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Abstract are the work of many researchers; a summary can be found
in the overview paper of Redner and Walker (1984).

We show that, given data from a mixture bf Xu and Jordan (1995) present theoretical results which mit-
well-separated spherical Gaussian®ih a sim- igate some of the pessimism of first-order convergence,
ple two-round variant of EM will, with high particularly in the case of well-separated mixtures, aeg th
probability, learn the centers of the Gaussians to note that moreover near-optimal log-likelihood is typigal
near-optimal precision, if the dimension is high reached in just a few iterations. We also argue in favor
(n > log k). We relate this to previous theoreti- of EM, but in a different way. We ask, how close does
cal and empirical work on the EM algorithm. 6" have to be t@™ for slow convergence to hold? Let

d(6,,02) denote the maximum Euclidean distance between
the respective means 6f and6,. For one-dimensional
1 Introduction data, it can be seen quite easily from canonical experiments
(Redner and Walker, 1984) that convergence is slow even if
(ty pmy i
At present EM is the method of choice for learning mix- d(9°7,0™) is Iarge. Howev_er, our results suggest that this
g0 longer holds in higher dimension. For reasonably well-

tures of Gaussians. A series of theoretical and experime . . o
P parated spherical GaussiandRih (whereseparationis

tal studies over the past three decades have contributed E’Zfined precisely in the next section), convergence is very
h llective intuiti his algorithm. We will rei . ’
the collective intuition about this algorithm. We will rein fast until (6%, 6™) ~ ¢~ In fact, we can make EM

terpret a few of these results in the context of a new perfor- .~ . o 2y |
mance guarantee. attain this accuracy in just two rounds. The erof*(") is

so miniscule for large: that subsequent improvements are
A standard criticism of EM is that it converges very slowly. not especially important.

Simulations performed by Redner and Walker (1984), an[i>ractitioners have long known that if the data kadus-

others, demonstrate this decisively for one-dimensiona ers, then EM should be started with more tHacenters,

mixtures of two Gaussians. It is also known that given data

from a mixture of Gaussians, when EM gets close to thea.nOI these should at some stage be pruned. We present a

true solution, it exhibitdirst-order convergenceRoughly zg?plznzxggzilﬁ ;?] 2?222:;;??;??3%rvnvggrtgﬁr:iigffgﬁf
speaking, the idea is this: givem data points from a erg’which should be Ssed} 1 loe k). Wherew.. . is
mixture with parameters (means, covariances, and mixin ( og k), Wmin

weights)#*, wherem is very large, the log-likelihood has lower bound on the smallest mixing weight. The typical
a local maximum at some set of parametgtsclose tod*.

method of pruning is to remove Gaussian-estimates with
Let 9 denote EM'’s parameter-estimates at timét can

very low mixing weight (known astarved clustefs Our
be shown (cf. Taylor expansion) that whet¥ is neard™,

theoretical analysis shows that this is not enough, tha¢the
is another type of Gaussian-estimate, easy to detect, which

||9(t+1) g < A ||9(t) — o also needs to be pruned. Specifically, it is possible (and fre
- ’ quently occurs in simulations) that two of EM’s Gaussian-
where) € [0,1) and| - || is some nornt. If the Gaussians ~€Stimates share the same cluster, each with relatively high

are closely packed thehis close to one; if they are very Mixing weight. We present a very simple, provably correct
far from one another theh is close to zero. These results Method of detecting this situation and correcting it.

“Work done while at University of California, Berkeley. It is widely recognized that a crucial issue in the perfor-
This might not seem so bad, but contrast it veiétond-order ~mance of EM is the choice of initial parameters. For the
convergencgn which [|[0¢+Y — ™| < X- (|6 — ™2 means, we use the popular technique of picking initial



center-estimates randomly from the data set. This is showkn the final section of the paper, we discuss a crucial issue:
to be adequate for the performance guarantee we derivevhat features of our main assumption (that the clusters are
Our analysis also makes it clear that it is vitally important high-dimensional Gaussians) make such a strong statement
to pick good initial estimates of the covariances, a sub-about EM possible? This assumption is also the basis of
ject which has received somewhat less attention. We usall the other theoretical results mentioned above, but can
a clever initializer whose origin we are unable to trace butreal data sets reasonably be expected to satisfy it? Ifmot, i
which is mentioned in Bishop’s text (1995). what way can it usefully be relaxed?

