is at least
some constant. Then no matter how long EM is run, it will
assign just one Gaussian-estimate to the first two true Gaus-
sians. In the first round of EM, the point fromS2 (call it
µ
〈0〉
1 ) will move betweenµ1 andµ2. It will stay there, right

between the two true centers. None of the other center-
estimatesµ〈t〉

i will ever come closer toµ2; their distance
from it is so large that their influence is overwhelmed by
that ofµ〈t〉

1 . This argument can be formalized easily using
the large deviation bounds of the next section.

How about the initial choice of variance? When the Gaus-
sians have a common spherical covariance, this is not all
that important, except that a huge overestimate might cause
slower convergence. We will use a fairly precise estimator,
a variant of which is mentioned in Bishop’s text (1995).



After one round of EM, the center-estimates are pruned to
leave exactly one per true Gaussian. This is accomplished
in a simple manner. First, remove any center-estimates with
very low mixing weight (this is often called “cluster starva-
tion”). Any remaining center-estimate (originally chosen,
say, fromSi) has relatively high mixing weight, and we
can show that as a result of the first EM iteration, it will
have moved close toµi. A trivial clustering heuristic, due
to Hochbaum and Shmoys (1985), is then good enough to
select one center-estimate near eachµi.

With exactly one center-estimate per (true) Gaussian, a sec-
ond iteration of EM will accurately retrieve the means, co-
variance, and mixing weights. In fact the clustering of the
data (the fractional labels assigned by EM) will be almost
perfect, that is to say, each fractional label will be close to
zero or one, and will in almost all cases correctly identify
the generating Gaussian. Therefore further iterations will
not help much: these additional iterations will move the
center-estimates around by at moste−Ω(n).

3.3 The simplified algorithm

Here is a summary of the modified algorithm, givenm data
points inRn which have been generated by a mixture ofk
Gaussians. The value ofl will be specified later; for the
time being it can be thought of asO(k log k).

Initialization Pick l data points at random as starting es-
timatesµ〈0〉

i for the Gaussian centers. Assign them

identical mixing weightsw〈0〉
i = 1

l . For an initial es-
timate of variance use

σ〈0〉2 =
1

2n
min
i6=j

‖µ〈0〉
i − µ

〈0〉
j ‖2.

EM Run one round of EM. This yields modified estimates
µ
〈1〉
i , σ〈1〉, w

〈1〉
i .

Pruning Remove all center-estimates whose mixing
weights are belowwT = 1

2l +
2
m . Prune the remaining

center-estimates down to justk of them:

• Compute distances between center-estimates.
• Choose one of these centers arbitrarily.
• Pick the remainingk − 1 iteratively as follows:

pick the center farthest from the ones picked so
far. (The distance from a pointx to a setS is
miny∈S ‖x− y‖, where‖ · ‖ is theL2 norm.)

Call the resulting center-estimatesµ̃〈1〉
i (where1 ≤

i ≤ k). Set the mixing weights tõw〈1〉
i = 1

k and the
standard deviation tõσ〈1〉 = σ〈0〉.

EM Run one more step of EM, starting at the
{µ̃〈1〉

i , w̃
〈1〉
i , σ̃〈1〉} parameters and yielding the final

estimatesµ〈2〉
i , w

〈2〉
i , σ〈2〉.

3.4 The main result

Now that the notation and algorithm have been introduced,
we can state the main theorem for the case of common co-
variances; a similar result holds when the Gaussians have
different spherical covariance matrices (Section 8).

Theorem 1 Saym data points are generated from ac-
separated mixture ofk Gaussiansw1N(µ1, σ

2In) + · · ·+
wkN(µk, σ

2In) in R
n. LetSi denote the points from the

ith Gaussian, and letwmin = mini wi. Further, define

α =
1

2
− ln 30max(1, c−2)

lnn
and β =

c2n

512 lnm
.

Then, assumingα > 0 and min(n, c2n) ≥ 18 + 8 lnn
andm ≥ max(4l2, 218c−4), with probability at least1 −
m2e−Ω(n2α) − ke−Ω(lwmin) −m−(β−1) the variant of EM
described above will produce final center-estimates which
satisfy

‖µ〈2〉
i − µi‖ ≤ ‖mean(Si)− µi‖+ e−Ω(c2n).

