
ar
X

iv
:1

00
2.

45
47

v1
  [

m
at

h.
ST

] 
 2

4 
Fe

b 
20

10

The Annals of Statistics

2010, Vol. 38, No. 2, 808–835
DOI: 10.1214/09-AOS716
c© Institute of Mathematical Statistics, 2010
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APPLICATIONS TO GENE-SET TESTING1
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Iowa State University and Peking University, and Iowa State University

We propose a two-sample test for the means of high-dimensional
data when the data dimension is much larger than the sample size.
Hotelling’s classical T 2 test does not work for this “large p, small n”
situation. The proposed test does not require explicit conditions in
the relationship between the data dimension and sample size. This
offers much flexibility in analyzing high-dimensional data. An appli-
cation of the proposed test is in testing significance for sets of genes
which we demonstrate in an empirical study on a leukemia data set.

1. Introduction. High-dimensional data are increasingly encountered in
many applications of statistics and most prominently in biological and fi-
nancial studies. A common feature of high-dimensional data is that, while
the data dimension is high, the sample size is relatively small. This is the
so-called “large p, small n” phenomenon where p/n→∞; here p is the data
dimension and n is the sample size. The high data dimension (“large p”)
alone has created the need to renovate and rewrite some of the conven-
tional multivariate analysis procedures; these needs only get much greater
for “large p small n” situations.

A specific “large p, small n” situation arises when simultaneously testing
a large number of hypotheses which is largely motivated by the identification
of significant genes in microarray and genetic sequence studies. A natural
question is how many hypotheses can be tested simultaneously. This paper
tries to answer this question in the context of two-sample simultaneous tests
for means. Consider two random samples Xi1, . . . ,Xini

∈ Rp for i = 1 and
2 which have means µ1 = (µ11, . . . , µ1p)

T and µ2 = (µ21, . . . , µ2p)
T and co-

variance matrices Σ1 and Σ2, respectively. We consider testing the following
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high-dimensional hypothesis:

H0 :µ1 = µ2 versus H1 :µ1 6= µ2.(1.1)

The hypothesis H0 consists of the p marginal hypotheses H0l :µ1l = µ2l for
l= 1, . . . , p regarding the means on each data dimension.

There have been a series of important studies on the high-dimensional
problem. Van der Laan and Bryan (2001) show that the sample mean of p-
dimensional data can consistently estimate the population mean uniformly
across p dimensions if log(p) = o(n) for bounded random variables. In a ma-
jor generalization, Kosorok and Ma (2007) consider uniform convergence for
a range of univariate statistics constructed for each data dimension which
includes the marginal empirical distribution, sample mean and sample me-
dian. They establish the uniform convergence across p dimensions when
log(p) = o(n1/2) or log(p) = o(n1/3), depending on the nature of the marginal
statistics. Fan, Hall and Yao (2007) evaluate approximating the overall level
of significance for simultaneous testing of means. They demonstrate that
the bootstrap can accurately approximate the overall level of significance if
log(p) = o(n1/3) when the marginal tests are performed based on the nor-
mal or the t-distributions. See also Fan, Peng and Huang (2005) and Huang,
Wang and Zhang (2005) for high-dimensional estimation and testing in semi-
parametric regression models.

In an important work, Bai and Saranadasa (1996) propose using ‖X̄1 −
X̄2‖ to replace (X̄1 − X̄2)

TS−1
n (X̄1 − X̄2) in Hotelling’s T 2-statistic where

X̄1 and X̄2 are the two sample means, Sn is the pooled sample covariance
by assuming Σ1 =Σ2 =Σ and ‖ · ‖ denotes the Euclidean norm in Rp. They
establish the asymptotic normality of the test statistics and show that it has
attractive power property when p/n→ c <∞ and under some restriction on
the maximum eigenvalue of Σ. However, the requirement of p and n being of
the same order is too restrictive to be used in the “large p small n” situation.

To allow simultaneous testing for ultra high-dimensional data, we con-
struct a test which allows p to be arbitrarily large and independent of
the sample size as long as, in the case of common covariance Σ, tr(Σ4) =
o{tr2(Σ2)} where tr(·) is the trace operator of a matrix. The above condition
on Σ is trivially true for any p if either all the eigenvalues of Σ are bounded
or the largest eigenvalue is of smaller order of (p− b)1/2b−1/4 where b is the
number of unbounded eigenvalues. We establish the asymptotic normality of
a test statistic which leads to a two-sample test for high-dimensional data.

Testing significance for gene-sets rather than a single gene is the latest
development in genetic data analysis. A critical need for gene-set testing is to
have a multivariate test that is applicable to a wide range of data dimensions
(the number of genes in a set). It requires P -values for all gene-sets to allow
procedures based on either the Bonferroni correction or the false discovery
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rate [Benjamini and Hochberg (1995)] to take into account the multiplicity
in the test. We demonstrate in this paper how to use the proposed test for
testing significance for gene-sets. An advantage of the proposed test is in its
readily producing P -values of significance for each gene-set under study so
that the multiplicity of multiple testing can be taken into consideration.

The paper is organized as follows. We outline in Section 2 the framework
of the two-sample tests for high-dimensional data and introduce the pro-
posed test statistic. Section 3 provides the theoretical properties of the test.
How to apply the proposed test of significance for gene-sets is demonstrated
in Section 4 which includes an empirical study on an acute lymphoblastic
leukemia data set. Results of simulation studies are reported in Section 5.
All the technical details are given in Section 6.

2. Test statistic. Suppose we have two independent and identically dis-
tributed random samples in Rp,

{Xi1,Xi2, . . . ,Xini
} i.i.d.∼ Fi for i= 1 and 2,

where Fi is a distribution in Rp with mean µi and covariance Σi. A well-
pursued interest in high-dimensional data analysis is to test if the two high-
dimensional populations have the same mean or not namely

H0 :µ1 = µ2 vs. H1 :µ1 6= µ2.(2.1)

The above hypothesis consists of p marginal hypotheses regarding the means
of each data dimension. An important question from the point view of mul-
tiple testing is how many marginal hypotheses can be tested simultaneously.
The works of van der Laan and Bryan (2001), Kosorok and Ma (2007) and
Fan, Hall and Yao (2007) are designed to address the question. The existing

results show that p can reach the rate of eαn
β
for some positive constants α

and β. In establishing a rate of the above form, both van der Laan and Bryan
(2001) and Kosorok and Ma (2007) assume that the marginal distributions
of F1 and F2 are all supported on bounded intervals.

Hotelling’s T 2 test is the conventional test for the above hypothesis when
the dimension p is fixed and is less than n =: n1 + n2 − 2 and when Σ1 =
Σ2 =Σ, say. Its performance for high-dimensional data is evaluated in Bai
and Saranadasa (1996) when p/n → c ∈ [0,1) which reveals a decreasing
power as c gets larger. A reason for this negative effect of high-dimension
is due to having the inverse of the covariance matrix in the T 2 statistic.
While standardizing by the covariance brings benefits for data with a fixed
dimension, it becomes a liability for high-dimensional data. In particular, the
sample covariance matrix Sn may not converge to the population covariance
when p and n are of the same order. Indeed, Yin, Bai and Krishnaiah (1988)
show that when p/n → c, the smallest and the largest eigenvalues of the
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sample covariance Sn do not converge to the respective eigenvalues of Σ. The
same phenomenon, but on the weak convergence of the extreme eigenvalues
of the sample covariance, is found in Tracy and Widom (1996). When p > n,
Hotelling’s T 2 statistic is not defined as Sn may not be invertible.

Our proposed test is motivated by Bai and Saranadasa (1996), who pro-
pose testing hypothesis (2.1) under Σ1 =Σ2 =Σ based on

Mn = (X̄1 − X̄2)
′(X̄1 − X̄2)− τ tr(Sn),(2.2)

where Sn =
1
n

∑2
i=1

∑Ni

j=1(Xij − X̄i)(Xij − X̄i)
′ and τ = n1+n2

n1n2
. The key fea-

ture of the Bai and Saranadasa proposal is removing S−1
n in Hotelling’s T 2

since having S−1
n is no longer beneficial when p/n→ c > 0. The subtraction

of tr(Sn) in (2.2) is to make E(Mn) = ‖µ1−µ2‖2. The asymptotic normality
of Mn was established and a test statistic was formulated by standardizing
Mn with an estimate of its standard deviation.

