
A TWO-SCALE FAILURE MODEL FOR HETEROGENEOUS MATERIALS:

NUMERICAL IMPLEMENTATION BASED ON THE FINITE ELEMENT

METHOD

S. Toro1,2, P.J. Sánchez1,2, A.E. Huespe1,3, S.M. Giusti4, P.J. Blanco5,6, R.A. Feijóo5,6
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Abstract

In the first part of this contribution, a brief theoretical revision of the mechanical and variational

foundations of a Failure-Oriented Multiscale Formulation (FOMF) devised for modeling failure in het-

erogeneous materials is described.

The proposed model considers two well separated physical length scales, namely: (i) the “macro”

scale where nucleation and evolution of a cohesive surface is considered as a medium to characterize the

degradation phenomenon occurring at the lower length scale, and (ii) the “micro” scale where some me-

chanical processes that lead to the material failure are taking place, such as strain localization, damage,

shear band formation, etc. These processes are modeled using the concept of Representative Volume Ele-

ment (RVE). On the macro scale, the traction separation response, characterizing the mechanical behavior

of the cohesive interface, is a result of the failure processes simulated in the micro scale. The traction

separation response is obtained by a particular homogenization technique applied on specific RVE sub-

domains. Standard, as well as, Non-Standard boundary conditions are consistently derived in order to

preserve “objectivity” of the homogenized response with respect to the micro-cell size.

In the second part of the paper, and as an original contribution, the detailed numerical implementation

of the two-scale model based on the Finite Element Method is presented. Special attention is devoted

to the topics which are distinctive of the FOMF, such as: (i) the finite element technologies adopted in

each scale along with their corresponding algorithmic expressions, (ii) the generalized treatment given

to the kinematical boundary conditions in the RVE and (iii) how these kinematical restrictions affect the

capturing of macroscopic material instability modes and the posterior evolution of failure at the RVE

level.

Finally, a set of numerical simulations is performed in order to show the potentialities of the proposed

methodology, as well as, to compare and validate the numerical solution furnished by the two-scale model

with respect to a mono-scale Direct Numerical Simulation (DNS) approach.
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1 Introduction

Numerical simulation of heterogeneous materials using multiscale formulations is becoming a standard

tool of analysis. In a multiscale context, the mechanical response of a macro-structural component can

be retrieved through homogenization of complex micro-mechanical interactions taking place at the smaller

length scales. This idea is particularly attractive to predict/comprehend the phenomenology involved in

material failure scenarios, since the underlying heterogeneous micro-structural topology can play a decisive

role in the activation and propagation of failure mechanisms at the macro scale level.

Although there are different starting points for developing multiscale approaches [3, 5, 9, 12, 15–18, 25,

39,45], Two-scale formulations (“macro-micro”) based on the concepts of Representative Volume Element

(RVE) and computational homogenization, sometimes referred to as FE2 models [10, 11], have gained in-

creasing popularity due to its intrinsic ability for modeling many classes of heterogeneous micro-structures:

periodic, as well as, any statistical distribution of heterogeneities. Henceforth, we focus our developments

on such “Two-scale RVE-based” theoretical framework. In this sense, the RVE concept becomes a funda-

mental ingredient of the formulation.

Following a common trend in the literature, we introduce a rather standard definition of RVE as the

minimal micro-structural sample size from which the macroscopic homogenized response remains almost

invariable1, with respect to larger sample sizes. For micro-structures displaying a stable constitutive be-

havior, the existence of a physically admissible RVE-size is a well accepted notion. However, for hetero-

geneous micro-structures characterized by softening-based materials, recent contributions have proven that

after crossing a critical point (i.e. during the macroscopic post-critical regime), an admissible RVE-size

cannot be found in the context of conventional multiscale techniques [14, 28, 37, 38]. New theories turn

out to be necessary for modeling material failure phenomena within a multiscale paradigm [13]. Roughly

speaking, there are two fundamental topics to be solved:

(I) how to introduce failure mechanisms in the macro scale model, such that they represent well the

phenomenology captured by the microscale model;

(II) how to characterize this complex phenomenology via homogenization of micro-mechanical effects,

keeping the theoretical foundations of well-posed multiscale formulations (RVE existence).

Point (I) could be tackled from different approaches. In the present contribution the cohesive interface

method is adopted. The use of cohesive cracks for analyzing macroscopic material failure problems have

been introduced in the pioneer works of Hillerborg [19], Barenblatt [1], Xu and Needleman [46]. Since

then, numerous authors have followed this technique. Nowadays, cohesive models are widely used for rep-

resenting quasi-brittle fracture, as well as ductile failure. An advantage of this methodology relies in the

dramatic improvement of the kinematical description due to the introduction of displacement discontinu-

ities, or strong discontinuities, according to the expected singular phenomenology provided by the physics

of fracture. Cohesive interfaces have been utilized with a wide range of finite element techniques. Only

to cite a few, we can mention the cohesive models defined between the finite element interfaces, such as

advocated by Ortiz and coworkers [34], or cohesive interfaces which intersect arbitrarily the finite element

mesh such as X-FEM or E-FEM techniques, see Oliver et al. [33] for a comparative analysis between the

last two techniques.

On the other hand, a particularity of the cohesive interface method is related to the need of assuming a

macroscopic traction-separation relation. This behavior can be difficult to characterize via phenomenologi-

cal equations, specially for heterogeneous materials in general loading paths.

With reference to Point (II), and considering the cohesive models mentioned in the previous paragraphs,

a natural option for characterizing the macro-cohesive response comes from a multiscale analysis jointly

with computational homogenization. This methodological approach has been the subject of recent intensive

research in the scientific community. A number of novel contributions have been made in this direction, see

for example the approaches of Matous et al. [21], Verhoosel et al. [44], Nguyen et al. [27,29] Belytschko and

coworkers [2,41], Geers and coworkers [6], Unger [43] and Souza et al. [42]. However, the development of

a consistent method has remained full of major theoretical challenges.

Motivated by this open issue in material science, Sánchez and coworkers in [37, 38] have developed a

multiscale model, called Failure-Oriented Multiscale Formulation (FOMF), based on axiomatic and rig-

orous variational foundations. The FOMF model provides two types of constitutive mechanical responses

at the macroscale level in different situations: (i) during the stable period, it determines a stress-strain re-

lation derived from a classical homogenization procedure; and (ii) during the evolution of the cohesive

1Alternative definitions of the RVE concept can be found in the available literature, see [4] and references cited therein.
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macrocrack, it furnishes an homogenized mechanical response, i.e. a traction-separation relation, which is

objective with respect to the size of the micro-cell adopted for the analysis.

In the present contribution, we advocate the use of the computational homogenization technique pro-

posed by Sánchez et al. [37,38] which characterizes the mechanical response of the macro cohesive model,

i.e. a traction-separation relation (T;β), emerging from the microscale through a homogenization proce-

dure. By adopting this approach, it is possible to tackle micro or mesoscopic failure mechanisms, developed

at smaller length scale, as being the precursors of material failure at the macro scale. In particular, this work

describes the most salient numerical and algorithmic issues that have been developed to implement the

FOMF in the context of the finite element method. We address several issues of the micro-cell model im-

plementation which are specific for multiscale analysis involving heterogeneous material failure problems.

These specific issues are related to the use of a variational incremental framework including the possible

change of the micro-cell boundary conditions during the mechanical evolution process. This key feature is

exploited in strain localization problems.

Different boundary conditions on the RVE represent different multiscale sub-models. Then, with the

generalized approach presented in this work, it is possible to simulate, in a flexible way, all these RVE

sub-models, as also a mixture of them or hybrid sub-models.

The paper is outlined as follows. Section 2 summarizes the FOMF approach by Sánchez et al. [37, 38].

Details about the numerical aspects and the proposed algorithms are shown in Sections 3, 4 and Appendix A,

paying particular attention to the non-standard aspects that are out of the scope of the traditional multi scale

methods. Section 3 describes the finite element models used for simulating the macro and micro scales.

Section 4 presents the specific issues of the RVE model which have to be taken into account to get the

complete degradation of the homogenized material. In Section 5 we present several numerical simulations.

Finally, Section 6 is devoted to the conclusions.

2 A two-scale material failure model

The microscale analysis is performed by using a RVE to take into account the phenomenology induced

by the degradation and strain localization phenomenon at the microscale. The crucial aspect is to get a

(T;β) relation at the coarse scale, that is independent of the cell size. An outline of this notion is sketched

in Figure 1, where it is depicted that both domains, Cell1 and Cell2, are valid cells to perform the stress

homogenization analysis.