The proof of this theorem will be sketched over the next
four sections; the details can be found in the full version of
the paper. A few words of explanation are in order at this
stage. First of all, the constants mentioned in the theorem
should not be a source of concern since no attempt has been
made to optimize them. Second, the best that can be hoped
is thatµ〈2〉

i = mean(Si); therefore, the final error bound
on the center-estimates is very close to optimal. Finally
notice thatα > 0 requires thatc ≫ n−1/4, and that in
order to make the probability of failure at mostk−Ω(1), it is
necessary to setl = O( 1

wmin
log k), to usem = l2poly(k)

samples, and to assume thatn2α = Ω(log k).

4 Initialization

We will show that the two-round algorithm retrieves
the true Gaussians with high probability. This result
hinges crucially upon large deviation bounds for the
lengths of points drawn from a Gaussian (Dasgupta, 1999,
Lemma 14).

Lemma 2 PickX fromN(0, In). For anyǫ ∈ (0, 1),

P(|‖X‖2 − n| ≥ ǫn) ≤ 2e−nǫ2/24.

Thus for anyα > 0, ‖X‖2 ∈ [n − n1/2+α, n + n1/2+α]

with probability at least1− 2e−n2α/24.

It can similarly be shown that the distance between two
points from the same Gaussian (or from different Gaus-
sians) is sharply concentrated around its expected value.

Lemma 3 If X is chosen fromN(µi, σ
2
i In) andY is cho-

sen independently fromN(µj , σ
2
j In) then for anyα > 0,



the chance that‖X − Y ‖2 does not lie in the range‖µi −
µj‖2+(σ2

i +σ2
j )(n±n1/2+α)±2‖µi−µj‖

√

σ2
i + σ2

j ·nα

is at most2e−n2α/24 + e−n2α/2.

Corollary 4 Draw m data points from ac-separated mix-
ture ofk Gaussians with common covariance matrixσ2In
and smallest mixing weight at leastwmin. Let Si denote
the points from theith Gaussian. Then for anyα > 0,
with probability at least1 − (m2 + 2km)e−n2α/24 −
ke−mwmin/32 − 1

2m
2e−n2α/2 − kme−n2α/2,

(1) for anyx, y ∈ Sj , ‖x− y‖2 = 2σ2n± 2σ2n1/2+α;

(2) for x ∈ Si, y ∈ Sj , i 6= j, ‖x− y‖2 = (2 + c2ij)σ
2n±

(2 + 2
√
2cij)σ

2n1/2+α;

(3) for any data pointy ∈ Sj , ‖y−µj‖2 = σ2n±σ2n1/2+α

while for i 6= j, ‖y − µi‖2 = (1 + c2ij)σ
2n ± (1 +

2cij)σ
2n1/2+α; and

(4) each|Si| ≥ 3
4mwi.

This means that if the mixture isc-separated, then points
from the same Gaussian are at squared distance about2σ2n
from each other while points from different Gaussians are
at squared distance at least about2(1 + Ω(c2))σ2n from
each other. The standard deviation of these estimates is
aroundσ2n1/2. If c2n ≫ n1/2 then this standard deviation
will be overwhelmed by the separation between clusters,
and therefore points from the same cluster will almost al-
ways be closer together than points from different clusters.
In such a situation, interpoint distances will reveal enough
information for clustering and it should, in particular, be
possible to make EM work well. We first establish some
simple guarantees about the initial conditions.

Lemma 5 If l > k and eachwi ≥ wmin then with proba-
bility at least1− ke−lwmin − kelwmin/48,

(a) every Gaussian is represented in the initial center-
estimates;

(b) theith Gaussian provides at most54 lwi initial center-
estimates, for all1 ≤ i ≤ k; and

(c) σ〈0〉2 = σ2(1± n−1/2+α).

Remark All the theorems of the following sections are
made under the additional hypothesis that Corollary 4 and
Lemma 5 hold, for some fixedα ∈ (0, 1

2 ).

5 The first round of EM

What happens during the first round of EM? The first thing
we clarify is that although in principle EM allows “soft”
assignments in which each data point is fractionally dis-
tributed over various clusters, in practice for largen ev-
ery data point will give almost its entire weight to center-

estimates from one (true) cluster. This is because in high
dimension, the distances between clusters are so great that
there is just a very narrow region between two clusters
where there is any ambiguity of assignment, and the prob-
ability that points fall within this region is miniscule.