Our central performance guarantee requires that the clus-

ters actually look spherical-Gaussian, more specifically2 High-dimensional Gaussians

that the data points are drawn i.i.d. from some (unknown)

mixture of spherical Gaussians. We show that if the clus-A spherical GaussiaW (u, 0%1,,) assigns to point € R™
ters are reasonably well-separated (in a precise sensk), athe density

if the dimensiom > log k then only two rounds of EM are

required to learn the mixture to within near-optimal preci- _ 1 [l — pll?

sion, with high probabilityt — k=), Our measure of ac- P(@) = Gy ( 202 > ’

curacy is the functior(-, -) introduced above. The precise

statement of the theorem can be found in Section 3.4, anti - || being Euclidean distance. X = (Xy,...,X,) is
applies not only to EM but also to other similar schemesandomly chosen fromV (0, o I,,) then its coordinates are
inc|uding for instance some Of the Variants Of EM dﬂ’d ||d N(O,O'2> random Variables. EaCh Coordinate haS ex-

means introduced by Kearns, Mansour, and Ng (1997).  Pected squared valu€ soE||X > = E(X{+- - +X7) =
_ o _ no?. Itthen follows by a large deviation bound tHgx ||?
Performance guarantees for clustering will inevitably in-\yi| pe tightly concentrated arounds2:

volve some notion of theseparationbetween different

clusters. There are at least two natural ways of defining P(|| X2 — no?| > eno?) < e "¢ /24,

this. Take for simplicity the case of twe-dimensional

GaussiansV (u1, I,) and N(uq, I,). If each coordinate  This bound and others like it will be discussed in Sec-
(attribute) provides a little bit of discriminative infoam  tion 4. It means that almost the entire probability mass of
tion between the two clusters, then on each coordinate thﬁ](()’ o21,) lies in a thin shell at a radius of,/n from the
meansu; andy differ by at least some small amount, say origin. This does not contradict the fact that the density of
d. TheL, distance betweem, andy is then atleasiy/n.  the Gaussian is highest at the origin, since the surface area
As further attributes are added, the distance between thgt distancer from the origin,0 < r < ¢y/n, increases
centers grows, and the two clusters become more clearljaster than the density at distaneedecreases (Bishop,
distinguishable from one another. This is the usual ratio1995, exercise 1.4).

nale for using high-dimensional data: the higher the dimen- . ) ) 9
sion, the easier (in an information-theoretic sense) efust 't 1S natural therefore to think of a Gaussiaf(y, o=/,
ing should be. The only problem then, is whether there®S haV|2ng radius U;/ﬁ' ) We say two Gaussians
are algorithms which can efficiently exploit the tradeoff be 2V (11, 911n), N (2, 051, in R™ arec-separatedf

tween this high information content and the curse of dimen-
sionality. This viewpoint suggests that the distance be-
tween the cen_ters (_wt—dimensional c!ugters can reasonably that is, if they are- radii apart (Dasgupta, 1999). A mix-
zzvtﬁnisglrgegril;?nrgt\?v m \?vrg:ktr\]/\?éllltL;Sr\:jne()rsttr:(ranggtuarztptt?onture of Gaussians is-separated if the Gaussians in it are
that this distance is some constant timgés. On the other fhzggng:as’;aiaiiefr? rg;et\(lzlvéelnn t?’izf?e;i:j ‘;Vi Vg!lﬁgaﬂ:ﬂo;ﬁd
hand, it should be pointed out that|ifiy — p2f| = dvn . _ iy, e We can reasonably expect that the dif-

for EOE?I? constané > 0, thin for Iaggen the overlap in I ficulty of learning a mixture of Gaussians increases: as
probability mass between the two Gaussians Is minisCUl&yereases. For non-spherical Gaussians this definition can

exponentially small im. Therefore, it should not only be be extended readily by thinking of the radius'6fu, %) as
interesting but also possible to develop algorithms WhiChoeing \/m- ’

work well when thel, distance between centers of clusters
is much smaller, for instance some constant independent d§ 2-separated mixture contains clusters with almost no
the dimension (as opposed®d/n)). overlap. InR™ for large n, this is true even of %-