While the material response remains macroscopically stable, the existence of a RVE is a well established

concept [26]. However, when the material becomes macroscopically unstable, its existence has recently

been subjected to discussion. As proposed in the multiscale formulation of Sánchez et al. [37, 38], the goal

to find a RVE during the macroscopic unstable response can be achieved by modifying the information

transfer procedure across both scales, as is summarized in the following subsections.

Figure 1: RVE’s with different sizes that can be used to homogenize the cohesive traction vector defined on the crack surface.

2.1 Model hypotheses.

The basic assumptions of the model are described in the following items, and sketched in Figure 2:

i) Quasi-static problems are considered. The pseudo-time variable t ∈ [0, tE], where [0, tE] stands for

the pseudo time interval of analysis, is used to account for the evolution of the non-linear material
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response. Increments of variables between the pseudo-time steps (t − dt) and (t) are denoted (d(·) =

(·)t − (·)t−dt).

ii) The heterogeneous material response can be described by means of a model using two well-separated

length scales. The structural scale, or macroscale, and the length scale in the order of the micro-

constituent sizes, or microscale. Infinitesimal strain theory is assumed for both scales.

iii) In the macroscale, the configuration of the body is denoted as Ω which is subjected to tractions t∗,

in the boundary Γσ, and prescribed displacement u∗, in Γu. Material points in Ω are denoted as “x”

and the prefix “macro-(•)” is used to indicate the fields defined at the macroscale, depending on x.

Every point x ∈ Ω is linked to a microscale model through a heterogeneous RVE. The RVE domain

is denoted Ωµ and their points are denoted y. The prefix “micro-(•)” is alternatively used to denote

the fields defined at the microscale, depending on y.

iv) Initially, the macroscale is idealized as a statistically homogeneous continuum, with a heterogeneous

microscale. At an arbitrary point xR of this configuration, see Figure 2, the macro-displacement

u, macro-strain εR, and the macro-stress σ, characterize the mechanical state of the continuum

medium. An alternative macro-mechanical scenario arises when a given critical condition, deter-

mined by micro-failure mechanisms, is reached. The new scenario is characterized in the model by

introducing a macro-cohesive crack, as shown in the point xS of Figure 2, where the existence of

a cohesive force T being a function of the displacement jump β across the discontinuity surfaces is

assumed. This cohesive force is determined through a specific homogenization technique.

v) In the microscale, we use a standard stress-strain approach for modeling the material failure. Then ,

the softening response is regularized by means of a smeared crack approach.

vi) In the variational formulation used in this work, it is defined an admissible kinematics which, after

introducing the Hill-Mandel hypothesis, determines completely the homogenization rule that has to

be used to compute the generalized stresses: σ in the points xR and T in xS .
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Figure 2: Basic ingredients of a two-scale model based on the RVE concept (macro-micro scale).

2.2 Macroscopic model with strong discontinuity kinematics.

According to the assumption (iii) in the previous Sub-Section, let us consider a body Ω in Rndim, with

ndim being the dimension of the Euclidean space (in this work ndim = 2), undergoing a loading process, as

shown in Figure 2.

During the loading process, we consider the situation when a macro crack S, with a normal vector

n, arises in Ω, as shown in Figure 3-a. The cohesive crack is mechanically characterized by the relative

displacement jump β experienced by the surfaces of the crack, i.e. the crack opening, and the cohesive

tractions T acting in those points.

4



We follow the work of Simo et al. [40] to represent strong discontinuity kinematics for modeling the

jump β in the macroscale. Thus, we define an arbitrary sub-domain Ωϕ (Ωϕ ⊂ Ω) including the interface

discontinuity S (S ⊂ Ωϕ) with smooth boundary: Γϕ (Γϕ = Γ
ϕ

I
∪ Γ

ϕ

II
∪ S+ ∪ S−) as shown in Figure 3-b.

Also, note that S divides Ω in two sub-domains: Ω+ and Ω− with the normal vector n pointing toward Ω+.

(a) (b)

Gu

t*

Figure 3: Mechanical problem exhibiting strong discontinuities across the material surface S.

In this case, the mechanical response of Ω displaying a crack is described by the variational formulation

of the problem summarized in Box 1, which has been taken from Sánchez et al. [37, 38]. Equation (1)

describes the macro displacement field u exhibiting discontinuities, u denotes a smooth field and MS(x)

is the so-called Unit Jump function defined with the Heaviside step function, HS(x) : Ω → R, shifted to

the discontinuity surface S: HS(x) = 0 ∀x ∈ Ω− and HS(x) = 1 ∀x ∈ Ω+. The term ϕ(x) : Ω → R

is a sufficiently smooth, but otherwise arbitrary function, such that: ϕ(x) = 0 ∀x ∈ Ω−\Ω
ϕ
− and ϕ(x) = 1

∀x ∈ Ω+\Ω
ϕ
+. The displacement jump across S is denoted: β(x, t).

The regular macro-strain εR is defined in points excluding S, and is written in equation (2).

Hence, from (1) and (2), observe that the macro-displacement and macro-strain fields are completely

described through the variables: (u,β). The kinematically admissible macro-displacement set U is defined

in (3). The associated virtual space of admissible variations V is given by equations (4) and (5). Fields in

V are denoted with the symbol (·̂).

Equation (6) describes, in a standard variational form, the macroscale equilibrium. Body forces b (per

unit of volume) are considered to exist in Ω\S, as well as cohesive tractions T acting on the macro-crack

surfaces.

2.3 Scale transition models.

The item 4 in Box 1 summarizes the two-scale homogenization methodology defining the material

response. This scheme distinguishes between regular points xR in Ω/S and singular points xS ∈ S. In the

first case, the homogenization technique determines σ by means of the procedure described in Box 2. We

call this scheme, the Classical Multiscale Model (ClaMM). In fact, this procedure follows a standard model

widely known in the literature (see Miehe et al. [24], Michel et al. [22], de Souza et al. [7,8], Peric et al. [35],

and references cited therein). In the second case, item 4.2, the homogenization technique determines the

tractions T as a function of the displacement jump β by means of the procedure described in Box 3. This is

called the Cohesive Multiscale Model (CohMM) and was recently proposed by Sánchez et al. [37,38]. The

two models, ClaMM and CohMM, are shown in terms of generalized strains, stress and traction increments.

The criterion that defines when the macroscopic material response becomes unstable, and hence, when

a macro-crack has to be introduced at a certain point x, is defined in the Item 5 of Box 1. This criterion is

based on the singularity of the acoustic tensor Q derived from the homogenized tangent constitutive tensor

C, where: dσ = C : dεR. The vectors n and γ are the eigenvectors of Q when it is singular. The vector n

represents the normal vector to the macro crack S and γ represents the instantaneous opening direction of

the crack at tN (β̇|t=tN
).
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1-Kinematics:

u = u +MS β ; MS(x) := HS(x) − ϕ(x) ; ∀ x ∈ Ω (1)

ε = εR = ∇
s
xu +MS ∇

s
xβ − ∇xϕ ⊗

s β ; ∀ x ∈ Ω/S (2)

(u,β) ∈ U ; U ≡

{

(u,β) | u ∈ H1(Ω) , β ∈ H1(Ω) and u|Γu = u∗
}

(3)

2-Virtual kinematically admissible actions (velocities):

û = û +MS β̂ (4)

(û, β̂) ∈ V ; V ≡

{

(û, β̂) | û ∈ H1(Ω) , β̂ ∈ H1(Ω) and û|Γu = 0

}

(5)

3-Variational equilibrium problem:

Given b and t∗; find (u,β) ∈ U such that:
∫

Ω\S

σ · ∇s
x(û +MSβ̂) dΩ +

∫

S

T · β̂ dS −

−

∫

Ω\S

b · (û +MSβ̂) dΩ −

∫

Γσ

t∗ · û dΓ = 0 ; ∀ (û, β̂) ∈ V (6)

4-Required Constitutive responses via corresponding Multi-Scale Formulations:

4.1 ∀ xR ∈ Ω/S and ∀ t ∈ [0, tE] : Given εRt−dt and dεR,find dσ,

via the ClaMM formulation (refer to Box 2).

Update: σ = σt−dt + dσ

4.2 ∀ xS ∈ S and ∀ t ∈ [tN , tE] : Given {εR,β}t−dt and {dεR, dβ},find dT,

via the CohMM formulation (refer to Box 3).