Recall that we are definingSi as the data points drawn from
the true GaussianN(µi, σ

2In). Combining the last few
lemmas tells us that ifc2n ≫ ln l, in the first round of
EM each data point inSi will have almost all its weight
assigned to center-estimatesµ〈0〉

j in Si. Therefore, fix at-
tention on a specific Gaussian, sayN(µ1, σ

2In). Without
loss of generality,µ1 = 0 and the initial center-estimates
µ
〈0〉
1 , . . . , µ

〈0〉
q came from this Gaussian, that is, they are in

S1. We know from Lemma 5 that1 ≤ q ≤ 5
4 lw1.

Say that center-estimateµ〈0〉
1 receives a reasonably high

mixing weight after the first round, specifically thatw
〈1〉
1 ≥

wT (by a lemma of the next section, at least one of
µ
〈0〉
1 , . . . , µ

〈0〉
q must have this property). We will show that

its new valueµ〈1〉
1 is much closer toµ1 (that is, to the ori-

gin). For any data pointx ∈ S, let pi(x) denote the (frac-
tional) weight thatx gives toµ〈0〉

i during the first round of
EM. Then

µ
〈1〉
1 =

∑

x∈S p1(x)x
∑

x∈S p1(x)
.

By our previous discussion, the most important contribu-
tion here is from pointsx in S1. So let’s ignore other terms
for the time being and focus upon the central quantity

µ∗
1 =

∑

x∈S1
p∗1(x)x

∑

x∈S1
p∗1(x)

.

wherep∗1(x) is the fractional weight assigned tox assuming
no centers other thanµ〈0〉

1 , . . . , µ
〈0〉
q are active, that is,

p∗1(x) =
p1(x)

p1(x) + · · ·+ pq(x)
.

We have already asserted that the total mixing weight as-
signed toµ〈0〉

1 , namely
∑

x∈S p1(x) ≈ ∑

x∈S1
p∗1(x), is

quite high. How can we bound‖µ∗
1−µ1‖ ? The first step is

to notice that when the data points inS1 are being assigned
to centersµ〈0〉

j , j = 1, . . . , q, the fractional assignments
p∗j (·) can be made entirely on the basis of the projections

of these points into the subspace spanned byµ
〈0〉
1 , . . . , µ

〈0〉
q

(since the Gaussian-estimates have a common, and spher-
ically symmetric, covariance). Specifically, letL denote
this subspace, which has some dimensiond ≤ q (and of
coursed ≤ n). Rotate the axes so thatL coincides with the
first d coordinates. Write each pointX ∈ R

n in the form
(XL, XR). Note thatµ〈0〉

1 , . . . , µ
〈0〉
q have zeros in their last

n− d coordinates.

Each data pointX ∈ S1 is chosen fromN(0, σ2In) (recall
we are assumingµ1 = 0 for convenience) and then divided



between the various center-estimates. We can replace the
process

• PickX according toN(0, σ2In).

• Divide it betweenµ〈0〉
1 , . . . , µ

〈0〉
q .

by the process

• PickXL according toN(0, σ2Id).

• Divide it betweenµ〈0〉
1 , . . . , µ

〈0〉
q .

• Now pickXR according toN(0, σ2In−d).

Then

µ∗
1 =

∑

x∈S1
p∗1(x)xL

∑

x∈S1
p∗1(x)

+

∑

x∈S1
p∗1(x)xR

∑

x∈S1
p∗1(x)

.

The last term is easy to bound because, even condi-
tional uponp∗1(x), the xR look like random draws from
N(0, σ2In−d). The other is more difficult because thexL

are not independent of thep∗1(x). A simple estimate is to
use the fact that each‖xL‖ is aboutO(

√
d); therefore a

convex combination ofxL’s will have length at most about
O(

√
d) ≤ O(

√
q). This works well whenq is very small;

by a more careful analysis we will now arrive at a bound of
O(

√
log q).

The main thing working in our favor is that
∑

x∈S1
p∗1(x)

is not too small. Say this value isr. Suppose no frac-
tional assignments were allowed. Then we would know
thatr whole data points were assigned toµ

〈0〉
1 , and it would

be enough to prove thatany r points out ofS1 average to
something fairly close to the origin.