, , o separated mixture, because for instance, two spheres of ra-
Where do EM’s requirements fall in thls spectrum of Sepa’dius\/ﬁwith center%\/ﬁapart share only a tiny fraction
ration? We show that EM works well in at least a large part ¢ yheir yolume. One useful way of thinking about a pair of
of thlsl/siaan, when the distance between clusters is biggel sonarated Gaussians is to imagine that on each coordinate
thann’/=. their means differ by. If ¢ is small, then the projection of

1 — pe|| > cmax{o1,02}v/n,



the mixture onto any one coordinate will look unimodal. M<0>

This might also be true of a projection onto a few coordi- °

nates. But for large,, when all coordinates are considered

together, the distribution will cease to look unimodal. §hi °M<1>
is precisely the reason for using high-dimensional data. m u§1> 1o 2
What values of: can be expected of real-world data sets? M:(al)
This will vary from case to case. As an example, we ana- o H3
lyzed a canonical data set consisting of handwritten digits M<0>

collected by USPS. Each digit was represented as a vector o' M<0>
in [—1,1]2°¢. We fit a mixture of ten (non-spherical) Gaus- o’

sians to this data set, by doing each digit separately, and

found that it wad).63-separated. . ) ) .
Figure 1: For this mixture, the positions of the center-

. estimates do not move much after the first step of EM.
3 A two-round variant of EM: the case of P

common covariance

It is instructive and convenient to start with the subcase irent Gaussians are closer together than two points from the
which data is drawn from a mixture &fGaussians with the same Gaussian, is tiny; 2(P°w(?)) - Therefore an exami-
same spherical covariance matsixZ,,, for some unknown nation of interpoint distances is enough to almost penfectl
o?. We will show that ifn > logk, EM can be made to cluster the data. A variety of different algorithms will vkor
work well in just two rounds. well under these circumstances, and EM is no exception.

Suppose the true number of Gaussianss known. LetS
denote the entire data set, aficthe points drawn from the

Given a data sef C R™, the EM algorithm (for a mixture IZZ; t'rEu,\i i(ia;gssiig?l\f éﬁf%ﬁ{f;fgggﬁ; var?goai:gi?g
of k Gaussians with common spherical covariance) works p . P i ) '
by first choosing starting valueém w® 0 for the pa- use these as initigenter-estimates,; . How large should

. . . : [ be? It turns out that if thegepoints include at least one

rameters, and then updating them iteratively according to ",

the following two-step procedure (at tin p0|_nt from eachS;, then EM can be made_ to p_erf(_)rm well.
This suggests= Q(k log k). Conversely, if the initial cen-

ters miss somé;, then EM might perform poorly.

3.1 The EM algorithm

E step Letr; ~ N(u§t>, o121, denote the density of the . _
it" Gaussian-estimate. For each data poirt S, and  Here is a concrete example (Figure 1). Letdenote

eachl < i < k, compute some high dimension, and place thetrue Gaussians
o N(p1, 1), ..., N(ux, I,,) side by side in a line, leaving
p§t+1>(x) _ W 7i(z) 7 a distance of3y/n t?e_tween.consecutive Gaussians. As-
’ >, w§t>rj(x) sign them equal mixing weights. As before Igt be the

data points from thé" Gaussian, and choose EM'’s initial
the conditional probability that comes from the’  center-estimates from the data. Suppose the initial center
Gaussian with respect to the current parameters.  contain nothing fromsS;, one point fromSs, and at least
one point fromSs. The probability of this event is at least
some constant. Then no matter how long EM is run, it will
assign just one Gaussian-estimate to the first two true Gaus-

M step Now update the various parameters in an intuitive
way. Denote the size &f by m.