Update: T = Tt−dt + dT

5-Cohesive crack nucleation criterion: (loss of material stability)

Find SN = {tN , n,γ}, verifying the singularity of the Acoustic Tensor Q(εt , n):

det
(

Q(εt , n)
)

= 0 ; ∀ x ∈ Ω/S and ∀ n ∈ Rndim

where Q(εt , n)γ = [(C(εt) n)γ] n , ∀γ ∈ Rndim

and C(εt) is the Homogenized Tangent Constitutive Tensor, obtained via the ClaMM formulation (refer to Box 2)

Box 1: Macro-mechanical problem with strong discontinuities. Basic concepts and ingredients.
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2.3.1 Classical multiscale model (ClaMM).

The stress determination in the points: x ∈ Ω/S is performed through a homogenization procedure

using a RVE and adopting the framework proposed in de Souza et al. [7, 8]. Box 2 summarizes this model.

Let Ωµ denote the RVE domain and Γµ its boundary with normal νµ, as shown in Figure 2. The terms:

uµ, εµ and σµ denote the micro-displacement, micro-strain and micro-stress fields in Ωµ, respectively. Their

increments, at the pseudo-time t, are denoted with d(•).

As usual in this kind of formulation, the incremental micro-strain field dεµ is given by (see equation

(13) in Box 2):

dεµ = dεR + ∇
s
ydũµ (7)

where the micro strain fluctuation increments is: dε̃µ = ∇
s
ydũµ and dũµ is the micro displacement fluctuation

increment field. It is interesting to mention here that in [37,38] the authors present the Classical Multiscale

Model introducing the concept of the “Insertion Operator”. The generalization of this operator plays a

fundamental role in the extension of this formulation for Failure-Oriented Multiscale Modeling. See [37,38]

for more details about this very important theoretical aspect.

Equation (14) expresses that the volumetric average (in Ωµ) of the micro-strain increment is equal to

the macro-strain increment, or similarly, that the volumetric average of dε̃µ is zero, which is equivalent to

constrain dũµ, on the boundary Γµ (with normal vector νµ), as follows:

∫

Γµ

dũµ ⊗
s νµ dΓµ = 0 (8)

Prescription (8) characterize what is known as the Minimally Constrained Vector Space of kinematically

admissible incremental displacement fluctuations at the RVE-level, Ũ µ (see equation (15) in Box 2). The

corresponding admissible variations of micro-displacement fluctuations vector space is denoted V µ (see

equation (16) in Box 2).

It is noted that very well known (and used) multiscale models can be viewed as sub-models of the Mini-

mum Kinematical Constraint Multiscale Model. They are considered sub-models because the kinematically

admissible displacement fluctuation space, in each case, results a subspace of the Minimally Constrained

vector space Ũ µ, i.e. they are particular cases of this general multiscale model. The considered kinemati-

cally admissible spaces of each sub-model are (omitting regularity requirements):

a) Taylor sub-model:

Ũ
Tay

µ = V
Tay
µ =

{

ηµ | ηµ(y) = 0 ∀ y ∈ Ωµ

}

(9)

b) Linear boundary displacement sub-model:

Ũ
Lin

µ = V
Lin
µ =

{

ηµ | ηµ(y) = 0 ∀ y ∈ Γµ

}

(10)

c) Periodic boundary fluctuation sub-model (the notation follows that of Miehe et al., [23]). Let us

consider the RVE boundary Γµ that is partitioned into Γ+µ and Γ−µ (Γµ = Γ
+
µ ∪ Γ

−
µ ) with unit nor-

mals vectors: ν+µ and ν−µ , respectively. Then, for every point y+
i
∈ Γ+µ there is the corresponding pair

y−
i
∈ Γ−µ , with the normal vectors: νµ(y+

i
) = −νµ(y−

i
), which is associated to a given periodicity direc-

tion. Therefore, the periodic boundary condition satisfies: dũµ(y+
i
) = dũµ(y−

i
) and the corresponding

admissible displacement spaces are:

Ũ
Per

µ = V
Per
µ =

{

ηµ | ηµ(y+) = ηµ(y−) ∀ pair{y−, y+}

}

(11)

d) Minimum kinematical constraint model, as defined above, results when the expression (8) defines the

kinematically and variationally admissible micro-displacement fluctuation spaces, as follows:

Ũ
Min

µ = V
Min
µ =

{

ηµ |

∫

Γµ

ηµ ⊗
s νµ dΓµ = 0

}

(12)

The ClaMM satisfies the Hill-Mandel Variational Principle as a fundamental postulate (or hypothesis)

of the formulation. This principle expresses that the internal virtual power in the macroscale, is equal to

the volumetric average of the internal virtual power in the fine scale, and it is expressed in equation (18).

From it, and after selecting specific virtual strains, two variational equations can be derived. The first

7



Given εRt−dt and dεR, find dσ and C:

1-Kinematics:

dεµ = dε
R
+ ∇s

ydũµ ; ∀ y ∈ Ωµ (13)

1.a-Kinematical Admissibility and Strain Homogenization Procedure:

dεR =
1

|Ωµ |

∫

Ωµ

dεµ dΩµ (14)

dũµ ∈ Ũ µ ; Ũ µ ≡

{

dũµ | dũµ ∈ H1(Ωµ) and

∫

Γµ

dũµ ⊗
s νµ dΓµ = 0

}

(15)

1.b-Virtual kinematically admissible actions (velocities):

ûµ ∈ V µ ; V µ ≡

{

ûµ | ûµ ∈ H1(Ωµ) and

∫

Γµ

ûµ ⊗
s νµ dΓµ = 0

}

(16)

ε̂µ = ε̂R
+ ∇s

yûµ ; ∀ ε̂
R

and ∀ ûµ ∈ V µ (17)

2-Hill-Mandel Variational Principle of Macro-Homogenity:

dσ · ε̂
R
=

1

|Ωµ |

∫

Ωµ

dσµ · ε̂µ dΩµ ; ∀ ε̂
R

and ∀ ε̂µ kinematically admissible (18)

2.a First consequence of the Hill-Mandel Variational Principle: Stress Homogenization

dσ =
1

|Ωµ |

∫

Ωµ

dσµ dΩµ (19)

2.b Second consequence of the Hill-Mandel Variational Principle: Equilibrium problem at the micro-scale

Given ε
R t−dt and dε

R
; find dσµ, such that:

∫

Ωµ

dσµ · ∇
s
yûµ dΩµ = 0 ; ∀ ûµ ∈ V µ (20)

3-Homogenized Tangent Constitutive Tensor:

C = CT + C̃ (21)

Taylor contribution

CT =
1

|Ωµ |

∫

Ωµ

Cµ dΩµ (22)

Fluctuation contribution

For k, l = 1, 2, 3; find ∆ũkl ∈ Vµ such that:
∫

Ωµ

Cµ ∇
s
y∆ũkl · ∇

s
yûµ dΩµ = −

[ ∫

Ωµ

Cµ (ek ⊗
s el) · ∇

s
yûµ dΩµ

]

; ∀ ûµ ∈ Vµ (23)

C̃ =

[
1

|Ωµ |

∫

Ωµ

(Cµ)i jpq (∇s
y∆ũkl)pq dΩµ

]

ei ⊗ e j ⊗ ek ⊗ el

Box 2: Classical Multi-scale Model (ClaMM).
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one, equation (19), defines the stress homogenization or stress transfer operator from the microscale to the

macroscale. The second equation, given by expression (20), establishes the self-equilibrium of the micro-

stress field. The stress σµ is connected with εµ through the microscopic constitutive model σµ(εµ) and the

constitutive tangent tensor Cµ is such that: dσµ = Cµ dεµ.

The item 3 in Box 2 defines the homogeneized tangent constitutive tensor C obtained by deriving the

expression dσµ(ε) given in (19). This tensor results from the addition of two terms: i) CT is the volumetric

average of the constitutive tangent tensor at the microscale Cµ, and ii) the tensor C̃, given by expression

(23), that comes from the derivation of the displacement fluctuations. In (23), the vectors e denote the

canonical basis of the Euclidean space. C is used to obtain the acoustic tensor, written in the Item 5 of

Box 1, which singularity defines the macro-failure criterion.

2.3.2 Cohesive multiscale model (CohMM).

The homogenization of the traction-separation relation in xS ∈ S, is performed through the Cohesive

Multiscale Model (CohMM) proposed in [37, 38] and summarized in the Box 3.