However, fractional assignments are allowed, so we must
remove this annoyance somehow.

Lemma 6 Given fractional labelsf(y) ∈ [0, 1] for a finite
set of pointsy ∈ R

d, there is a corresponding set of binary
labelsg(y) ∈ {0, 1} such that1 +

∑

y g(y) ≥
∑

y f(y)

and
∥

∥

∥

∑
y
g(y)y

∑
y
g(y)

∥

∥

∥
≥

∥

∥

∥

∑
y
f(y)y

∑
y
f(y)

∥

∥

∥
.

Proof. Let A denote(
∑

y f(y)y)/(
∑

y f(y)). Suppose
for convenience thatA lies along some coordinate axis, say
the positivez axis. Consider the hyperplanez = ‖A‖.
Divide the y’s into two sets: the pointsY< which lie in
the half-spacez < ‖A‖ and the pointsY≥ which lie in the
half-spacez ≥ ‖A‖. We will adjust the weights of points
according to which side of the hyperplane they lie on. In
general, we do not mind increasing the weights of points in
Y≥ and decreasing the weights of those inY< because this
will guarantee that the resulting weighted average is in the
half-spacez ≥ ‖A‖ and is therefore further from the origin

thanA. The only problem is that we are allowed to reduce
the overall weight by at most one.

The new weightsg(y) are assigned according to the follow-
ing procedure:

• Set allg(y) = f(y).

• For each pointy ∈ Y≥, increase its weight tog(y) =
1. This increases the overall weight

∑

y g(y) and en-
sures that the resulting convex combination lies in the
half-spacez ≥ ‖A‖.

• Consider the pointsy ∈ Y<. Out of them, pick (1)
the pointu closest to the hyperplanez = ‖A‖ (ie.
with the highestz coordinate) and which has weight
g(u) < 1 and (2) the pointv farthest from the hy-
perplane (with the smallestz coordinate) and which
has weightg(v) > 0. Increase the weight ofu by
min(g(v), 1 − g(u)) and decrease the weight ofv by
this same amount. Each such adjustment does not al-
ter the overall weight

∑

y g(y) and drives thez coordi-
nate of(

∑

y∈Y<
g(y)y)/(

∑

y∈Y g(y)) closer to‖A‖.
Iterate this process until there remains at most one
point with a fractional weight; at most|Y<| iterations
are needed. Remove this last point.

This procedure guarantees that
∑

y g(y) ≥ (
∑

y f(y))− 1
and that(

∑

y g(y)y)/(
∑

y g(y)) lies in the half-spacez ≥
‖A‖. Therefore its norm must be at least‖A‖.

Next we show that there is no large subset ofS1 whose
average has very large norm (we are still assumingµ1 = 0).

Lemma 7 Pick |S1| points randomly fromN(0, Id).
Choose anyβ > 0. Then with probability at least1−m−β ,
for any v ≥ max(β, d), there is no subset ofS1 of
size≥ v whose average has squared length more than
4(ln 2e|S1|/v + (β/d) lnm).

These last two lemmas can be used to bound the contri-
bution of thexL’s to µ∗

1. The xR’s are independent of
thep∗1(x)’s; therefore their contribution is easy to analyze.
Putting these together yields the next lemma.

Lemma 8 Choose anyβ > 0. If
∑

x∈S1
p∗1(x) ≥ r + 1,

wherer ≥ max(β, d) then with probability at least1 −
m−β − e−n/8,

‖µ∗
1‖2 ≤ 4σ2

(

ln
2e|S1|

r
+

β

d
lnm

)

+
2σ2n

r + 1
.

Proof. Let f(x) = p∗1(x) be the (fractional) weight
with which x ∈ S1 is assigned toµ〈0〉

1 . Obtain the binary
weightsg(·) as in Lemma 6; therefore

∑

x∈S1
g(x) ≥ r.

As before, divide the coordinates into two groups,L and
R. We will consider the averagesAL andAR of these two



parts separately. By Lemmas 6 and 7, with probability at
least1−m−β ,

‖AL‖2 =

∥

∥

∥

∥

∥

∑

x∈S1
f(x)xL

∑

x∈S1
f(x)

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

∑

x∈S1
g(x)xL

∑

x∈S1
g(x)

∥

∥

∥

∥

∥

2

≤ 4σ2

(

ln
2e|S1|

r
+

β

d
lnm

)

.