LY = 1 Zp(tH)(x) sians. In the first round of EM, the point frosy (call it
‘ mcs ' uf») will move between:; andus. It will stay there, right
(t4+1) between the two true centers. None of the other center-
pn - 2aes®Pi  (2) estimates:!” will ever come closer tqu,; their distance
mw§t+1> from it is so large that their influence is overwhelmed by
1 k that Of/iY)- This argument can be formalized easily using
ol — — Z Z & — 2 pl () the large deviation bounds of the next section.
zeS i=1

How about the initial choice of variance? When the Gaus-
3.2 The main issues sians have a common spherical covariance, this is not all

that important, except that a huge overestimate might cause
It will turn out that when the separation of a mixtureRt slower convergence. We will use a fairly precise estimator,
is ¢ > n~1/* then the chance that two points from differ- a variant of which is mentioned in Bishop’s text (1995).



After one round of EM, the center-estimates are pruned t@.4 The main result
leave exactly one per true Gaussian. This is accomplished
in a simple manner. First, remove any center-estimates withlow that the notation and algorithm have been introduced,
very low mixing weight (this is often called “cluster starva We can state the main theorem for the case of common co-
tion”). Any remaining center-estimate (originally chosen Variances; a similar result holds when the Gaussians have
say, from ;) has relatively high mixing weight, and we different spherical covariance matrices (Section 8).
can show that as a result of the first EM iteration, it will )
have moved close to;. A trivial clustering heuristic, due 1'€orem 1 Saym data points are generz;ted from @
to Hochbaum and Shmoys (1985), is then good enough t§eParated ;mxtgre of Gaussianso N (uy, 0°1n) + - +
select one center-estimate near each wi N (g, o I,) in R™. LetS; denote the points f_rom the
i" Gaussian, and let,,;,, = min; w;. Further, define
With exactly one center-estimate per (true) Gaussian,-a sec
ond iteration of EM will accurately retrieve the means, co- 1 130 max(1,¢?) and §— n .
variance, and mixing weights. In fact the clustering of the 2 Inn 512Inm
data (the fra(;tional labels assigned by EM) vinI be aImOStThen, assuming: > 0 and min(n,¢?n) > 18 + 8lnn
perfect, that is to say, each fractional label will be plccse_t andm > max(412, 218¢~4), with probability at leastl —
zero or one, and will in almost all cases corr_ectly !dentlfym%,ﬂ(nza) o= wmin) _ o —(8=1) the variant of EM
the generating Gaussian. Therefore further iterationk wil d . . , o .

) . . : . escribed above will produce final center-estimates which
not help much: these additional iterations will move the

. i
center-estimates around by at mest:(™). satisfy

2 —Q(c?n
1 — pill < means;) — | + e,

3.3 The simplified algorithm

The proof of this theorem will be sketched over the next
four sections; the details can be found in the full version of
the paper. A few words of explanation are in order at this
stage. First of all, the constants mentioned in the theorem
should not be a source of concern since no attempt has been

e . . ) made to optimize them. Second, the best that can be hoped

Initialization Pick ! data points at random as starting es-. (2) . i
. (0) . , is thaty;”" = meartS;); therefore, the final error bound
timatesy,’ for the Gaussian centers. Assign them

N . 0 1 > on the center-estimates is very close to optimal. Finally
identical mixing weightsy;™* = 7. For an initial es-  notice thata > 0 requires that > n~'/4, and that in

Here is a summary of the modified algorithm, giverdata
points inR™ which have been generated by a mixture:of
Gaussians. The value ofwill be specified later; for the
time being it can be thought of @k log k).

timate of variance use order to make the probability of failure at mdst®(")  itis
o2 1 i o o 2 necessary to sét= O(wim log k), to usem = [2poly(k)
T T gy e samples, and to assume thdt' = Q(log k).

EM Run one round of EM. This yields modified estimates4
M<1> Pty w{1>_

i

Initialization

Pruning Remove all center-estimates whose mixingWe Will show that the two-round algorithm retrieves
weights are belows = % + 2. Prune the remaining the true Gaussians with high probability. This result
center-estimates down %é)julgbfthem: hinges crucially upon large deviation bounds for the

. . lengths of points drawn from a Gaussian (Dasgupta, 1999,
 Compute distances between center-estimates. | emma 14).

e Choose one of these centers arbitrarily.

e Pick the remaining: — 1 iteratively as follows: ~Lemma 2 Pick X from N (0, I,,). For anye € (0,1),
pick the center farthest from the ones picked so
far. (The distance from a point to a setS is

mingeg ||z — y||, where| - || is the L, norm.) Thus for anya > 0, ||X||2 € n— n1/2+a’ n+ n1/2+a]

. o 7,'12@
Call the resulting center-estimatgs'’ (where1 <  With probability at leastl — 2¢ /24,

X .. . (1) _ 1
i < k). Set the.mlxmg weights to);* = 1 and the It can similarly be shown that the distance between two
standard deviation t6(!) = (%,

points from the same Gaussian (or from different Gaus-
EM Run one more step of EM, starting at the sians) is sharply concentrated around its expected value.