As shown in Box 1, see also Figure 2, the kinematics of the points xS , in S, is characterized by the

terms εR, β and the normal vector to the discontinuity surface: n. These kinematical variables are injected

into the RVE using a specific strategy, such that the micro-strain increments are expressed by means of the

equation (27) in Box 3. The first two terms in the right part of (27) represent the macro strain that is injected

into the RVE:

dε = dεR + φ
L
µ(y)

dβ ⊗s nµ

ℓM
; φL

µ(y) =






|Ωµ |

|ΩL
µ |
=
ℓM
ℓµ

∀ y ∈ ΩL
µ

0 otherwise
(24)

where εR is given by equation (2). While dεR is uniformly distributed in the RVE, the collocation function

φL
µ(y) distributes the term: (dβ ⊗s nµ)/ℓM uniformly into the so-called RVE strain localization subdomain,

ΩL
µ , of the RVE, with ΩL

µ ⊂ Ωµ. In [37, 38], ΩL
µ is defined as the RVE region where the material remains

in a loading condition when the corresponding macroscopic point x first satisfies the instability criterion

defined in Box 1, item 5, and a procedure is furnished to determine ΩL
µ . The vector nµ is orthogonal to ΩL

µ ,

such as shown in Figure 2. The parameter ℓM plays the role of a fictitious localization band width at the

macroscale. Note also that, after replacing the function φL
µ(y), the parameter ℓM is removed from the model

and only remains the parameter ℓµ, which represents the width of the strain localized zone, ΩL
µ , in the RVE.

The parameter ℓµ works as a characteristic length in the microscale model regularizing the material response

during the unstable regime. The parameter ℓµ plays an important role in determining the macroscale fracture

energy of the homogenized material model.

We remark that the term: (dβ ⊗s nµ)/ℓM in (24), which is distributed in ΩL
µ , is different from that pro-

posed in [37, 38]. Here, we use nµ instead of the normal vector n to the macro-crack. This proposal for

injecting dβ into the RVE is a key issue during the transition of models, from the ClaMM to the CohMM,

to keep the kinematical consistency when micro-cracks with arbitrary directions are modeled in the RVE.

Finally, the third term in the right part of (27) corresponds to the micro-strain fluctuation increments.

The model also assumes that the volumetric averages of the micro-strain fluctuation increment in Ωµ
and ΩL

µ are zero. These conditions are implicitly expressed in equations (28) and (29) of Box 3, and they

are equivalent to writing the following two constraints on the incremental displacement fluctuation field:

∫

Γµ

dũµ ⊗
s νµ dΓµ = 0 ; (SBC) (25)

∫

ΓL
µ

dũµ ⊗
s νL
µ dΓµ = 0 ; (NSBC) (26)

which characterize the space of admissible displacement fluctuation increments Ũ
L

µ in Ωµ, as shown in

expression (30) of Box 3. They also define the space V
L
µ of kinematically admissible variations of macro-

displacement fluctuations ûµ given in expression (31). Expression (32) defines the micro-strain variations ε̂µ

that are kinematically admissible. In this expression, β̂ and ûµ are the admissible variations of displacement

jumps and fluctuations, respectively. Selection of different subspaces of Ũ
L

µ and V
L
µ similar to those given

by expressions (9)–(11), furnishes different CohMM models.

The boundary condition (25) is called Standard Boundary Condition (SBC) because they also arises in

the classical multiscale model (ClaMM), while (26) is called Non-Standard Boundary Condition (NSBC)

and constitutes a new ingredient introduced by the present FOMF approach.

9



Here, the homogenization of the traction vector T ∈ S, is derived from the Hill-Mandel Variational

Principle given in equation (33). This principle expresses the balance between the internal virtual power

at the macroscale, given by the product of the traction times the virtual displacement jump and divided

by ℓM , and the internal virtual power averaged in the microscale. From this variational principle, two

consequences are derived: the first one is the equation (34), which defines the homogenization rule for T;

the second one provides the equation (35) representing, in a variational sense, the self-equilibrium of the

micro-stress increments: dσµ.

Given ε
R t−dt, βt−dt, dε

R
, and dβ, find dT:

1-Kinematics:

dεµ = dε
R
+ φL
µ(y)

dβ ⊗s nµ

ℓM
+ ∇s

ydũµ ; ∀ y ∈ Ωµ (27)

φL
µ(y) =






|Ωµ |

|ΩL
µ |
=
ℓM
ℓµ

∀ y ∈ ΩL
µ

0 otherwise

2-Kinematical Admissibility and Strain Homogenization Procedures:

dε
R
+

dβ ⊗s nµ

ℓM
=

1

|Ωµ |

∫

Ωµ

dεµ dΩµ (28)

dε
R
+

dβ ⊗s nµ

ℓµ
=

1

|ΩL
µ |

∫

ΩL
µ

dεµ dΩL
µ (29)

dũµ ∈ Ũ
L

µ ; Ũ
L

µ ≡

{

dũµ | dũµ ∈ H1(Ωµ) ,

∫

Γµ

dũµ ⊗
s νµ dΓµ = 0 and

∫

ΓL
µ

dũµ ⊗
s νL
µ dΓµ = 0

}

(30)

3-Virtual kinematically admissible actions (velocities):

ûµ ∈ V
L
µ ; V

L
µ ≡

{

ûµ | ûµ ∈ H1(Ωµ) ,

∫

Γµ

ûµ ⊗
s νµ dΓµ = 0 and

∫

ΓL
µ

ûµ ⊗
s νL
µ dΓµ = 0

}

(31)

ε̂µ = φ
L
µ(y)
β̂ ⊗s nµ

ℓM
+ ∇s

yûµ ; ∀ β̂ and ∀ ûµ ∈ V
L
µ (32)

4-Hill-Mandel variational principle of Macro-Homogenity:

dT · β̂ =
ℓM

|Ωµ |

∫

Ωµ

dσµ · ε̂µ dΩµ ; ∀ β̂ and ∀ ε̂µ kinematically admissible (33)

a) First consequence of Hill-Mandel variational principle: Failure-Oriented Stress Homogenization rule

dT =
1

|ΩL
µ |

∫

ΩL
µ

dσµ nµ dΩµ (34)

b) Second consequence of Hill-Mandel variational principle: Micro-Equilibrium problem

Given the history of the generalized macro deformation, characterized by {ε
R
,β}t−dt , and kinematically

admissible increments {dε
R
, dβ}, find the incremental micro-displacement fluctuation field dũµ ∈ Ũ

L

µ such that:
∫

Ωµ

dσµ · ∇
s
yûµ dΩµ = 0 ; ∀ ûµ ∈ V

L
µ (35)

Box 3: Cohesive Multiscale Model (CohMM).

3 Finite Element Models

Given the particular characteristics of the FOMF approach, two different numerical techniques based on

the Finite Element Method are adopted for simulating the macro and micro scales: i) an E-FEM technique

for the macroscale, which utilizes strong discontinuity kinematics, and ii) a smeared crack approach with

appropriate boundary conditions for the RVE simulation.

In the following, we describe some specific issues of both numerical models.

3.1 Implementation of an E-FEM technique for the macroscale.

A non-symmetric formulation with strong discontinuity kinematics, such as that proposed in [31] and

denoted E-FEM technique, is here adopted. This formulation introduces additional displacement modes

which specifically capture the discontinuities, or displacement jumps, arising in equation (1) of Box 1.
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Without loss of generality, we use the Constant Strain Triangle (CST) in plane states as the underlying

finite element.

Let us consider a finite element mesh covering the body Ω having a displacement discontinuity surface

S. The surface divides the finite element mesh in two disjoint parts Ω+ and Ω−, as shown in the Figure 4-b.

The finite element interpolation of the displacement field, given in equation (1) of Box 1, can be written as:

u(x) =

nnode∑

i=1

Ni(x)ui +

nS
elem∑

e=1

(He
S

(x) − Ne
+(x))

︸               ︷︷               ︸

Me
S

βe (36)

where nnode denotes the total number of nodes of the finite element mesh; Ni and ui are the standard shape

function and the displacement vector (smooth part) of the i− th node, respectively. nS
elem

denotes the number

of elements that are intersected by the discontinuity surface S;He
S

is the Heaviside step function of element

e shifted to S (He
S

(x) = 1 if x ∈ Ωe
+, He

S
(x) = 0 otherwise), Ne

+(x) denotes the shape function of the node

located in the Ω+ part of the element e, and βe is a constant displacement jump vector of the same element

e. Being that the displacement jump is constant into the finite element, ∇βe is trivially zero.