The following are the main conditions assumed in Bai–Saranadasa’s test:

p/n→ c <∞ and λp = o(p1/2);(2.3)

n1/(n1 + n2)→ k ∈ (0,1) and (µ1 − µ2)
′Σ(µ1 − µ2) = o{tr(Σ2)/n},(2.4)

where λp denotes the largest eigenvalue of Σ.
A careful study of the Mn statistic reveals that the restrictions on p and

n, and on λp in (2.3) are needed to control terms
∑ni

j=1X
′
ijXij , i= 1 and 2,

in ‖X̄1 − X̄2‖2. However, these two terms are not useful in the testing. To
appreciate this point, let us consider

Tn =:

∑n1
i 6=j X

′
1iX1j

n1(n1 − 1)
+

∑n2
i 6=j X

′
2iX2j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1X

′
1iX2j

n1n2

after removing
∑ni

j=1X
′
ijXij for i= 1 and 2 from ‖X̄1 − X̄2‖2. Elementary

derivations show that

E(Tn) = ‖µ1 − µ2‖2.

Hence, Tn is basically all we need for testing. Bai and Saranadasa used tr(Sn)
to offset the two diagonal terms. However, tr(Sn) itself imposes demands on
the dimensionality too.

A derivation in the Appendix shows that under H1 and the condition
in (3.4),

Var(Tn) =

{

2

n1(n1 − 1)
tr(Σ2

1)+
2

n2(n2 − 1)
tr(Σ2

2)+
4

n1n2
tr(Σ1Σ2)

}

{1+o(1)},

where the o(1) term vanishes under H0.
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3. Main results. We assume, like Bai and Saranadasa (1996), the follow-
ing general multivariate model:

Xij = ΓiZij + µi for j = 1, . . . , ni, i= 1 and 2,(3.1)

where each Γi is a p×m matrix for some m≥ p such that ΓiΓ
′
i =Σi, and

{Zij}ni

j=1 are m-variate independent and identically distributed (i.i.d.) ran-

dom vectors satisfying E(Zij) = 0, Var(Zij) = Im, them×m identity matrix.
Furthermore, if we write Zij = (zij1, . . . , zijm)′, we assume E(z4ijk) = 3+∆<
∞, and

E(zα1
ijl1

zα2
ijl2

· · · zαq

ijlq
) =E(zα1

ijl1
)E(zα2

ijl2
) · · ·E(z

αq

ijlq
)(3.2)

for a positive integer q such that
∑q

l=1αl ≤ 8 and l1 6= l2 6= · · · 6= lq. Here
∆ describes the difference between the fourth moments of zijl and N(0,1).
Model (3.1) says that Xij can be expressed as a linear transformation of a
m-variate Zij with zero mean and unit variance that satisfies (3.2). Model
(3.1) is similar to factor models in multivariate analysis. However, instead of
having the number of factors m< p in the conventional multivariate analysis,
we require m≥ p. This is to allow the basic characteristics of the covariance
Σi, for instance its rank and eigenvalues, to not be affected by the trans-
formation. The rank and eigenvalues would be affected if m< p. The fact
that m is arbitrary offers much flexibility in generating a rich collection
of dependence structure. Condition (3.2) means that each Zij has a kind of
pseudo-independence among its components {zijl}ml=1. Obviously, if Zij does
have independent components, then (3.2) is trivially true.

We do not assume Σ1 =Σ2, as it is a rather strong assumption, and most
importantly such an assumption is harder to be verified for high-dimensional
data. Testing certain special structures of the covariance matrix when p and
n are of the same order have been considered in Ledoit and Wolf (2002) and
Schott (2005).

We assume

n1/(n1 + n2)→ k ∈ (0,1) as n→∞,(3.3)

(µ1 − µ2)
′Σi(µ1 − µ2) = o[n−1 tr{(Σ1 +Σ2)

2}] for i= 1 or 2,(3.4)

which generalize (2.4) to unequal covariances. Condition (3.4) is obviously
satisfied under H0 and implies that the difference between µ1 and µ2 is small
relative to n−1 tr{(Σ1+Σ2)

2} so that a workable expression for the variance
of Tn under H0, and the specified local alternative can be derived. It can
be viewed as a high-dimensional version of the local alternative hypotheses.
When p is fixed, if we use a standard test for two population means, for
instance Hotelling’s T 2 test, the local alternative hypotheses has the form
of µ1 − µ2 = τn−1/2 for a nonzero constant vector τ ∈ Rp. Hotelling’s test
has nontrivial power under such local alternatives [Anderson (2003)]. If we
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assume each component of µ1 − µ2 is the same, say δ, then the local alter-
natives imply δ = O(n−1/2) for a fixed p. When the difference is o(n−1/2),
Hotelling’s test has nonpower beyond the level of significance.

To gain insight into (3.4) for high-dimensional situations, let us assume all
the eigen-values of Σi are bounded above from infinity and below away from
zero so that Σi = Ip is a special case of such a regime. Let us also assume,
like above, that each component of µ1 −µ2 is the same as a fixed δ, namely
µ1l − µ2l = δ for l = 1, . . . , p. Then (3.4) implies δ = o(n−1/2) which is a
smaller order than δ =O(n−1/2) for the fixed p case. This can be understood
as the high-dimensional data (p→∞) contain more data information which
allows finer resolution in differentiating the two means in each component
than that in the fixed p case.

To understand the performance of the test when (3.4) is not valid, we
reverse the local alternative condition (3.4) to

n−1 tr{(Σ1 +Σ2)
2}= o{(µ1 − µ2)

′Σi(µ1 − µ2)} for i= 1 or 2,(3.5)

implying that the Mahanalobis distance between µ1 and µ2 is a larger order
than that of n−1 tr{(Σ1+Σ2)

2}. This condition can be viewed as a version of
fixed alternatives. We will establish asymptotic normally of Tn under either
(3.4) or (3.5) in Theorem 1.

The condition we impose on p to replace the first part of (2.3) is

tr(ΣiΣjΣlΣh) = o[tr2{(Σ1 +Σ2)
2}] for i, j, l, h= 1 or 2,(3.6)

as p→∞. To appreciate this condition, consider the case of Σ1 = Σ2 =Σ.
Then (3.6) becomes

tr(Σ4) = o{tr2(Σ2)}.(3.7)

Let λ1 ≤ λ2 ≤ · · · ≤ λp be the eigenvalues of Σ. If all eigenvalues are bounded,
then (3.7) is trivially true. If, otherwise, there are b unbounded eigenvalues
with respect to p, and the remaining p− b eigenvalues are bounded above by
a finite constant M such that (p−b)→∞ and (p−b)λ2

1 →∞, then sufficient
conditions for (3.7) are

λp = o{(p− b)1/2λ1b
−1/4} or λp = o{(p− b)1/4λ

1/2
1 λ

1/2
p−b+1},(3.8)

where b can be either bounded or diverging to infinity, and the smallest
eigen-value λ1 can converge to zero. To appreciate these, we note that

tr(Σ4)

tr2(Σ2)
≤

(p− b)M4 + bλ4
p

(p− b)2λ4
1 + b2λ4

p−b+1 +2(p− b)bλ2
1λ

2
p−b+1

.

Hence, the ratio converges to 0 under either condition in (3.8).
The following theorem establishes the asymptotic normality of Tn.
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Theorem 1. Under the assumptions (3.1), (3.2), (3.3), (3.6) and either
(3.4) or (3.5),

Tn − ‖µ1 − µ2‖2
√

Var(Tn)

d→N(0,1) as p→∞ and n→∞.

The asymptotic normality is attained without imposing any explicit re-
striction between p and n directly. The only restriction on the dimension is
(3.6) or (3.7). As the discussion given just before Theorem 1 suggests, (3.7)
is satisfied provided that the number of divergent eigenvalues of Σ are not
too many, and the divergence is not too fast. The reason for attaining this in
the case of high-data-dimension is because the statistic Tn is univariate, de-
spite the fact that the hypothesis H0 is of high dimension. This is different
from using a high-dimensional statistic. Indeed, Portnoy (1986) considers

the central limit theorem for the p-dimensional sample mean X̄ and finds
that the central limit theorem is not valid if p is not a smaller order of

√
n.