For AR, if d = n thenAR = 0 and we have nothing to
worry about. Ifd < n, write n − d = γn (whereγ ∈
[ 1n , 1]), and

AR =

∑

x∈S1
f(x)xR

∑

x∈S1
f(x)

d
= N(0, σ2

t Iγn),

wheret = (
∑

x f(x))
2/(

∑

x f(x)
2) ≥ ∑

x f(x) (since
f(x) ≥ f(x)2) and sot ≥ r + 1. The chance that a
N(0, Iγn) random variable has squared length more than
2n is at moste−n/8. Therefore‖AR‖2 ≤ 2σ2n/(r + 1)
with probability at least1 − e−n/8. To finish the lemma
note thatµ∗

1 = (AL, AR), so‖µ∗
1‖2 = ‖AL‖2 + ‖AR‖2.

Of course we cannot ignore the effect of points inSj , j >

1, onµ〈1〉
1 . Accommodating these is straightforward.

Lemma 9 Choose any β ∈ (0, l). As-
sumemin(c, c2)n1/2−α ≥ 14, min(n, c2n) ≥ 18 + 8 lnn,
c2n ≥ 512(β+1) lnm,m ≥ max(4l2, 218c−4). Then with
probability at least1 − l(m−β + e−n/8), for each center-

estimateµ〈1〉
i′ ∈ Si with mixing weight more thanwT ,

‖µ〈1〉
i′ − µi‖ ≤ 1

4cσ
√
n.

In other words, to get reasonably accurate estimates in the
first round, we setl = O( 1

wmin
log k), and we needc ≫

n−1/4, m ≥ max(4l2, O(c−4)) andc2n ≥ log 1
wmin

.

6 Pruning

At the end of the first round of EM, letCj denote the
center-estimates originally fromSj which have high mix-

ing weight, that is,Cj = {µ〈1〉
i : µ

〈0〉
i ∈ Sj , w

〈1〉
i ≥

wT }. A simple clustering heuristic due to Hochbaum and
Shmoys (1985), described in Section 3.3, is used to choose
k points from∪jCj .

Lemma 10 If c2n ≥ 8 ln 12l andm ≥ 40l then the sets
Cj obey the following properties.

(a) EachCj is non-empty.

(b) There is a real value∆ > 0 such that ifx ∈ Ci and
y, z ∈ Cj (i 6= j) then‖y − z‖ ≤ ∆ and‖x− y‖ > ∆.

(c) The pruning procedure identifies exactly one member of
eachCj .

Proof. (a) From Corollary 4 and Lemma 5 we al-
ready know that|Si| ≥ 3

4mwi, and that at most54 lwi

initial center-estimates are chosen fromSi. It was seen
in Lemma 9 that each point inSi gives weight at least
1 − le−c2n/8 to center-estimates fromSi. It follows that
at the end of the first round of EM, at least one of these
center-estimates must have mixing weight at least

( 34mwi)(1− le−c2n/8)

m · 5
4 lwi

=
3

5l
· (1− le−c2n/8) ≥ wT

(under the conditions onm, l), and thereforeCi cannot be
empty.

(b) Pickx ∈ Ci andy, z ∈ Cj for any pairi 6= j. Then
‖y−z‖ ≤ ∆ and‖x−y‖ ≥ cijσ

√
n−∆ where∆ is twice

the precision of the center-estimates after the first round
of EM. By the results of the previous section we may set
∆ = 1

2cσ
√
n.

(c) There arek true clusters and the pruning procedure
picks exactlyk center-estimates. It will not pick two from
the same true cluster because these must be at distance≤ ∆
from each other, whereas there must be some untouched
cluster containing a center-estimate at distance> ∆ from
all points selected thus far.

7 The second round of EM

We now have one center-estimatẽµ〈1〉
i per true cluster

(for convenience permute their labels to match theSi),
each with mixing weight1k and covariancẽσ〈1〉2In, where

σ̃〈1〉 = σ〈0〉. Furthermore each̃µ〈1〉
i is within distance

1
4cσ

√
n of the corresponding true Gaussian centerµi. Such

favorable circumstances will make it easy to show that the
subsequent round of EM will achieve near-perfect cluster-
ing. The details are similar to those of the first round of EM
and are omitted from this abstract. Combining the various
results so far gives Theorem 1.