Considering that the element e is intersected by the discontinuity, the regular strain εe
R
, given by equation

(2) of Box 1, is interpolated as follows:

εe
R(x) = Be(x) ue − ∇s

xNe
+(x)βe (37)

where Be(x) is the standard strain-displacement matrix. Using Voigt notation for tensors in R2, it can be

written as:

Be =





(Ne
1
),x1

0 (Ne
2
),x1

0 (Ne
3
),x1

0

0 (Ne
1
),x2

0 (Ne
2
),x2

0 (Ne
3
),x2

(Ne
1
),x2

(Ne
1
),x1

(Ne
2
),x2

(Ne
2
),x1

(Ne
3
),x2

(Ne
3
),x1




(38)

the first subindex of the shape functions Ne expresses the element node number and the second subindex

is the derivative respect to the corresponding coordinate. Adopting the same notation, the vector ue is the

element regular displacement vector:

ue =
[

(ue
1
)x1

(ue
1
)x2

(ue
2
)x1

(ue
2
)x2

(ue
3
)x1

(ue
3
)x2

]T

and ∇s
xNe
+, as well as βe are:

∇s
xNe
+ =





(Ne
+),x1

0

0 (Ne
+),x2

(Ne
+),x2

(Ne
+),x1




; βe =

[

βe
x1
βe

x2

]T

Introducing the interpolated displacements and strain fields, defined in (36) and (37), into the incremen-

tal equilibrium problem described in equation (6) of Box 1; and performing variations respect to u and β

(both of these vectors collect all the element vectors ue and βe respectively), we can derive the following

two incremental equilibrium equations:

nelem∧

e=1

∫

Ωe\Se

(Be)T dσedΩe −

nelem∧

e=1

(dFe)ext = 0 (39)

−

∫

Ωe\Se

[∇s
x(Ne
+)]T dσe dΩe +

∫

Se

dTedSe = 0 (40)

where
∧nelem

e=1
denotes the assembling operator for the total number of finite elements: nelem. The term

(dFe)ext denotes the standard incremental external forces. The number of equations (40) is nS
elem

, one for

every element intersected by S.

An alternative non-symmetric formulation of this technique can be derived by replacing the incremental

equilibrium equation (40) with a point wise collocation equation, per element, as follows (see [32]):

− dσene + dTe = 0 (41)

where dσe is evaluated in a representative point of Ωe\Se, and ne is the unit vector normal to the cohesive

interface Se in the element, as shown in Figure 4-b.
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By using triangular elements as mentioned above, the enrichment shape functionMS, in (36), looks like

that depicted in Figure 4-a. The numerical integration of expression (39) and (41) is performed by means

of two quadrature points. Figure 4-b depicts the integration points named PGR and PGL.

The integration point PGR (square-symbol in Figure 4-b) is related to the domain Ωe\Se, and thus, it is

used to evaluate the regular component of the strain εe
R
, equation (37), and the integrals in (39). Alterna-

tively, the point PGL (x-symbol in Figure 4-(b)) is related to the domain Se. Both points, PGR and PGL,

are used to evaluate the traction continuity condition (41) across the discontinuity surface Se, as follows:

dσe

︸︷︷︸

PGR

ne = dTe

︸︷︷︸

PGL

(42)

Each Gauss point is linked to its corresponding RVE. Prior to the macroscopic bifurcation, both RVE’s

evolve identically, since a constant regular-strain triangle is adopted. Thus equation (42) is trivially fulfilled.

During the loading process and after crossing the bifurcation point, each RVE representing the PGR and

PGL points evolves following different branches, as it is explained next.

(a) (b)

1

SBC

ClaMM CohMM

SBC NSBC

Node +

Figure 4: Finite element technique with embedded strong discontinuities in the macroscale: (a) shape function for the enhanced

discontinuous mode; (b) a body discretized with a finite element mesh using the E-FEM methodology.

The Classical Multiscale Model (ClaMM), defined in Sub-Section 2.3.1 and Box 2, is used for the stress

homogenization procedure in the point PGR, during the complete loading history. Thus, the corresponding

incremental strain, dεR, is homogeneously inserted into the RVE and the increment of the homogenized

stress, dσ, is obtained. After detecting the macro-bifurcation condition, an incremental elastic response

is enforced in every point of this RVE, constraining the regular Gauss point to behave as a homogenized

elastic, but possibly degraded, model. Also, when the bifurcation condition is fulfilled, the Cohesive Multi-

scale Model defined in Sub-Section 2.3.2 and Box 3 is used for homogenizing the traction increment in the

point PGL. The incremental generalized kinematics, characterized by dεR, dβ and ne, is inserted into the

RVE using the equation (27) of Box 3. Note that both, the Standard as well as the Non-Standard Boundary

Conditions (SBC and NSBC) are prescribed in this RVE. It is of crucial importance to prescribe them in

incremental (rate) form. The increment of the homogenized traction vector, dT, is then obtained by using

the generalized homogenization formula given by expression (34).

After assembling the expressions in (39) and considering (41), u and β can be found by solving the

non-linear system of equations:

R(u,β) =

[

Ru

Rβ

]

= 0 (43)

where Ru and Rβ are the residue (left term) of equations (39) and (41), respectively.

3.1.1 Determination of the bifurcation condition at the macroscale.

At the macroscale level and after convergence of the Newton-Raphson iterative procedure, the bifur-

cation condition expressed in the item 5 of Box 1 is evaluated as follows. The homogenized constitutive

tangent tensor, C, is determined in every quadrature point, and thus we can compute Q. Then, using a swept

algorithm, we find the minimum value:

ω = min
θ=1:∆θ:π

det (Q(n(θ))) (44)
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by typically predefining an angle increment: ∆θ. When the condition ω ≤ 0 is found for the first time and

for some θ, the flag indicating the bifurcation state of that quadrature point is set to “TRUE” (the nucleation

time tN is obtained). In general, problem (44) furnishes two solutions (θn, θγ) which define the normal

vector to the crack n, as well as γ.

3.2 Implementation of the FEM technique for the microscale.

A standard finite element method is proposed for evaluating the numerical solution of the micro-cell

problem evolution. Let us consider a micro-cell finite element mesh where the usual interpolation of the

displacement fluctuation field ũ(y) is:

ũµ(y) =

n
µ

node∑

i=1

Niµ(y) qi (45)

where Niµ(y) is the standard shape function of the finite element basis corresponding to node i and qi is the

nodal value of the displacement fluctuation for the same node; n
µ

node
is the total number of nodes in the RVE

finite element mesh. The vector collecting the displacement fluctuations of all nodes is denoted q and its

dimension is n = 2n
µ

node
(without loss of generality, we are considering problems in R2 with two d.o.f.’s per

node). Then, n is the total number of d.o.f.’s of the discretized problem.

As it is shown in Sub-Section 2.3.1, and afterward generalized to the CohMM approach, different RVE

sub-models are defined depending on the functional spaces Ũ µ and V µ from where the displacement so-

lution is drawn. In a similar way, the increment of the discrete micro-cell nodal displacement fluctuation

vector ∆q can be searched in different vectorial spaces. Let us denote Ũq the finite dimensional vectorial

space of admissible nodal displacements, where (∆q ∈ Ũq), and Vq denotes the admissible variations of dis-

placement fluctuation q̂ (q̂ = ∆q2 − ∆q1 with ∆q2, ∆q1 ∈ Ũq). In correspondence with expressions (9)–(11)

defining different RVE sub-models, we identify the discrete spaces:

a) Taylor sub-model:

Ũ
Tay

q = V
Tay

q =

{

∆q | ∆q = 0

}

(46)

b) Linear boundary displacement sub-model;

Ũ
Lin

q = V
Lin

q =

{

∆q | ∆qi = 0 ; ∀ node i ∈ Γµ

}

(47)

c) Periodic sub-model: considering the RVE boundary Γµ partitioned in Γ+µ and Γ−µ , such that, for every

nodal point y+
i
∈ Γ+µ there is the corresponding point y−

i
∈ Γ−µ , lying along the periodicity direction.

With this partition of Γµ at hands, two normal vectors to the external boundary, in opposite sides,

are given by: νµ(y+
i
) = −νµ(y−

i
). This model satisfies the constraint: ∆ũµ(y+

i
) = ∆ũµ(y−

i
). Then, the

admissible displacement fluctuation spaces can be written as follows:

Ũ
Per

q = V
Per

q =

{

∆q | ∆q+i = ∆ũµ(y−i ) ; ∀ node i+ ∈ Γ+µ

}

(48)

where the constraint: ∆q+
i
= ∆ũµ(y−

i
), is introduced for every node i+ in Γ+µ . Note that, we do not

require, a-priori, the presence of a nodal point in the position y−
i
, where the displacement fluctuation

interpolation is constrained to have the same displacement as the node i+.