As shown in Section 6.1, Var(Tn) = σ2
n{1 + o(1)} where, under (3.4),

σ2
n =: σ2

n1 =
2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2
tr(Σ1Σ2)(3.9)

and under (3.5),

σ2
n =: σ2

n2 =
4

n1
(µ1 − µ2)

′Σ1(µ1 − µ2) +
4

n2
(µ1 − µ2)

′Σ2(µ1 − µ2).(3.10)

In order to formulate a test procedure based on Theorem 1, σ2
n1 in (3.9) needs

to be estimated. Bai and Saranadasa (1996) used the following estimator for
tr(Σ2) under Σ1 =Σ2 =Σ:

t̂r(Σ2) =
n2

(n+2)(n− 1)

{

trS2
n −

1

n
(trSn)

2

}

.

Motivated by the benefits of excluding terms like
∑ni

j=1X
′
ijXij in the for-

mulation of Tn, we propose the following estimator of tr(Σ2
i ) and tr(Σ1Σ2):

t̂r(Σ2
i ) = {ni(ni − 1)}−1 tr

{

ni
∑

j 6=k

(Xij − X̄i(j,k))X
′
ij(Xik − X̄i(j,k))X

′
ik

}

and

̂tr(Σ1Σ2) = (n1n2)
−1 tr

{

n1
∑

l=1

n2
∑

k=1

(X1l − X̄1(l))X
′
1l(X2k − X̄2(k))X

′
2k

}

,

where X̄i(j,k) is the ith sample mean after excluding Xij and Xik, and X̄i(l)

is the ith sample mean without Xil. These are similar to the idea of cross-
validation, in that when we construct the deviations of Xij and Xik from
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the sample mean, both Xij and Xik are excluded from the sample mean

calculation. By doing so, the above estimators t̂r(Σ2
i ) and

̂tr(Σ1Σ2) can be
written as the trace of sums of products of independent matrices. We also
note that subtraction of only one sample mean per observation is needed in
order to avoid a term like ‖Xij‖4 which is harder to control asymptotically
without an explicit assumption between p and n.

The next theorem shows that the above estimators are ratio-consistent to
tr(Σ2

i ) and tr(Σ1Σ2), respectively.

Theorem 2. Under the assumptions (3.1)–(3.4) and (3.6), for i= 1 or
2,

t̂r(Σ2
i )

tr(Σ2
i )

p→ 1 and
̂tr(Σ1Σ2)

tr(Σ1Σ2)

p→ 1 as p and n→∞.

A ratio-consistent estimator of σ2
n1 under H0 is

σ̂2
n1 =

2

n1(n1 − 1)
t̂r(Σ2

1) +
2

n2(n2 − 1)
t̂r(Σ2

2) +
4

n1n2

̂tr(Σ1Σ2).

This together with Theorem 1 leads to the test statistic,

Qn = Tn/σ̂n1
d→N(0,1) as p and n→∞,

under H0. The proposed test with an α level of significance rejects H0 if
Qn > ξα where ξα is the upper α quantile of N(0,1).

Theorems 1 and 2 allow us to discuss the power properties of the proposed
test. The discussion is made under (3.4) and (3.5), respectively. The power
under the local alternative (3.4) is

βn1(‖µ1 − µ2‖) = Φ

(

−ξα +
nk(1− k)‖µ1 − µ2‖2
√

2 tr{Σ̃(k)2}

)

,(3.11)

where Σ̃(k) = (1 − k)Σ1 + kΣ2 and Φ is the standard normal distribution
function. The power of Bai–Saranadasa test has the same form if Σ1 = Σ2

and if p and n are of the same order.
The power under (3.5) is

βn2(‖µ1 − µ2‖) = Φ

(

−σn1
σn2

ξα +
‖µ1 − µ2‖2

σn1

)

=Φ

(‖µ1 − µ2‖2
σn1

)

as σn1/σn2 → 0. Substitute the expression for σn1, and we have

βn2(‖µ1 − µ2‖) = Φ

(

nk(1− k)‖µ1 − µ2‖2
√

2 tr{Σ̃(k)2}

)

.(3.12)
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Both (3.11) and (3.12) indicate that the proposed test has nontrivial
power under the two cases of the alternative hypothesis as long as

n‖µ1 − µ2‖2/
√

tr{Σ̃(k)2}

does not vanish to 0 as n and p → ∞. The flavor of the proposed test
is different from tests formulated by combining p marginal tests on H0l

[defined after (1.1)] for l= 1, . . . , p. The test statistics of such tests are usually
constructed via max1≤l≤p Tnl where Tnl is a marginal test statistic for H0l.
This is the case of Kosorok and Ma (2007) and Fan, Hall and Yao (2007). A
condition on p and n is needed to ensure (i) the convergence of max1≤l≤p Tnl,
and (ii) p can reach an order of exp(αnβ) for positive constants α and
β. Usually some additional assumptions are needed; for instance, Kosorok
and Ma (2007) assume each component of the random vector has compact
support for testing means.

Naturally, if the number of significant univariate hypotheses (µ1l 6= µ2l)
is a lot less than p, which is the so-called sparsity scenario, a simultane-
ous test like the one we propose may encounter a loss of power. This is
actually quantified by the power expression (3.11). Without loss of general-

ity, suppose that each µi can be partitioned as (µ
(1)′

i , µ
(2)′

i )′ so that under

H1 :µ
(1)
1 = µ

(1)
2 and µ

(2)
1 6= µ

(2)
2 where µ

(1)
i is of p1-dimensional and µ

(2)
i is

of p2-dimensional and p1 + p2 = p. Then ‖µ1 − µ2‖= p2δ
2 for some positive

constant δ2. Suppose that λm0 be the smallest nonzero eigenvalue of Σ̃(k).
Then under the local alternative (3.4), the asymptotic power is bounded
above and below by

Φ

(

−ξα +
nk(1− k)p2δ

2

√
2pλp

)

≤ β(‖µ1 − µ2‖)≤Φ

(

−ξα +
nk(1− k)p2δ

2

√

2(p−m0)λm0

)

.

If p is very large relative to n and p2 under both high-dimensionality and
sparsity, so that nk(1− k)p2η

2/
√

2(p−m0)→ 0, the test could endure low
power. With this in mind, we check on the performance of the test under
sparsity in simulation studies in Section 5. The simulations show that the
proposed test has a robust power and is in fact more powerful than tests
based on multiple comparisons with either the Bonferroni or false discovery
rate (FDR) procedures. We note here that, due to the multivariate nature
of the test and the hypothesis, the proposed test cannot identify which
components are significant after the null multivariate hypothesis is rejected.
Additional follow-up procedures have to be employed for that purpose. The
proposed test becomes very useful when the purpose is to identify significant
groups of components like sets of genes, as illustrated in Section 4. The above
discussion can be readily extended to the case of (3.5) due to the similarity
in the two power functions.
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The proposed two-sample test can be modified for paired observations
{(Yi1, Yi2)}ni=1 where Yi1 and Yi2 are two measurements of p-dimensions on
a subject i before and after a treatment. Let Xi = Yi2 − Yi1, µ=E(Xi) and
Σ =Var(Xi). This is effectively a one-sample problem with high-dimensional
data. The hypothesis of interest is

H0 :µ= 0 vs. H1 :µ 6= 0.

We can use Fn =
∑n

i 6=j X
′
iXj/{n(n − 1)} as the test statistic. It is read-

ily shown that E(Fn) = µ′µ and Var(Fn) =
2

n(n−1) tr(Σ
2
1){1 + o(1)} under

both H0 and H1 if we assume a condition similar to (3.4) so that µ′Σµ=
o{n−1 tr(Σ2)}, and the asymptotic normality of Fn by adding tr(Σ4) =
o{tr2(Σ2)}, a variation of (3.6), can be established by utilizing part of
the proof on the asymptotic normality of Tn. The tr(Σ2) can be ratio-

consistently estimated with n1 replaced by n in t̂r(Σ2
1) which leads to a

ratio-consistent variance estimation for Fn. Then the test and its power can
be written out in similar ways as those for the two-sample test.