P X2 = n| > en) < 2e7</24,

=) =(1) ~(1) Al - _ _
(A", ’<20> } parameters and yielding the final | .\ 3 ¢ ¥ is chosen fromN (1;, 021,,) andY  is cho-

. 2
estimateg,,”, w(” 0. sen independently fromV (., 0% 1,,) then for anya > 0,



the chance thaf X — Y'||? does not lie in the ranggu; —
w5l + (0 +03) (ntn ) £2|| s — g ||y J0F + 02 -n®

. 2 2a
is at mose"""/24 4 e—"7/2,

Corollary 4 Draw m data points from a-separated mix-
ture of k Gaussians with common covariance matrid,,
and smallest mixing weight at least,,;,,. LetS; denote
the points from the** Gaussian. Then for any > 0,
with probability at leastl — (m? + 2km)e " "/?* —
k’e_mw"””/32 _ %er—nQ“‘/Q _ kme—nz"‘/2,

(1) foranyz,y € S, ||z — y[|* = 2020 £ 20%n1/2+e;
() forz e Si,y e Sji# 4, |z —yl* = (2+¢};)o’n £
(2 + Zﬂcij)02n1/2+a;

(3) for any data poiny € S;, [|y—pu;||?> = o?nta?nt/2+e

12 = (1 +co’n £ 1+

while fori # j, |ly — u;
QCij)02n1/2+a; and

(4) each|S;| > 3muw;.

This means that if the mixture isseparated, then points
from the same Gaussian are at squared distance about

estimates from one (true) cluster. This is because in high
dimension, the distances between clusters are so great that
there is just a very narrow region between two clusters
where there is any ambiguity of assignment, and the prob-
ability that points fall within this region is miniscule.

Recall that we are definingj; as the data points drawn from
the true GaussiaV (u;,0%1,). Combining the last few
lemmas tells us that i#?n > Inl, in the first round of
EM each data point irt; will have almost all its weight
assigned to center-estimat@%J> in S;. Therefore, fix at-
tention on a specific Gaussian, s&yu1,o21,,). Without
loss of generality;;; = 0 and the initial center-estimates
1.l came from this Gaussian, that is, they are in
S1. We know from Lemma 5 thatt < g < 2w;.

Say that center-estima&e}m receives a reasonably high
mixing weight after the first round, specifically thza\i1> >

wr (by a lemma of the next section, at least one of
12 s must have this property). We will show that
its new value;u§1> is much closer tq.; (that is, to the ori-
gin). For any data point € S, letp;(x) denote the (frac-

tional) weight that: gives toufm during the first round of

from each other while points from different Gaussians aréEM. Then

1 _

at squared distance at least ab@(it + Q(c?))o?n from { 2zesP1(@)T

each other. The standard deviation of these estimates is dwespi(x)
aroundo®n!/2. If ¢n > n'/? then this standard deviation By our previous discussion, the most important contribu-
will be overwhelmed by the separation between clustersiion here is from points: in S;. So let’s ignore other terms

and therefore points from the same cluster will almost al<gr the time being and focus upon the central quantity
ways be closer together than points from different clusters
. Dges, Pi(x)T

In such a situation, interpoint distances will reveal erfoug _

information for clustering and it should, in particular, be P Y es Pi(@)

possible to make EM work well. We first establish some ) ) ) ) )

simple guarantees about the initial conditions. wherepj (z) is the fractional weight assignedt@ssuming
no centers other tham”’, ..., " are active, that is,

W

Lemmab5 If [ > k and eachw; > w;,;, then with proba-
bility at leastl — ke~ lwmin — elwmin/48, pi() = pi(z)

i) o)