Next, the periodic sub-model is generalized in the sense that the periodicity direction can be arbitrarily

defined. In this case, we identify the associated pair of boundary points (y+
i
, y−

i
), such that, they are

the intersection points between the parallel line to the periodicity direction and the boundary surface

Γµ.

d) Minimum kinematical constraint model :

Ũ
Min

q = V
Min

q =

{

∆q |

∫

Γ̆

∑

i

(Niµ(y)∆qi ⊗
s νiµ)dΓ̆ = 0 ; ∀ node i ∈ Γ̆

}

(49)

the integration domain Γ̆ depends of the model adopted during the analysis. Thus, in the ClaMM

formulation, the constraint (8) (SBC), which prescribes the displacement fluctuation increments, in-

volves an integration surface Γ̆ coinciding with the RVE external boundary: Γ̆ ≡ Γµ. In the CohMM

formulation, the constraint (25) also involves an identical integration domain: Γ̆ ≡ Γµ. However, an

additional equation (49) (NSBC) shall be prescribed with the integration domain given by: Γ̆ ≡ ΓL
µ ,

as shown in equation (26).
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Hence, the change of model during the course of analysis, from the ClaMM to the CohMM, requires a

change of the RVE boundary conditions.

Even when the ClaMM can be defined using one of the standard spaces described in the items (a)-(d)

above, the CohMM requires a hybrid combination of them.

In the following Sub-Sections, we present a systematic algorithm to manage, in an unified and flexible

format, a wide range of constraints that can be imposed to the vector ∆q. The numerical procedure is based

on an exact enforcement of these constraints, by performing a partition of the total d.o.f.’s of the vector ∆q,

and a subsequent static condensation of one of these partitions.

3.2.1 Numerical treatment given to the kinematical constraints.

The different kinds of micro-cell sub-models, and the respective kinematical constraints prescribing the

increments of the nodal displacement fluctuations, are characterized by four generic situations. They are

described in the following items.

Case i) Nodes with the increments of displacement fluctuations prescribed to zero.

Assuming that there are “nc” d.o.f.’s with a kinematical constraint of the type: ∆q j = 0, where the

sub-index j represents the j-th component of the vector ∆q, we collect all these constraints in the linear

equation system written in terms of the vector ∆q:

Ic ∆q = 0; (50)

where Ic ∈ Rnc×n is a matrix with ones in the positions (k, j) (Ic
k j
= 1) and zeros in the remaining positions.

The index k (k = 1, ..., nc) corresponds to the k equation, and this equation prescribes to zero the j-th d.o.f.

of the vector ∆q.
Using this notation, the Ũ Lin

q space, defined in equation (47), that represents the Linear boundary
displacement micro-cell sub-model, is rewritten as:

Ũq

Lin
=

{

∆q | Ic∆q = 0

}

(51)

where it is understood that there are as many equations as d.o.f.’s prescribed to zero in the boundary Γµ.

Case ii) Rigid link imposing identical displacement fluctuations between a node and a point (Figure 5): :

classical periodic boundary condition.

Let us consider a rigid connection linking the displacement fluctuation of a node k ∈ Γ+µ , in the position

y+, and the displacement fluctuation of the point y−:

∆qk = ∆ũµ(y−) =

n
µ

node∑

i=1

Niµ(y−)∆qi (52)

the points (y+, y−) form a pair as explained in the item (c) above. Note that the right hand term is the nodal

value of the displacement fluctuation increment interpolated in the point y−.

In a Periodic sub-model, as shown in Figure 5, np vectorial equations like (52) have to be prescribed,

with np the number of nodes in Γ+µ . Then, the total system of equations can be written as follows:

(Ip − Nµ)∆q = 0 (53)

where the matrix Ip ∈ R(2np×n) is a matrix with ones in the positions (k, l) (I
p

kl
= 1) and zeros in the remaining

positions. The index k corresponds to the k-th equation, and this equation imposes the link restriction of

the l-th d.o.f. in ∆q. The point y− ∈ Γ−µ , which displacement fluctuation is prescribed through equation

k-th, is associated with the shape functions Niµ(y−). These shape functions are used to assemble the Matrix

Nµ ∈ R
(2np×n) given in expression (53).

With this notation, the spaces Ũ Per
q can be rewritten as follows:

Ũq

Per
=

{

∆q | (Ip − Nµ)∆q = 0

}

(54)

Periodic kinematical constraints, imposed on the complete boundary Γµ = Γ
−
µ ∪ Γ

+
µ , preclude rigid

body rotations but not rigid body translations. Thus, in order to define a mechanically well-posed discrete

variational problem, two additional d.o.f.’s should be prescribed using equation (50), as sketched in Figure 5.
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Figure 5: Micro-cell Ωµ and finite element mesh with classical periodic (rigid links) boundary conditions.

Furthermore, when using the periodic condition (52) in the boundary, and particularly when y− does not

coincides with a finite element mesh nodal point, we have observed that a good practice is to introduce

one additional kinematical constraint similar to the one presented in the following item case iii in order to

improve the accuracy.

Case iii) Imposition of a null volumetric average of strain fluctuation increments in a region Ω̆ bounded by

the surface Γ̆ (Figure 6).

Equation (8) prescribes the minimum kinematical constraint in Ωµ, meaning that the volumetric average

in Ωµ of the strain fluctuation increments are null. A similar kinematical constraint can be prescribed in

domains Ω̆ ⊆ Ωµ bounded by closed surfaces Γ̆ and with normal vectors ν̆. This kind of prescriptions on Γ̆,

including the specific case when Γ̆ ≡ Γµ, can be rewritten as follows:

H ∆q = 0; (55)

where the matrix H ∈ R3×n is the assembling of “nel” finite element matrices He (nel is the number of finite

elements in the mesh belonging to the domain Ω̆, bounded by Γ̆, and having at least one side in Γ̆):

H =

nel∧

e=1

∫

Γ̆e

HedΓ̆e (56)

with Γ̆e being the finite element side that belongs to the boundary Γ̆. The matrix He is given by:

He = [ He
1

He
2

... He
p ] =

[ ν̆y1
N1

e
µ 0 ... ν̆y1

Np
e
µ

0

0 ν̆y2
N1

e
µ ... 0 ν̆y2

Np
e
µ

ν̆y2
N1

e
µ ν̆y1

N1
e
µ ... ν̆y2

Np
e
µ
ν̆y1

Np
e
µ

]

(57)

that is formed by p (p is the number of finite element nodes) matrix blocks of dimension: R3×2, one of this

block for every finite element node. Implicit in equations (56) and (57) is the concept that the matrix block

He
l

(R3×2) associated with the node l not staying on the boundary Γ̆, is null.

From these expressions, the space Ũ Min
q can be defined by means of the following condition:

Ũ
Min

q =

{

∆q | H ∆q = 0

}

(58)

where the integration boundary, Γ̆, is chosen according to the RVE sub-model.

The kinematical constraints given by equation (55), involving the complete external boundary Γµ, does

not preclude micro-cell rigid body motions. Thus, three additional d.o.f. constraints (50) must be added to

the sub-model in order to define a well-posed incremental variational problem, as it is sketched in Figure 6.

Case iv) Hybrid constraints: minimum kinematical constraints with imposition of rigid links on boundary

nodes along arbitrary directions (Figure 7). The motivation of using this kind of boundary conditions on Γµ
is discussed in Section 4.
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Figure 6: Micro-cell Ωµ and finite element mesh with a null average value of the strain fluctuation increments in the region Ω̆ bounded

by the curve Γ̆.

Let us define rigid connections, or links, prescribing identical displacement fluctuation increments be-

tween boundary nodes lying along an arbitrary direction, not necessarily parallel to the micro-cell sides.

The pair of points y+ (in Γ+µ ) and y− (in Γ−µ ), which are constrained to have identical displacement fluc-

tuation increments, are the intersection points between the segment parallel to the given direction (called

periodicity direction) with the boundary Γµ of the RVE, as shown in Figure 7. The prescriptions are im-

posed on y+ and y− by means of equations similar to (52). This constraint is called the generalized periodic

boundary condition.

In this general case, even when identical displacements are imposed on boundary points, because the

normal vectors do not necessarily satisfy the identity: ν−µ = −ν
+
µ , then, the constraint (8) is not automati-

cally guaranteed and it has to be explicitly imposed. Otherwise, the volumetric average strain fluctuation

increments shall not be necessarily zero.