When p = O(1), which may be viewed as having finite dimension, the
asymptotic normality as conveyed in Theorem 1 may not be valid any-
more. It may be shown under conditions (3.1)–(3.4) without (3.6), as con-
dition (3.6) is no longer relevant when p is bounded, that the test statistic

(n1+n2)Tn converges to
∑2p

l=1 ηlχ
2
1,l where {χ2

1,l}
2p
l=1 are independent χ

2
1 dis-

tributed random variables, and {ηl}2pl=1 is a set of constants. The conclusion
of Theorem 2 remains valid when p is bounded. The proposed test can still
be used for testing in this situation of bounded dimension with estimated
critical values via estimation of {ηl}2pl=1. However, people may like to use a
test specially catered for such a case such as, for instance, Hotelling’s test.

4. Gene-set testing. Identifying sets of genes which are significant with
respect to certain treatments is the latest development in genetics research
[see Barry, Nobel and Wright (2005), Recknor, Nettleton and Reecy (2008),
Efron and Tibshrini (2007) and Newton et al. (2007)]. Biologically speaking,
each gene does not function individually in isolation. Rather, one gene tends
to work with other genes to achieve certain biological tasks.

Suppose that S1, . . . ,Sq be q sets of genes, where the gene-set Sg consists
of pg genes. Let F1Sg and F2Sg be the distribution functions corresponding
to Sg under the treatment and control, and µ1Sg and µ2Sg be their respective
means. The hypothesis of interest is

H0g :µ1Sg = µ2Sg for g = 1, . . . , q.

The gene sets {Sg}qg=1 can overlap as a gene can belong to several functional
groups, and pg, the number of genes in a set, can range from a moderate
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to a very large number. So, there are issues of both multiplicity and high-
dimensionality in gene-set testing.

We propose applying the proposed test for the significance of each gene-
set Sg when pg is large. When pg is of low-dimension, Hotelling’s test may
be used. Let pvg, g = 1, . . . , q be the P -values obtained from these tests.
To control the overall family-wise error rate, we can employ the Bonferroni
procedure; to control FDR, we can use Benjamini and Hochberg’s (1995)
method or its variations as in Benjamini and Yekutieli (2001) and Storey,
Taylor and Siegmund (2004). These lead to control of the family-wise error
rate or FDR in the context of gene-sets testing. In contrast, tests based on
univariate testing have difficulties in producing P -values for gene-sets.

Acute lymphoblastic leukemia (ALL) is a form of leukemia, a cancer of
white blood cells. The ALL data [Chiaretti et al. (2004)] contains microar-
ray expressions for 128 patients with either T-cell or B-cell type leukemia.
Within the B-cell type leukemia, there are two sub-classes representing two
molecular classes: the BCR/ABL class and NEG class. The data set has
been analyzed by Dudoit, Keles and van der Laan (2008) using a different
technology.

Gene-sets are technically defined in gene ontology (GO) system that pro-
vides structured and controlled vocabularies producing names of gene-sets
(also called GO terms). There are three groups of gene ontologies of interest:
biological processes (BP), cellular components (CC) and molecular functions
(MF). We carried out preliminary screening for gene-filtering using the ap-
proach in Gentleman et al. (2005), which left 2391 genes for analysis. There
are 575 unique GO terms in BP category, 221 in MF and 154 in CC for the
ALL data. The largest gene-set contains 2059 genes in BP, 2112 genes in MF
and 2078 genes in CC; and the GO terms of the three categories share 1861
common genes. We are interested in detecting differences in the expression
levels of gene-sets between the BCR/ABL molecular sub-class (n1 = 37) and
the NEG molecular sub-class (n2 = 42) for each of the three categories.

We applied the proposed two-sample test with a 5% significance level to
test each of the gene-sets in conjunction with the Bonferroni correction to
control the family-wise error rate at 0.05 level. It was found that there were
259 gene-sets declared significant in the BP group, 110 in the MF group
and 53 in the CC group. Figure 1 displays the histograms of the P -values
and the values of test statistic Qn for the three gene-categories. It shows
a strong nonuniform distribution of the P -values with a large number of
P -values clustered near 0. At the same time, the Qn-value plots indicate
the average Qn-values are much larger than zero. These explain the large
number of significant gene-sets detected by the proposed test.

The number of the differentially expressed gene-sets may seem to be high.
This was mainly due to overlapping gene-sets. To appreciate this point, we
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Fig. 1. Two-sample tests for differentially expressed gene-sets between BCR/ABL and
NEG class ALL: histograms of P -values (left panels) and Qn-values (right panels) for BP,
CC and MF gene categories.

computed for each (say ith) significant gene-set, the number of other signif-
icant gene-sets which overlapped with it, say bi; and obtained the average
of {bi} and their standard deviation. The average number of overlaps (stan-
dard deviation) for BP group was 198.9 (51.3), 55.6 (25.2) for MF and 41.6
(9.5) for CC. These number are indeed very high and reveals the gene-sets
and their P -values are highly dependent.

Finally, we carried out back-testing for the same hypothesis by randomly
splitting the 42 NEG class into two sub-classes of equal sample size and
testing for mean differences. This set-up led to the situation of H0. Figure 2
reports the P -values and Qn-values for the three gene ontology groups. We
note that the distributions of the P -values are much closer to the uniform
distribution than Figure 1. It is observed that the histograms of Qn-values
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Fig. 2. Back-testing for differentially expressed gene-sets between two randomly assigned
NEG groups: histograms of P -values (left panels) and Qn-values (right panels) for BP,
CC and MF gene categories.

are centered close to zero and are much closer to the normal distribution
than their counterparts in Figure 1 which is reassuring.

5. Simulation studies. In this section, we report results from simulation
studies which were designed to evaluate the performance of the proposed
two-sample tests for high-dimensional data. For comparison, we also con-
ducted the test proposed by Bai and Saranadasa (1996) (BS test), and two
tests based on multiple comparison procedures by employing the Bonferroni
and the FDR control [Benjamini and Hochberg (1995)]. The procedure con-
trols the family-wise error rate at a level of significance α which coincides
with the significance for the FDR control, the proposed test and the BS test.
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In the two multiple comparison procedures, we conducted univariate two-
sample t-tests for the univariate hypotheses H0l :µ1l = µ2l vs H1l :µ1l 6= µ2l

for l= 1,2, . . . , p.
Two simulation models for Xij are considered. One has a moving average

structure that allows a general dependent structure; the other could allocate
the the alternative hypotheses sparsely which enables us to evaluate the
performance of the tests under sparsity.

5.1. Moving average model. The first simulation model has the following
moving average structure:

Xijk = ρ1Zijk + ρ2Zijk+1 + · · ·+ ρpZijk+p−1 + µij

for i= 1 and 2, j = 1,2, . . . , ni and k = 1,2, . . . , p where {Zijk} are, respec-
tively, i.i.d. random variables. We consider two distributions for the inno-
vations {Zijk}. One is a centralized Gamma(4,1) so that it has zero mean,
and the other is N(0,1).

For each distribution of {Zijk}, we consider two configurations of depen-
dence among components of Xij . One has weaker dependence with ρl = 0
for l > 3. This prescribes a “two dependence” moving average structure
where Xijk1 and Xijk2 are dependent only if |k1 − k2| ≤ 2. The {ρl}3l=1 are
generated independently from U(2,3) which are ρ1 = 2.883, ρ2 = 2.794 and
ρ3 = 2.849 and are kept fixed throughout the simulation. The second configu-
ration has all ρl’s generated from U(2,3), and again remain fixed throughout
the simulation. We call this the “full dependence case.” The above depen-
dence structures assigns equal covariance matrices Σ1 =Σ2 =Σ and allows
a meaningful comparison with the BS test.