We have already asserted that the total mixing weight as-
signed toy{”, namelyy", cspi(x) & s pi(2), is
quite high. How can we bountl:; — 1 || ? The first step is

to notice that when the data pointsSi are being assigned

to centerSp§0>,j 1,...,q, the fractional assignments

Remark All the theorems of the following sections are pj(+) can b? méde entirely on the basis °f< the prqc(e()c;nons
made under the additional hypothesis that Corollary 4 an@f these points into the subspace spanned By ..., g
Lemma 5 hold, for some fixed € (0, 1). (since the Gaussian-estimates have a common, and spher-
ically symmetric, covariance). Specifically, &t denote

this subspace, which has some dimensiog ¢ (and of
coursed < n). Rotate the axes so thatcoincides with the

What h during the first d of EM? The first thi first d coordinates. Write each poid € R™ in the form
athappens aunng the first round o ¢ 1he |r§ I,,ng(XL,XR). Note tham§0>,...,;4§0> have zeros in their last
we clarify is that although in principle EM allows “soft n — 4 coordinates

assignments in which each data point is fractionally dis-
tributed over various clusters, in practice for largeev-  Each data poinK € S; is chosen fromV (0, 021,,) (recall
ery data point will give almost its entire weight to center- we are assuming; = 0 for convenience) and then divided

(a) every Gaussian is represented in the initial center-
estimates;

(b) thei™" Gaussian provides at mogtw; initial center-
estimates, for all <i < k; and

(€) 002 = g2(1 £ n~1/2+e), _

5 The first round of EM



between the various center-estimates. We can replace thiean A. The only problem is that we are allowed to reduce
process the overall weight by at most one.

The new weightg(y) are assigned according to the follow-

e Pick X according taV (0, 0%1,,). ing procedure:

o Divide it between\” ..., ud”.

e Setallg(y) = f(y).

e For each poiny € Y, increase its weight tg(y) =
1. This increases the overall weight, g(y) and en-
sures that the resulting convex combination lies in the
half-space: > || A].

by the process

e Pick X according taV (0, 0%1;).

ide i © 0
o Divide it betweerp; ", ..., stg - e Consider the pointy € Y.. Out of them, pick (1)

the pointu closest to the hyperplane = || 4] (ie.
with the highest: coordinate) and which has weight
g(u) < 1 and (2) the point farthest from the hy-

e Now pick X according taV (0, o%1,,_4).

Then perplane (with the smallest coordinate) and which
. Yowes, Pi(@)zr  Ycq Pi(ET)TR has weightg(v) > 0. Increase the weight of by
H1 = AC) A min(g(v),1 — g(u)) and decrease the weight oby
€S rESL

this same amount. Each such adjustment does not al-

The last term is easy to bound because, even condi- terthe overallweigh} ¢(y) and drives the coordi-

tional uponpj(z), the zr look like random draws from
N (0,021, _4). The other is more difficult because thg
are not independent of the (z). A simple estimate is to

nate of(>_,cy_9(y)y)/ (2 ,ey 9(y)) closer to| A].
Iterate this process until there remains at most one

point with a fractional weight; at mo$Y | iterations

use the fact that eachz || is aboutO(+/d); therefore a are needed. Remove this last point.

convex combination af ;'s will have length at most about

O(vd) < O(,/q). This works well wheny is very small;  This procedure guarantees that, g(y) > (3, f(y)) —
by a more careful analysis we will now arrive at a bound ofand that(}_, g(v)y)/(>_, g(y)) lies in the half-space >
O(vlogq). ||A||. Therefore its norm must be at ledst||.

The main thing working in our favor is that, ¢ pi(z)
is not too small. Say this value is Suppose no frac-
tional assignments were allowed. Then we would know

thatr whole data points were as_&gneddﬁ ,anditwould Lemma 7 Pick |S1| points randomly from N (0, I,).
be enough to prove thany points out ofS, average to  Choose any > 0. Then with probability at least—m 7,
something fairly close to the origin. for any v > max(8,d), there is no subset of; of

However, fractional assignments are allowed, so we mustiZ2€ > v whose average has squared length more than
remove this annoyance somehow. 4(In2e[Sy|/v + (8/d) Inm).

Next we show that there is no large subsetSefwhose
average has very large norm (we are still assuming- 0).