We can also bound the final mixing weights and variance.
Here is an example.

Lemma 11 To the results of Theorem 1 it can be added
that for anyi,

|Si|
m

· (1− ke−c2n/8) ≤ w
〈2〉
i ≤ |Si|

m
+ e−c2n/8

8 The case of different spherical covariance
matrices

A few changes need to be made when the data is drawn
from a mixturew1N(µ1, σ

2
1In)+ · · ·+wkN(µk, σ

2
kIn) in

which theσi might not be identical. In the algorithm itself,
there are two changes.



Initialization Pick initial centers and mixing weights as
before. For initial estimates of the variances use

σ
〈0〉2
i =

1

2n
min
j 6=i

‖µ〈0〉
i − µ

〈0〉
j ‖2.

EM Run one round of EM, as before, to get the modified
estimatesµ〈1〉

i , σ〈1〉, w
〈1〉
i .

Pruning Again remove center-estimates with weight be-
low wT . The only difference in the remainder of the
pruning procedure is that the distance between centers
µ
〈1〉
i andµ〈1〉

j is now weighted by the individual vari-
ances,

d(µ
〈1〉
i , µ

〈1〉
j ) =

‖µ〈1〉
i − µ

〈1〉
j ‖

σ
〈0〉
i + σ

〈0〉
j

.

EM One last step of EM, as before.

The modified distance measure in the pruning step is
meant, roughly, to compensate for the fact that part of the
distance betweenµ〈t〉

i andµ〈t〉
j is on a scale ofσ〈t〉

i while

part of it is on a scale ofσ〈t〉
j . The analysis follows roughly

the same outline as before, with a few extra subtleties. An
additional assumption is needed,

c2ij max(σ2
i , σ

2
j ) ≥ |σ2

i − σ2
j | for all i, j,

in order to rule out situations in which one cluster is nested
within another. The final theorem remains the same, the
error‖µ〈2〉

i − µi‖ now being proportional toσi instead of
to the commonσ of the previous case.

9 Concluding remarks

This paper provides principled answers to many questions
surrounding EM: how many clusters should be used, how
the parameters ought to be initialized, and how pruning
should be carried out. Some of the intuition presented here
confirms current practice; some of it is new. Either way,
this material should be of interest to practitioners of EM.

But what about the claim that EM can be made to work in
just two rounds? This requires what we call the

Strong Gaussian assumption.The data are i.i.d. samples
from a true mixture of Gaussians.

This assumption is the standard setting for other theoretical
results about EM, but is it reasonable to expect of real data
sets? We recommend instead the

Weak Gaussian assumption.The data looks like it comes
from a mixture of Gaussians in the following sense: for any
sphere inRn, the fraction of the data that falls in the sphere

is the expected fraction under the mixture distribution,±ǫ0,
whereǫ0 is some term corresponding to sampling error and
will typically be proportional tom−1/2, wherem is the
number of samples. Some other concept class of low VC
dimension can be substituted for spheres.

The strong assumption immediately implies the weak as-
sumption (with high probability) by a large deviation
bound, since the concept class of spheres inR

n has small
VC dimension. What kinds of conclusions follow from the
strong assumption but not the weak one? Here is an exam-
ple: “if two data points are drawn fromN(0, In) then with
overwhelming probability they are separated by a distance
of at least

√
n”. The weak assumption does not support

this; with just two samples, in fact, the sampling error is
so high that it does not allow us to draw any non-trivial
conclusions at all.

It is often argued that the Gaussian is the most natural
model of a cluster because of the central limit theorem.
However, central limit theorems, specifically Berry-Esséen
theorems (Feller, 1966), yield Gaussians in the sense of the
weak assumption, not the strong one. For the same rea-
son, the weak Gaussian assumption arises naturally when
we take random projections of mixtures of product distri-
butions (Diaconis and Freedman, 1984). Ideally therefore,
we could provide performance guarantees for EM under
just this condition. Perhaps our analysis can be extended
appropriately. For an example of what needs to be changed
in the algorithm, consider that the weak assumption allows√
m out ofm data points to be placed arbitrarily. An out-

lier removal procedure might be necessary to prevent EM
from being confused by this possibly malicious noise.
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