Without loss of generality, we fix µ1 = 0 and choose µ2 in the same fash-
ion as Benjamini and Hochberg (1995). Specifically, the percentage of true
null hypotheses µ1l = µ2l for l = 1, . . . , p were chosen to be 0%, 25%, 50%,
75%, 95% and 99% and 100%, respectively. By experimenting with 95%
and 99% we gain information on the performance of the test when µ1l 6= µ2l

are sparse. It provides empirical checks on the potential concerns of the
power of the simultaneous high-dimensional tests as made at the end of
Section 3. At each percentage level of true null, three patterns of alloca-
tion are considered for the nonzero µ2l in µ2 = (µ21, . . . , µ2p)

′: (i) the equal
allocation where all the nonzero µ2l are equal; (ii) linearly increasing and
(iii) linearly decreasing allocations as specified in Benjamini and Hochberg
(1995). To make the power comparable among the configurations of H1,

we set η =: ‖µ1 − µ2‖2/
√

tr(Σ2) = 0.1 throughout the simulation. We chose
p= 500 and 1000 and n= [20 log(p)] = 124 and 138, respectively.

Tables 1 and 2 report the empirical power and size of the four tests with
Gamma innovations at a 5% nominal significance level or family-wise error
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Table 1

Empirical power and size for the 2-dependence model with Gamma innovation

Type of

allocation

p= 500, n = 124 p= 1000, n = 138

% of true null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% 0.511 0.399 0.13 0.16 0.521 0.413 0.11 0.16
25% 0.521 0.387 0.14 0.16 0.518 0.410 0.12 0.16
50% 0.513 0.401 0.13 0.17 0.531 0.422 0.12 0.17
75% 0.522 0.389 0.13 0.18 0.530 0.416 0.11 0.17
95% 0.501 0.399 0.14 0.16 0.500 0.398 0.13 0.17
99% 0.499 0.388 0.13 0.15 0.507 0.408 0.15 0.18

100% (size) 0.043 0.043 0.040 0.041 0.043 0.042 0.042 0.042

Increasing 0% 0.520 0.425 0.11 0.13 0.522 0.409 0.12 0.15
25% 0.515 0.431 0.12 0.15 0.523 0.412 0.14 0.16
50% 0.512 0.412 0.13 0.15 0.528 0.421 0.15 0.17
75% 0.522 0.409 0.15 0.17 0.531 0.431 0.16 0.19
95% 0.488 0.401 0.14 0.15 0.500 0.410 0.15 0.17
99% 0.501 0.409 0.15 0.17 0.511 0.412 0.15 0.16

100% (size) 0.042 0.041 0.040 0.041 0.042 0.040 0.039 0.041

Decreasing 0% 0.522 0.395 0.11 0.15 0.533 0.406 0.09 0.15
25% 0.530 0.389 0.11 0.15 0.530 0.422 0.11 0.17
50% 0.528 0.401 0.12 0.17 0.522 0.432 0.12 0.17
75% 0.533 0.399 0.13 0.18 0.519 0.421 0.12 0.17
95% 0.511 0.410 0.12 0.15 0.508 0.411 0.15 0.18
99% 0.508 0.407 0.14 0.15 0.507 0.418 0.16 0.17

100% (size) 0.041 0.042 0.041 0.042 0.042 0.040 0.040 0.042

rate or FDR based on 5000 simulations. The results for the normal inno-
vations have a similar pattern, and are not reported here. The simulation
results in Tables 1 and 2 can be summarized as follows. The proposed test
is much more powerful than the Bai–Saranadasa test for all cases consid-
ered in the simulation while maintaining a reasonably-sized approximation
to the nominal 5% level. Both the proposed test and the Bai–Saranadasa
test are more powerful than the two tests based on the multiple univariate
testing using the Bonferroni and FDR procedures. This is expected as both
the proposed and Bai–Saranadasa test are designed to test for the entire
p-dimensional hypotheses while the multiple testing procedures are targeted
at the individual univariate hypothesis. What is surprising is that when the
percentage of true null is high, at 95% and 99%, the proposed test still is
much more powerful than the two multiple testing procedures for all three
allocations of the nonzero components in µ2. It is observed that the sparsity
(95% and 99% true null) does reduce the power of the proposed test a little.
However, the proposed test still enjoys good power, especially when com-
pared with the other three tests. We also observe that when there is more
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Table 2

Empirical power and size for the full-dependence model with Gamma innovation

Type of

allocation

p= 500, n = 124 p= 1000, n = 138

% of true null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% 0.322 0.120 0.08 0.10 0.402 0.216 0.09 0.11
25% 0.318 0.117 0.08 0.10 0.400 0.218 0.08 0.11
50% 0.316 0.115 0.09 0.11 0.409 0.221 0.09 0.10
75% 0.307 0.113 0.10 0.12 0.410 0.213 0.09 0.13
95% 0.233 0.128 0.11 0.14 0.308 0.215 0.10 0.13
99% 0.225 0.138 0.12 0.15 0.316 0.207 0.11 0.12

100% (size) 0.041 0.041 0.043 0.043 0.042 0.042 0.040 0.041

Increasing 0% 0.331 0.121 0.09 0.12 0.430 0.225 0.10 0.11
25% 0.336 0.119 0.10 0.12 0.423 0.231 0.12 0.12
50% 0.329 0.123 0.12 0.14 0.422 0.226 0.13 0.14
75% 0.330 0.115 0.12 0.15 0.431 0.222 0.14 0.15
95% 0.219 0.120 0.12 0.13 0.311 0.218 0.14 0.15
99% 0.228 0.117 0.13 0.15 0.315 0.217 0.15 0.17

100% (size) 0.041 0.040 0.042 0.043 0.042 0.042 0.040 0.042

Decreasing 0% 0.320 0.117 0.08 0.11 0.411 0.213 0.08 0.10
25% 0.323 0.119 0.09 0.11 0.408 0.210 0.08 0.11
50% 0.327 0.120 0.11 0.12 0.403 0.208 0.09 0.10
75% 0.322 0.122 0.12 0.12 0.400 0.211 0.12 0.13
95% 0.217 0.109 0.12 0.15 0.319 0.207 0.12 0.15
99% 0.224 0.111 0.13 0.16 0.327 0.205 0.11 0.13

100% (size) 0.042 0.043 0.039 0.041 0.042 0.211 0.040 0.041

dependence among multivariate components of the data vectors in the full
dependence model, there is a drop in the power for each of the tests. The
power of the tests based on the Bonferroni and FDR procedures is alarmingly
low and is only slightly larger than the nominal significance level.

We also collected information on the quality of tr(Σ2) estimation. Table

3 reports empirical averages and standard deviation of t̂r(Σ2)/ tr(Σ2). It
shows that the proposed estimator for tr(Σ2) has a much smaller bias and
standard deviation than those proposed in Bai and Saranadasa (1996) in all
cases, and provides an empirical verification for Theorem 2.

5.2. Sparse model. An examination of the previous simulation setting
reveals that the strength of the “signals” µ2l − µ1l corresponding to the al-
ternative hypotheses are low relative to the level of noise (variance) which
may not be a favorable situation for the two tests based on multiple univari-
ate testing. To gain more information on the performance of the tests under
sparsity, we consider the following simulation model such that

X1il = Z1il and X2il = µl +Z2il for l= 1, . . . , p,
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Table 3

Empirical averages of t̂r(Σ2)/ tr(Σ2) with standard deviations in the parentheses

Type of

innovation

Type of

dependence

p= 500, n = 124

NEW BS tr(Σ2)

Normal 2-dependence 1.03 (0.015) 1.39 (0.016) 3102
Full-dependence 1.008 (0.00279) 1.17 (0.0032) 35,911

Gamma 2-dependence 1.03 (0.006) 1.10 (0.007) 14,227
Full-dependence 1.108 (0.0019) 1.248 (0.0017) 152,248

p= 1000, n= 138

Normal 2-dependence 0.986 (0.0138) 1.253 (0.0136) 6563
Full-dependence 0.995 (0.0026) 1.072 (0.0033) 76,563

Gamma 2-dependence 1.048 (0.005) 1.138 (0.006) 32,104
Full-dependence 1.088 (0.00097) 1.231 (0.0013) 325,879

where {Z1il,Z2il}pl=1 are mutually independent N(0,1) random variables,
and the “signals,”

µl = ε
√

2 log(p) for l= 1, . . . , q = [pc] and µl = 0 for l > q,

for some c ∈ (0,1). Here q is the number of significant alternative hypotheses.
The sparsity of the hypotheses is determined by c: the smaller the c is, the
more sparse the alternative hypotheses with µl 6= 0. This simulation model
is similar to the one used in Abramovich et al. (2006).