These last two lemmas can be used to bound the contri-
bution of thex’s to uj. The zg’s are independent of
the p(x)’s; therefore their contribution is easy to analyze.

Lemma 6 Given fractional labelsf (y) € [0, 1] for a finite
set of pointsy € RY, there is a corresponding set of binary

labels € {0,1} such thatl >
Zg:( Y {0.1} s, 7 (w): + Z ) = Zy 1) Putting these together yields the next lemma.
and H v (yy)y H ‘ f(yy)u
v9

Lemma 8 Choose any} > 0. If Y ¢ pi(z) > r+1,
Proof. Let A denote(3_, f(y)y)/(>, f(y)). Suppose wherer > max(8,d) then with probability at least —
for convenience that lies along some coordinate axis, say m~* — e /%,
the positivez axis. Consider the hyperplane = || A]|. » , 2|5y B 9520
|3l < 4o 1nT—|—flnm + .

Divide the y’s into two sets: the point¥_ which lie in

the half-space < ||A|| and the point&~ which lie in the d r+1
half-spacez > || A||. We will adjust the weights of points
according to which side of the hyperplane they lie on. InProof.  Let f(x) = pi(x) be the (fractional) weight
general, we do not mind increasing the weights of points inwith which z € S is aSS|gned t(pL1 Obtain the binary
Y> and decreasing the weights of thosé&’in because this  weightsg(-) as in Lemma 6; therefor®_ ¢ g(z) > 7.
will guarantee that the resulting weighted average is in théAs before, divide the coordinates into two groupsand
half-space: > ||A|| and is therefore further from the origin R. We will consider the average$;, and A of these two



parts separately. By Lemmas 6 and 7, with probability atProof.

leastl — m =7,
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For Ag, if d = nthen A = 0 and we have nothing to
worry about. Ifd < n, write n — d = yn (wherevy €
[+,1]), and
xX)x 2
AR = erSI f( ) & g N(Oa UTI’YTL)7

21651 f(l')

wheret = (3, f(2))?/(¥, f(x)2) = ¥, f(z) (since
f(z) > f(z)?) and sot > r + 1. The chance that a

N(0,I,,) random variable has squared Iength more than

2n is at moste="/8, Therefore||Ag||?> < 202n/(r + 1)
with probability at leastt — e="/%. To finish the lemma
note thatuj = (Ar, Ar), so||pil|* = |AL]|* + || Ar[*. 1

Of course we cannot ignore the effect of pointsSin j >
1,0n /AD. Accommodating these is straightforward.

Lemma9 Choose any f € 0,1). As-
sumemin(c, ¢?)n'/2=% > 14, min(n, ¢®n) > 18 + 81nn,
c®n > 512(8+1) Inm, m > max(412,2¥c=*). Then with
probability at leastl — I(m~? + e~"/®), for each center-
estimatng,1> € S; with mixing weight more thatw,

1
I = il < deovin.

In other words, to get reasonably accurate estimates in thévOr

first round, we set = O(
n~Y4 m > max(41%,0(c™

-log k), and we need >
)) andc?n > log wim

6 Pruning

At the end of the first round of EM, lef’; denote the
center-estimates originally fromﬁ which have high mix-
ing weight, that is,C; = {u{" : 4! € 5;,w" >

(@) From Corollary 4 and Lemma 5 we al-
ready know thatS;| > 3muw;, and that at mos€iw;
initial center-estimates are chosen fragfn It was seen

in Lemma 9 that each point i§; gives weight at least

1 — le—<*"/8 to center-estimates frorf;. It follows that

at the end of the first round of EM, at least one of these
center-estimates must have mixing weight at least

3 (1 —1 —c%n/8 .
(4mw )( . € ) _ 3.(17l6752n/8) Z wr
m - 7lw; 51

(under the conditions om, [), and therefore’; cannot be
empty.

(b) Pickz € C; andy,z € C; for any pairi # j. Then
ly—z| < Aand||z—y| > ¢;jo/n—A whereA is twice
the precision of the center-estimates after the first round
of EM. By the results of the previous section we may set

= Lcoy/n.