Furthermore, any rigid body translation should be explicitly precluded by adding two d.o.f. constraints

of the type given by equation (50).
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Figure 7: Micro-cell Ωµ and finite element mesh. Hybrid boundary condition: periodicity along arbitrary directions which satisfies a

null strain fluctuation increments in the region bounded by the curve Γµ.

All these kinds of kinematical constraints are imposed through the following blocks of the linear system

of equations:

Ic ∆q = 0; (59)

(Ip − Nµ)∆q = 0; (60)

H ∆q = 0. (61)

Thus, there are nc equations of type (59), 2np equations of type (60) and three equations of type (61) for the

RVE boundary Γµ.

Additional details about the numerical implementation of the kinematical constraints described in the

above cases i) to iv) are given in Appendix A.
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4 Technique to perform the RVE failure analysis

As mentioned above, the RVE standard boundary conditions (SBC) define the ClaMM sub-model

adopted for the analysis during the stable response of the material. Minimum kinematical constraint or

periodic sub-models, such as sketched in Figures 8-a and 8-b, can typically be used in this stage of the

analysis.

After the bifurcation time (t ≥ tN ), the ClaMM model is changed by the CohMM model. To perform

this change, the localization domain ΩL
µ , sketched in Figure 8-d, must be clearly identified. Then, the non-

standard boundary conditions (NSBC) are prescribed along the boundary ΓL
µ and the strain rates: (dβ ⊗s

nµ)/ℓµ are injected into ΩL
µ , according to equation (27).

A technique which allows to determine ΩL
µ and introduces the NSBC, as well as allows to induce the

complete degradation of the homogenized material response, consists of two sequential steps which are

described as follows:

i) First step, immediately after tN is detected:

Regardless of the RVE sub-model defined in the stable regime, at t = tN we change the SBC to

generalized periodic boundary conditions on Γµ having the periodicity direction orthogonal to n, or

equivalently, parallel to the discontinuity surface introduced at the macroscopic scale. This technique

follows the ideas proposed in the work of Coenen et al. [6], where similar kinematical constraints are

called the percolation-path-aligned boundary conditions. The so-considered periodic boundary con-

ditions are sketched in Figure 8-c, and they are prescribed in the model by adding the corresponding

set of equations (53).

In addition to these periodic boundary conditions aligned with the macro-crack, we also enforce the

minimum kinematical constraints on Γµ by adding a complementary set of three equations of the type

(55). In Figure 8-c, we depict a possible selection of dependent d.o.f.’s associated to these equations.

The introduction of the periodic boundary conditions aligned with the macro-crack intensifies the

strain localization zone evolution. This behavior is induced by the microscopic failure processes after

bifurcation, as well as allows for the elastic unloading of the neighbor zones evidencing more clearly

the detection of ΩL
µ . Thus, introducing the periodic boundary conditions aligned with the macro-

crack into the model, and after a short period of time, ΩL
µ and its boundary ΓL

µ can be identified using

the following criteria: y ∈ ΩL
µ , iff , n · dε̃µ(y) · β̇ > 0, where dε̃µ(y) is the micro strain fluctuation

increments defined in equation (7).

ii) Second step, a short time after the periodic boundary conditions aligned with the macro-crack have

been prescribed and the domain ΩL
µ has been determined, the NSBC are introduced in the model.

From the wide class of NSBC that can be imposed on ΓL
µ , we adopt the criterion of defining a Taylor

sub-model or linear displacement boundary conditions. Both of them allow for managing the cases

where ΩL
µ intersects internal voids, as shown in Figure 8-d.
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5 Numerical Model Assessment

In this Section, three numerical examples are presented in order to assess the multiscale failure model

presented in the previous sections.

The first one, described in Sub-Section 5.1, is a detailed failure analysis of several micro-cell sub-

models constructed with different boundary conditions. The example is addressed to evaluate the capability

that these sub-models have to capture the failure mode and the associated homogenized tractions for one

macroscopic problem having a heterogeneous microstructure. In addition, this example allows us to repre-

sent the evolution of the postcritical loading process until reaching the complete degradation of the RVE,

which is represented by a null homogenized traction vector for a given displacement jump.

The second example, presented in Sub-Section 5.2, shows a two-scale analysis of a structural problem.

We solve the structure by using Direct Numerical Simulation (DNS) and the solutions are then compared

to the numerical results supplied by the FOMF approach.

In the last example presented in Sub-Section 5.3, we simulate the failure of a strip undergoing uniaxial

tensile. This numerical test shows the capability of the multiscale model to simulate failure mechanisms

governed by micro-cracks displaying zigzag, or arbitrary, paths.

5.1 Fracture process analysis of a heterogeneous material point.

5.1.1 Microstructure description.

The case of study corresponds to a material having a microstructure with a periodic distribution of

microvoids, such as shown in Figure 9-a. The microvoid periodicity line, along which the distance between

microvoids is closer, forms an angle α = 30.[deg] with the horizontal direction. The remaining length

defining the microstructure is the minimum distance h between voids. Also, Figure 9-a shows a unit cell

with height 4h denoted Cell1x1.

The base material in the micro-structure is characterized with a damage model with an exponential

softening (for a detailed description of this material model see [30] and [20]). The model parameters are:

Young’s modulus: E = 30 [GPa], Poisson’s ratio: ν = 0.3, ultimate stress: ft = 2.5 [MPa] and fracture

energy: G f = 10 N/m. The numerical simulations of the micro-cells are performed by using a smeared

crack approach. Then, the softening modulus of the continuum damage model is regularized with the

fracture energy and the finite element size according to the technique described in [30].

Notice that any point of the microstructure can undergo damage and strain localization. As well as,

there are not strain localization bands predefined in the microstructure.

5.1.2 Loading condition of the micro-cells.

Initially, before detecting the macrosocopic bifurcation, the macroscopic point represented by the unit

cell, Cell1x1, is undergoing an uniaxial vertical stretching process being modeled with the ClaMM approach.

In this stage, the macroscopic strain is given by εR = [εRx1
, εRx2

, εRx1 x2
] = [0, f1(t), 0], where f1(t) is a linear

increasing function in time, as depicted in Figure 9-b.

Once the macroscopic bifurcation time is detected (t = tN), the unit cell model is changed according

with the CohMM. We assume that the macroscopic strain, that is compatible with a strain localization mode,

is given by: ε = εR+εD, where εR(t) corresponds to the regular part of the strain and is defined identically as

in the previous paragraph, with the function f1(t) now decreasing to zero, while εD = (n⊗sβ)/ℓµ typifies the

term related to the displacement jump in the macroscopic band. In this example, we define β(t) = f2(t)ℓµγ,

with f2(t) being a monotonous increasing function of time plotted in Figure 9-b. The vectors n and γ are the

eigenvectors of the acoustic tensor which are determined at the bifurcation time. The vector n represents the

normal vector to the the discontinuity surface at the macroscale. And, as can be observed in the following

numerical results, it is almost identical to the unit vector nµ, that is orthogonal to the strain localization band

at the microscopic scale.

The macroscopic strain increment ε, is injected into the micro-cell as dictated by the CohMM approach,

i.e., εR(t) is uniformly distributed in the unit cell, while εD is uniformly distributed in ΩL
µ .
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5.1.3 Analysis of the strain localization mode detected with different cell models.

Since the microstructure is periodic, the unit cell Cell1x1 with periodic boundary conditions satisfies the

criterion for constituting a RVE, at least for the macroscopic stable material regimen. However, the Cell1x1

with minimum kinematical constraint, or with linear displacements on the boundary, does not satisfy that

criterion, i.e., they are not RVE.

First, we analyze the strain localization mode obtained with the ClaMM and Cell1x1 with periodic

boundary conditions. The strain localization mode is typified by the angles θn and θγ, the time of bi-

furcation tN and the homogenized stress levels at tN . The solution is taken as the exact one and is compared

with the same variables obtained using cells with increasing sizes and subjected to minimally constrained

or linear boundary displacements in order to estimate the required cell size providing similar solutions to

the unit cell with periodic boundary conditions.