According to (3.11), the power of the proposed test has the asymptotic
power

β(‖µ‖) = Φ

(

−ξα +
np(c−1/2)ε2 log(p)

2
√
2

)

,

which indicates that the test has a much reduced power if c < 1/2 with
respect to p. We, therefore, chose p= 1000 and c= 0.25,0.35,0.45 and 0.55,
respectively, which leads to q = 6,11,22, and 44, respectively. We call c =
0.25,0.35 and 0.45 the sparse cases.

In order to prevent trivial powers of α or 1 in the simulation, we set
ε = 0.25 for c = 0.25 and 0.45; and ε= 0.15 for c= 0.35 and 0.55. Table 4
summarizes the simulations results based on 500 simulations. It shows that
in the extreme sparse cases of c= 0.25, the FDR and Bonferroni tests have
lower power than the proposed test. The power is largely similar among the
three tests for c= 0.35. However, when the sparsity is moderated to c= 0.45,
the proposed test starts to surpass the FDR and Bonferroni procedures. The
gap in power performance is further increased when c= 0.55. Table 5 reports
the quality of the variance estimation in Table 5 which shows the proposed
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Table 4

Empirical power and size for the sparse model

ε= 0.25 ε= 0.15

c= 0.25 c= 0.45 c= 0.35 c= 0.55
Sample size

(n1 = n2) Methods Power Size Power Size Power Size Power Size

10 FDR 0.084 0.056 0.180 0.040 0.044 0.034 0.066 0.034
Bonf 0.084 0.056 0.170 0.040 0.044 0.034 0.062 0.032
New 0.100 0.046 0.546 0.056 0.072 0.064 0.344 0.064

20 FDR 0.380 0.042 0.855 0.044 0.096 0.036 0.326 0.058
Bonf 0.368 0.038 0.806 0.044 0.092 0.034 0.308 0.056
New 0.238 0.052 0.976 0.042 0.106 0.052 0.852 0.046

30 FDR 0.864 0.042 1 0.060 0.236 0.048 0.710 0.038
Bonfe 0.842 0.038 0.996 0.060 0.232 0.048 0.660 0.038
New 0.408 0.050 0.998 0.058 0.220 0.054 0.988 0.042

variance estimators incur very little bias and variance for even very small
sample sizes of n1 = n2 = 10.

6. Technical details.

6.1. Derivations for E(Tn) and Var(Tn). As

Tn =

∑n1
i 6=j X

′
1iX1j

n1(n1 − 1)
+

∑n2
i 6=j X

′
2iX2j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1X

′
1iX2j

n1n2
,

it is straightforward to show that E(Tn) = µ′
1µ1+µ′

2µ2−2µ′
1µ2 = ‖µ1−µ2‖2.

Let P1 =
∑n1

i6=j
X′

1iX1j

n1(n1−1) , P2 =
∑n2

i6=j
X′

2iX2j

n2(n2−1) and P3 = −2
∑n1

i=1

∑n2
j=1 X

′
1iX2j

n1n2
. It

can be shown that

Var(P1) =
2

n1(n1 − 1)
tr(Σ2

1) +
4µ′

1Σ1µ1

n1
,

Table 5

Average ratios of σ̂2
M/σ2

M and their standard deviation (in parenthesis) for the sparse
model

ε= 0.25 ε= 0.15

Sample size True σ
2

M c= 0.25 c= 0.45 c= 0.35 c= 0.55

n1 = n2 = 10 84.4 1.003 (0.0123) 1.005 (0.0116) 0.998 (0.0120) 0.999 (0.0110)
n1 = n2 = 20 20.5 1.003 (0.0033) 1.000 (0.0028) 1.003 (0.0028) 1.002 (0.0029)
n1 = n2 = 30 9.0 0.996 (0.0013) 0.998 (0.0013) 1.004 (0.0014) 0.999 (0.0013)
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Var(P2) =
2

n2(n2 − 1)
tr(Σ2

2) +
4µ′

2Σ2µ2

n2

and

Var(P3) =
4

n1n2
tr(Σ1Σ2) +

4µ′
2Σ1µ2

n1
+

4µ′
1Σ2µ1

n2
.

Because the two samples are independent, Cov(P1, P2) = 0. Also,

Cov(P1, P3) =−4µ′
1Σ1µ2

n1
and Cov(P2, P3) =−4µ′

1Σ2µ2

n2
.

In summary,

Var(Tn) =
2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2
tr(Σ1Σ2)

+
4

n1
(µ1 − µ2)

′Σ1(µ1 − µ2) +
4

n2
(µ1 − µ2)

′Σ2(µ1 − µ2).

Thus, under H0,

Var(Tn) = σ2
n1 =:

2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2
tr(Σ1Σ2).

Under H1 :µ1 6= µ2, with (3.4),

Var(Tn) = σ2
n1{1 + o(1)};

and with (3.5),

Var(Tn) = σ2
n2{1 + o(1)},

where σn2 =
4
n1
(µ1 − µ2)

′Σ1(µ1 − µ2) +
4
n2
(µ1 − µ2)

′Σ2(µ1 − µ2).

6.2. Asymptotic normality of Tn. We note that Tn = Tn1 + Tn2 where

Tn1 =

∑n1
i 6=j(X1i − µ1)

′(X1j − µ1)

n1(n1 − 1)
+

∑n2
i 6=j(X2i − µ2)

′(X2j − µ2)

n2(n2 − 1)
(6.1)

− 2

∑n1
i=1

∑n2
j=1(X1i − µ1)

′(X2j − µ2)

n1n2

and

Tn2 =
2
∑n1

i=1(X1i − µ1)
′(µ1 − µ2)

n1
+

2
∑n2

i=1(X2i − µ2)
′(µ2 − µ1)

n2

+ µ′
1µ1 + µ′

2µ2 − 2µ′
1µ2.

It is easy to show that E(Tn1) = 0 and E(Tn2) = ‖µ1 − µ2‖2, and
Var(Tn2) = 4n−1

1 (µ1 − µ2)
′Σ1(µ1 − µ2) + 4n−1

2 (µ2 − µ1)
′Σ2(µ2 − µ1).
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Under (3.4), as

Var

(

Tn2 − ‖µ1 − µ2‖2
σn1

)

= o(1),

(6.2)
Tn − ‖µ1 − µ2‖2
√

Var(Tn)
=

Tn1

σn1
+ op(1).

Under (3.5),

Tn −‖µ1 − µ2‖2
√

Var(Tn)
=

Tn2 −‖µ1 − µ2‖2
σn2

+ op(1).(6.3)

As Tn2 are independent sample averages, its asymptotic normality is read-
ily attainable as shown later. The main task of the proof is for the case under
(3.4) when Tn1 is the contributor of the asymptotic distribution. From (6.1),
in the derivation for the asymptotic normality of Tn1, we can assume without
loss of generality that µ1 = µ2 = 0.

Let Yi =X1i for i = 1, . . . , n1 and Yj+n1 =X2j for j = 1, . . . , n2, and for
i 6= j

φij =















n−1
1 (n1 − 1)−1Y ′

i Yj , if i, j ∈ {1,2, . . . , n1},
−n−1

1 n−1
2 Y ′

i Yj , if i ∈ {1,2, . . . , n1}
and j ∈ {n1 +1, . . . , n1 + n2},

n−1
2 (n2 − 1)−1Y ′

i Yj , if i, j ∈ {n1 + 1, . . . , n1 + n2}.

Define Vnj =
∑j−1

i=1 φij for j = 2,3, . . . , n1 + n2, Snm =
∑m

j=2Vnj and Fnm =

σ{Y1, Y2, . . . , Ym} which is the σ algebra generated by {Y1, Y2, . . . , Ym}. Now

Tn = 2

n1+n2
∑

j=2

Vnj .

Lemma 1. For each n, {Snm,Fnm}nm=1 is the sequence of zero mean and
a square integrable martingale.