(c) There arek true clusters and the pruning procedure
picks exactlyk center-estimates. It will not pick two from
the same true cluster because these must be at dista’\ce
from each other, whereas there must be some untouched
cluster containing a center-estimate at distancA from

all points selected thus fek.

7 The second round of EM

We now have one center—estima,(ﬁé;1> per true cluster
(for convenience permute their labels to match #)§
each with mixing weightt and covariancé 121, where

&<1> = ¢, Furthermore eacti!" is within distance

n of the corresponding true Gaussian cepterSuch
able circumstances will make it easy to show that the
subsequent round of EM will achieve near-perfect cluster-
ing. The details are similar to those of the first round of EM
and are omitted from this abstract. Combining the various
results so far gives Theorem 1.

We can also bound the final mixing weights and variance.
Here is an example.

Lemma 11 To the results of Theorem 1 it can be added

wr}. A simple clusterlng heuristic due to Hochbaum andthat for anys,
Shmoys (1985), described in Section 3.3, is used to choose

k points fromu; C;.

Lemma 10 If ¢>n > 81In120 andm > 40! then the sets
C; obey the following properties.

(a) EachC}; is non-empty.

(b) There is a real valué\ > 0 such that ifx € C; and
y,z € Cj (i # j)then|ly — z|| < Aand|z —y| > A.

@ (1 - ke—CZ’"/S) < wl@) < @

+ e—czn/S
m - m

8 The case of different spherical covariance
matrices

A few changes need to be made when the data is drawn
from a mixturew; N (1, 031,) + - - - + wi N (g, 02 1,) in

(c) The pruning procedure identifies exactly one member afvhich thes; might not be identical. In the algorithm itself,

eachC;.

there are two changes.



Initialization Pick initial centers and mixing weights as is the expected fraction under the mixture distributitag,
before. For initial estimates of the variances use whereeq is some term corresponding to sampling error and
1 will typically be proportional tom~'/2, wherem is the
ai<0>2 = — min H@‘” — M§-0> 2. number of samples. Some other concept class of low VC
n i dimension can be substituted for spheres.

EM Run one round of EM, as before, to get the modifiedThe strong assumption immediately implies the weak as-
estimateg:!" | o) w . sumption (with high probability) by a large deviation
. . ) ) ) bound, since the concept class of sphereR’irhas small
Pruning Again remove f:enter-esfumates W'th weight be'VC dimension. What kinds of conclusions follow from the
low wr. The only Q|fference n the remainder of the strong assumption but not the weak one? Here is an exam-
pruning procedure is that the distance between center, e: “if two data points are drawn frov (0, I,,) then with

1 1) . . . .. .
pi" andy" is now weighted by the individual vari- overwhelming probability they are separated by a distance

ances, of at least\/n". The weak assumption does not support
) ) this; with just two samples, in fact, the sampling error is
dwg) <1>) _ i " — Hj ||_ SO high_that it does not allow us to draw any non-trivial

v ol 4 Uj<,0> conclusions at all.

It is often argued that the Gaussian is the most natural
EM One last step of EM, as before. model of a cluster because of the central limit theorem.
However, central limit theorems, specifically Berry-&ss
The modified distance measure in the pruning step isheorems (Feller, 1966), yield Gaussians in the sense of the
meant, roughly, to compensate for the fact that part of theveak assumption, not the strong one. For the same rea-
distance betweep'” andy" is on a scale of” while ~ son, the weak Gaussian assumption arises naturally when
. ] (t) ! : we take random projections of mixtures of product distri-
part of itis on a scale of ;. The analysis follows roughly . . .
. . . butions (Diaconis and Freedman, 1984). Ideally therefore,
the same outline as before, with a few extra subtleties. An .
o . we could provide performance guarantees for EM under
additional assumption is needed, . ; s )
just this condition. Perhaps our analysis can be extended
appropriately. For an example of what needs to be changed
in the algorithm, consider that the weak assumption allows
in order to rule out situations in which one cluster is nestedy7 out of m data points to be placed arbitrarily. An out-
within another. The final theorem remains the same, théier rempval procedure m|ght be necessary to prevent EM
error Hm@) — ;|| now being proportional te; instead of ~ from being confused by this possibly malicious noise.
to the commonr of the previous case.

c?j max(af,a?) > o2 — JJZ\ forall 4, j,
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