Proof. It’s obvious that Fnj−1 ⊆Fnj , for any 1≤ j ≤ n and Snm is of
zero mean and square integrable. We only need to show E(Snq|Fnm) = Snm

for any q ≥m. We note that if j ≤m≤ n, then E(Vnj |Fnm) =
∑j−1

i=1 E(φij |Fnm) =
∑j−1

i=1 φij = Vnj . If j >m, then E(φij |Fnm) =E(Y ′
i Yj|Fnm).

If i >m, as Yi and Yj are both independent of Fnm,

E(φij |Fnm) =E(φij) = 0.

If i≤m,E(φij |Fn,m) =E(Y ′
i Yj|Fn,m) = Y ′

iE(Yj) = 0. Hence,

E(Vnj |Fn,m) = 0.
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In summary, for q > m, E(Snq|Fnm) =
∑q

j=1E(Vnj |Fnm) =
∑m

j=1 Vnj =
Snm. This completes the proof of the lemma. �

Lemma 2. Under condition (3.4),
∑n1+n2

j=2 E[V 2
nj |Fn,j−1]

σ2
n1

P→ 1

4
.

Proof. Note that

E(V 2
nj |Fnj−1) =E

{(

j−1
∑

i=1

Y ′
i Yj

)2∣
∣

∣

∣

Fnj−1

}

=E

(

j−1
∑

i1,i2=1

Y ′
i1YjY

′
jYi2

∣

∣

∣

∣

Fnj−1

)

=

j−1
∑

i1,i2=1

Y ′
i1E(YjY

′
j |Fnj−1)Yi2 =

j−1
∑

i1,i2=1

Y ′
i1E(YjY

′
j )Yi2

=

j−1
∑

i1,i2=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2 ,

where Σ̃j = Σ1, ñj = n1, for j ∈ [1, n1] and Σ̃j =Σ2, ñj = n2, if j ∈ [n1 + 1,
n1 + n2].

Define

ηn =

n1+n2
∑

j=2

E(V 2
nj |Fnj−1).

Then

E(ηn) =
tr(Σ2

1)

2n1(n1 − 1)
+

tr(Σ2
2)

2n2(n2 − 1)
+

tr(Σ1Σ2)

(n1 − 1)(n2 − 1)
(6.4)

=
1

4
σ2
n1
{1 + o(1)}.

Now consider

E(η2n) = E

{

n1+n2
∑

j=2

j−1
∑

i1,i2=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2

}2

= E

{

2

n1+n2
∑

2≤j1<j2

j1−1
∑

i1,i2=1

j2−1
∑

i3,i4=1

Y ′
i1

Σ̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

Σ̃j2

ñj2(ñj2 − 1)
Yi4

(6.5)

+

n1+n2
∑

j=2

j−1
∑

i1,i2=1

j−1
∑

i3,i4=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2Y

′
i3

Σ̃j

ñj(ñj − 1)
Yi4

}

= 2E(A) +E(B), say,
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where

A=

n1+n2
∑

2≤j1<j2

j1−1
∑

i1,i2=1

j2−1
∑

i3,i4=1

Y ′
i1

Σ̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

Σ̃j2

ñj2(ñj2 − 1)
Yi4 ,

(6.6)

B =

n1+n2
∑

j=2

j−1
∑

i1,i2=1

j−1
∑

i3,i4=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2Y

′
i3

Σ̃j

ñj(ñj − 1)
Yi4 .

Derivations given in Chen and Qin (2008) show

2E(A) =

{

tr2(Σ2
1)

4n2
1(n1 − 1)2

+
tr2(Σ2

2)

4n2
2(n2 − 1)2

+
tr(Σ2

1) tr(Σ1Σ2)

n2
1(n1 − 1)(n2 − 1)

+
tr(Σ2

2) tr(Σ1Σ2)

(n1 − 1)n2(n2 − 1)
+

tr2(Σ2Σ1)

n1n2(n1 − 1)(n2 − 1)

+
tr(Σ2

1) tr(Σ
2
2)

2n1(n1 − 1)n2(n2 − 1)

}

{1 + o(1)},

and E(B) = o(σ2
n1
). Hence, from (6.5) and (6.6),

E(η2n) =

{

tr2(Σ2
1)

4n2
1(n1 − 1)2

+
tr2(Σ2

2)

4n2
2(n2 − 1)2

+
tr(Σ2

1) tr(Σ1Σ2)

n2
1(n1 − 1)(n2 − 1)

+
tr(Σ2

2) tr(Σ1Σ2)

(n1 − 1)n2(n2 − 1)
+

tr2(Σ2Σ1)

n1n2(n1 − 1)(n2 − 1)
(6.7)

+
tr(Σ2

1) tr(Σ
2
2)

2n1(n1 − 1)n2(n2 − 1)

}

+ o(σ4
n1
).

Based on (6.4) and (6.7),

Var(ηn) =E(η2n)−E2(ηn) = o(σ4
n1
).(6.8)

Combine (6.4) and (6.8), and we have

σ−2
n1

E

{

n1+n2
∑

j=1

E(V 2
nj |Fn,j−1)

}

= σ−2
n1

E(ηn) =
1

4

and

σ−4
n1

Var

{

n1+n2
∑

j=1

E(V 2
nj |Fn,j−1)

}

= σ−4
n1

Var(ηn) = o(1).

This completes the proof of Lemma 2. �
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Lemma 3. Under condition (3.4),

n1+n2
∑

j=2

σ−2
n1

E{V 2
njI(|Vnj |> ǫσn1)|Fnj−1}

p−→ 0.

Proof. We note that
n1+n2
∑

j=2

σ−2
n1

E{V 2
njI(|Vnj |> ǫσn1)|Fnj−1} ≤ σ−q

n1
ǫ2−q

n1+n2
∑

j=1

E(V q
nj |Fnj−1),

for some q > 2. By choosing q = 4, the conclusion of the lemma is true if we
can show

E

{

n1+n2
∑

j=2

E(V 4
nj |Fnj−1)

}

= o(σ4
n1
).(6.9)

We notice that

E

{

n1+n2
∑

j=2

E(V 4
nj |Fnj−1)

}

=

n1+n2
∑

j=2

E(V 4
nj) =O(n−8)

n1+n2
∑

j=2

E

(

j−1
∑

i=1

φij

)4

The last term can be decomposed as 3Q+P where

Q=O(n−8)

n1+n2
∑

j=2

j−1
∑

s 6=t

E(Y ′
jYsY

′
sYjY

′
jYtY

′
t Yj)

and P = O(n−8)
∑n1+n2

j=2

∑j−1
s=1E(Y ′

sYj)
4. Now (6.9) is true if 3Q + P =

o(σ4
n1
).

Note that

Q=O(n−8)

n1+n2
∑

j=2

j−1
∑

s 6=t

E{tr(YjY
′
jYtY

′
t YjY

′
jYsY

′
s)}

=O(n−4)

{

n1
∑

j=2

j−1
∑

s 6=t

E(Y ′
jΣ1YjY

′
jΣ1Yj) +

n1+n2
∑

j=n1+1

j−1
∑

s 6=t

E(Y ′
jΣtYjY

′
jΣsYj)

}

= o(σ4
n1
).

The last equation follows the similar procedure in Lemma 2 under (3.4).

It remains to show that P = O(n−8)
∑n1+n2

j=2

∑j−1
s=1E(Y ′

sYj)
4 = o(σ4

n1
).

Note that

P =O(n−8)

n1+n2
∑

j=2

j−1
∑

s=1

E(Y ′
sYj)

4
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=O(n−8)

n1
∑

j=2

j−1
∑

s=1

E(Y ′
sYj)

4 +O(n−8)

n1+n2
∑

j=n1+1

j−1
∑

s=1

E(Y ′
sYj)

4

=O(n−8)

{

n1
∑

j=2

j−1
∑

s=1

E(X ′
1sX1j)

4 +

n1+n2
∑

j=n1+1

n1
∑

s=1

E(X ′
1sX2j−n1)

4

+

n1+n2
∑

j=n1+1

j−1
∑

s=n1+1

E(X ′
2s−n1

X2j−n1)
4

}

=O(n−8)(P1 +P2 +P3),

where P1 =
∑n1

j=2

∑j−1
s=1E(X ′

1sX1j)
4, P2 =

∑n1+n2
j=n1+1

∑n1
s=1E(X ′

1sX2j−n1)
4 and

P3 =

n1+n2
∑

j=n1+1

j−1
∑

s=n1+1

E(X ′
2s−n1

X2j−n1)
4.

Let us consider E(X ′
1sX2j−n1)

4. Define Γ′
1Γ2 =: (vij)m×m and note the

following facts which will be used repeatedly in the rest of the Appendix:

m
∑

i,j=1

v4ij ≤
(

m
∑

i,j=1

v2ij

)2

= tr2(Γ′
1Γ2Γ

′
2Γ1)

= tr2(Σ2Σ1),

m
∑

i=1

m
∑

j1 6=j2

(v2ij1v
2
ij2)≤

(

m
∑

i,j=1

v2ij

)2

= tr2(Σ2Σ1),

m
∑

i1 6=i2

m
∑

j1 6=j2

vi1j1vi1j2vi2j1vi2j2 ≤
m
∑

i1 6=i2

v
(2)
i1i2

v
(2)
i1i2

≤
m
∑

i1,i2=1

v
(2)
i1i2

v
(2)
i1i2

,

m
∑

i1,i2=1

v
(2)
i1i2

v
(2)
i1i2

= tr(Γ′
1Σ2Γ1Γ

′
1Σ2Γ1) =

m
∑

i=1

v
(4)
ii

= tr{(Σ1Σ2)
2},

where Γ′
1Σ2Γ1 = (v

(2)
ij )m×m and (Γ′

1Σ2Γ1)
2 = (v

(4)
ij )m×m.

From (3.1),

E(X ′
1sX2j−n1)

4 =

m
∑

i=1

m
∑

j′=1

(3 +∆)2v4ij′ +

m
∑

i=1

(3 +∆)

m
∑

j1 6=j2

v2ij1v
2
ij2

+

m
∑

j′=1

(3 +∆)

m
∑

i1 6=i2

v2i1jv
2
i2j
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+ 9

m
∑

i1 6=i2

m
∑

j1 6=j2

vi1j1vi1j2vi2j1vi2j2

=O{tr2(Σ2Σ1)}+O{tr(Σ2Σ1)
2}.

Then we conclude

O(n−8)P2 =

n1+n2
∑

j=n1+1

n1
∑

s=1

[O{tr2(Σ2Σ1)}+O{tr(Σ2Σ1)
2}]

=O(n−5)[O{tr2(Σ2Σ1)}+O{tr(Σ2Σ1)
2}]

= o(σ4
n1
).

We can also prove that O(n−8)P1 = o(σ4
n1
) and O(n−8)P3 = o(σ4

n1
) by going

through a similar procedure. This completes the proof of the lemma. �

Proof of Theorem 1. We note equations (6.2) and (6.3) under condi-
tions (3.4) and (3.5), respectively. Based on Corollary 3.1 of Hall and Heyde

(1980), Lemmas 1, 2 and 3, it can be concluded that Tn1/σn1
d→N(0,1). This

implies the desired asymptotic normality of Tn under (3.4). Under (3.5), as
Tn2 is the sum of two independent averages, its asymptotic normality can
be attained by following the standard means. Hence the theorem is proved.
�

Proof of Theorem 2. We only present the proof for the ratio con-

sistency of t̂r(Σ2
1) as the proofs of the other two follow the same route. We

want to show

E{t̂r(Σ2
1)}= tr(Σ2

1){1 + o(1)} and Var{t̂r(Σ2
1)}= o{tr2(Σ2

1)}.(6.10)

For notation simplicity, we denote X1j as Xj and Σ1 as Σ, since we are
effectively in a one-sample situation.

Note that

t̂r(Σ2) = {n(n− 1)}−1

× tr

[

n
∑

j 6=k

{(Xj − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′

− 2(X̄(j,k) − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′}

+

n
∑

j 6=k

{2(Xj − µ)µ′(Xk − µ)(Xk − µ)′

− 2(X̄(j,k) − µ)µ′(Xk − µ)(Xk − µ)′}
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+

n
∑

j 6=k

{(X̄(j,k) − µ)(Xj − µ)′(X̄(j,k) − µ)(Xk − µ)′}

−
n
∑

j 6=k

{2(Xj − µ)µ′(X̄(j,k) − µ)(Xk − µ)′

− 2(X̄(j,k) − µ)µ′(X̄(j,k) − µ)(Xk − µ)′}

+
n
∑

j 6=k

{(Xj − µ)µ′(Xk − µ)µ′ − 2(X̄(j,k) − µ)µ′(Xk − µ)µ′}

+

n
∑

j 6=k

{(X̄(j,k) − µ)µ′(X̄(j,k) − µ)µ′}
]

=:

10
∑

l=1

tr(Al), say.

It is easy to show that E{tr(A1)} = tr(Σ2), E{tr(Ai)} = 0 for i = 2, . . . ,9
and E{tr(A10)}= µ′Σµ/(n− 2) = o{tr(Σ2)}. The last equation is based on
(3.4). This leads to the first part of (6.10). Since tr(A10) is nonnegative and
E{tr(A10)} = o{tr(Σ2)}, we have tr(A10) = op{tr(Σ2)}. However, to estab-
lish the orders of other terms, we need to derive Var{tr(Ai)}. We shall only
show Var{tr(A1)} here. Derivations for other Var{tr(Ai)} are similar.

Note that

Var{tr(A1)}+ tr2(Σ2)

=E

[

1

n(n− 1)
tr

{

n
∑

j 6=k

(Xj − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′

}]2

=
1

n2(n− 1)2
E

[

tr

{

n
∑

j1 6=k1

(Xj1 − µ)(Xj1 − µ)′(Xk1 − µ)(Xk1 − µ)′

}

× tr

{

n
∑

j2 6=k2

(Xj2 − µ)(Xj2 − µ)′(Xk2 − µ)(Xk2 − µ)′

}]

.

It can be shown, by considering the possible combinations of the subscripts
j1, k1, j2 and k2, that

Var{tr(A1)}= 2{n(n− 1)}−1E{(X1 − µ)′(X1 − µ)}4

+
4(n− 2)

n(n− 1)
E{(X1 − µ)′Σ(X1 − µ)}2 + o{tr2(Σ2)}(6.11)
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=:
2

n(n− 1)
B11 +

4(n− 2)

n(n− 1)
B12 + o{tr2(Σ2)},

where

B11 = E(Z ′
1Γ

′ΓZ2)
4 =E

(

m
∑

s,t=1

z1sνstz2t

)4

= E

(

m
∑

s1,s2,s3,s4,t1,t2,t3,t4=1

νs1t1νs2t2νs3t3νs4t4z1s1z1s2z1s3z1s4z2t1z2t2z2t3z2t4

)

and

B12 = E(Z ′
1Γ

′ΓΓ′ΓZ1)
2 =E

(

m
∑

s,t=1

z1sustz1t

)2

= E

(

m
∑

s1,s2,t1,t2=1

us1t1us2t2z1s1z1s2z1t1z1t2

)

.

Here νst and ust are, respectively, the (s, t) element of Γ′Γ and Γ′ΣΓ.
Since tr2(Σ2) = (

∑m
s,t=1 ν

2
st)

2 =
∑m

s1,s2,t1,t2=1 ν
2
s1t1ν

2
s2t2 and tr(Σ4) =

∑m
t1,t2=1 u

2
t1t2 . It can be shown that A11 ≤ c tr2(Σ2) for a finite positive num-

ber c and hence {n(n− 1)}−1B11 = o{tr2(Σ2)}. It may also be shown that

B12 = 2

m
∑

s,t=1

u2st +

m
∑

s,t=1

ussutt +∆

m
∑

s=1

u2ss

= 2tr(Σ4) + tr2(Σ2) +∆

m
∑

s=1

u2ss

≤ (2 +∆)tr(Σ4) + tr2(Σ2).

Therefore, from (6.11),

Var{tr(A1)} ≤
2

n(n− 1)
c tr2(Σ2) +

4(n− 2)

n(n− 1)
{(2 +∆)tr(Σ4) + tr2(Σ2)}

= o{tr2(Σ2)}.

This completes the proof. �
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