The loss of macroscopic material stability is tested during the simulation. Figure 10 shows the evolution

of det (Q(n(θ), t)) vs. the angle θ formed by the vector n and the horizontal direction in different stages of the

analysis. The determinant is normalized with the square of an effective Young’s modulus: E f = (1 − fv)E,

being fv the microvoid volume fraction and E is the Young’s modulus of the bulk material. These results

have been obtained with the Cell1x1. Also, in this Figure, we plot the evolution of the two minimum values

of det(Q). The bifurcation time corresponds to the instant when these curves intersect the horizontal axis

(Point J). Additionally, the two angles given by the minimum values of the determinant correspond with the

two eigenvectors of the acoustic tensor: n and γ and their angles are denoted θn and θγ, respectively.
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sub-model Cell size tN σN
x2

[MPa] (εR)N
x2

θn[deg] θγ[deg]

Cell1×1 0.766 2,380 7.65e-5 -64.8 75.1

Periodic Cell2×2 0.766 2,380 7.65e-5 -64.8 75.1

boundary conditions Cell3×3 0.766 2,380 7.65e-5 -64.8 75.1

Cell1×1 0.694 2,346 6.93e-5 -70.2 75.6

Minimum kinematical Cell2×2 0.694 2,354 6.93e-5 -69.3 76.0

boundary conditions Cell3×3 0.704 2.359 7.03e-5 -68.0 75.6

Cell4×4 0.705 2.361 7.04e-5 -67.9 76.0

Cell1×1 0.890 2.492 8.99e-5 -68.4 81.0

Linear displacement Cell2×2 0.801 2.425 8.00e-5 -65.2 77.4

boundary conditions Cell3×3 0.770 2.405 7.69e-5 -64.8 76.0

Cell4×4 0.757 2.396 7.56e-5 -64.8 75.6

Table 1: Capture of strain localization modes using different cell sizes and sub-models.

Note that, under the loading condition studied in this example, the angle θn defines a vector n which

is almost orthogonal to the line along which the distance between micro-voids are closer, characterizing a

macro crack which is parallel to that direction.

Next, we analyze the localization modes determined with a sequence of cells, such as that depicted

in Figure 11. They are denoted Cell1x1, Cell2x2, Cell3x3, Cell4x4, and are obtained by the horizontal and

vertical repetition of the Cell1x1. Those cells are subjected to minimally constrained or linear boundary

displacements.

The bifurcation mode solutions obtained with the four sequence of cells are presented in Table 1, where

the following variables are depicted: i) the bifurcation time tN , ii) both angles, θn and θγ and iii) the

homogenized stress σx2
and strain (εR)x2

levels at tN .

Figure 12-a shows a zoom, close to tN , of the σx2
vs. (εR)x2

solution curves that have been obtained

with the sequence of four cells using the linear displacement boundary condition sub-model. These curves

are compared with the solution obtained using periodic boundary conditions. Also, Figure 12-b plots the

logarithmic error of the homogenized stress at the bifurcation time tN vs. the logarithmic cell sizes. The

(relative) error is defined as:

e =

∥
∥
∥σ∗

N
− σ

p

N

∥
∥
∥

∥
∥
∥σ

p

N

∥
∥
∥

(62)

where σ∗
N

denotes the stress σx2
at the bifurcation time tN evaluated with the minimum kinematical con-

straint or linear boundary displacement sub-models, and σ
p

N
denotes the same stress determined with the

periodic boundary condition sub-model.

As can be observed from Table 1 and Figure 12, in all cases, the sequence of the stress level reached at

tN tends to the value furnished by the periodic solution. The linear boundary displacement sub-models show

a higher convergence rate, see Figure 12-b. The angles θn and θγ, and tN show a correct trend only in those

cases corresponding to the linear boundary displacement sub-models. However, the solutions provided by
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the sequence of minimum kinematical constraint models display limit values which are slightly different.

We can explain this inconsistency by the fact that, when we use minimum kinematical constraint models,

the micro cells have to be slightly modified in order to avoid the very marked bias induced by voids which

are close to the boundaries with uniform tractions. Thus, we have decided to remove the voids, which are

close to the boundaries, from the cells.

With this analysis we get an estimation of the cell size satisfying the condition which are required to

be considered a RVE. A similar analysis to determine the RVE size by means of a convergence analysis

has been performed by Pindera et al. [36]. They have also used several cells with linear displacement

and minimum kinematical boundary condition sub-models. However, the Pindera’s et al. study has been

restricted only to elastic heterogeneous materials with periodic microstructure, while in the present case we

are extending the discussion by incorporating failure mechanisms in the analysis.

5.1.4 Analysis of objectivity of the CohMM results in the postcritical regime.

After detecting the bifurcation condition, the generalized macro-kinematics is injected are injected in

the cell as dictated by the CohMM approach, and boundary conditions are modified consequently. In this

case, we select a linear displacement boundary condition that is prescribed on ΓL
µ , while, in Γµ we adopt

boundary conditions with a periodicity direction orthogonal to n.

In order to analyze the objectivity of results with respect to the cell size, we adopt two cells denoted

Cell1x1 and Cell1x2, as shown in Figure 9.

Figure 13 shows the finite element meshes employed for modeling both cells: Cell1x1 and Cell1x2 and

the localization domain ΩL
µ evaluated at tN in each case. Note that, in order to include parts of the voids

into ΩL
µ , the voids are discretized with the finite element mesh and they are modeled by assuming an elastic

material with a very small Young’s modulus.

Figure 14 displays the damage map and deformed meshes, defined by the displacement fluctuation

field, of both cells and at two different stages: at the bifurcation time tN and at the end of the analysis.

The damage level obtained in the pre-bifurcation stage is notably high. We remark the fact that damage

evolution, during the pre-bifurcation stage, determines a non-linear homogenized macroscopic constitutive

response displaying, at this level of analysis, a stable energetic dissipation.

The normal and tangential components of the homogenized traction vector T as a function of the macro-

scopic displacement jump β are plotted in Figure 15. The vector T is computed during the post-critical

macroscopic regime by using the CohMM approach. Solutions obtained with the Cell1x1 and Cell1x2 are in-

cluded in the plots. Note that solutions supplied by both cells are almost identical, verifying the objectivity

in the material response

Also, the pseudo-time continuity of T, at the bifurcation time when changing from the ClaMM to

the CohMM model, has been determined. Defining the traction vector TClaMM = σn with σ being the

homogenized stress obtained with the ClaMM approach and with TCohMM the homogenized traction vector

obtained with the CohMM approach, and a relative error norm as: eT = (‖TCohMM − TClaMM‖)/ ‖TCohMM‖;
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then, we have determined that, using periodic constraints during the stable regime, with the Cell1x1 the error

is: eT = 4, 14%, and with the Cell1x2 the error is: eT = 4, 41%.

Note that a macroscopic mixed-mode of fracture is captured by using the FOMF approach.

5.2 Single-Edge Notched Bending (SENB) tests of a beam with microstructure.

In this test, we assess the accuracy of the multiscale formulation to estimate the fracture energy at

the macroscale resulting from the upscaling of the dissipative mechanisms at the microscopic level. To

achieve this goal, we choose a test where the macroscopic fracture energy can be analytically evaluated. In

the microstructure, the crack pattern leading to failure is predefined. While, the macrocrack path can be

precisely estimated.

The tests consist of a three-point notched beam bending problem, undergoing a vertical displacement

that is prescribed in the upper mid-span point. Beams with identical geometries, which dimensions are

displayed in Figure 16-e, and with different microstructures are simulated. A plane strain hypothesis is

considered and the beam thickness is 1.mm.

5.2.1 Description of the material and its microstructure.

Three types of periodic microstructures with a regular arrangement of voids are modeled. Inserts a, b

and c in Figure 16 display a detail of the microstructures. The volume fractions of voids fv in each one of

the three cases are: 0.0, 0.037 and 0.111, respectively. A central vertical band of finite thickness, crossing

the voids, is characterized with a damage model that degrades under tensile stress states. This material is

denoted M1 in Figures 16. This band is embedded into an elastic matrix of material denoted M2 in the

Figure. The microvoids are typified by an extremely soft elastic material (E → 0) denoted M3. The fact of

treating the voids in this way simplifies the algorithmic procedure which is used for detecting the localized

domain ΩL
µ , as well as for evaluating the boundary surface ΓL

µ where the NSBC should be prescribed, once

the CohMM is adopted. Then, a crack is expected to develop in the micro-cells along the vertical band.

The material M4, defined at the macrostructural level, behaves according to the multiscale model, i.e.

macro-stresses σ depend on macro-strain ε through the homogenization procedure. While, material M5 is

a macroscopic elastic model with a constitutive equation given by:

σ̇ = (Ce)homogε̇

where (Ce)homog is the homogenized elastic tensor that is obtained from each microstructure, with equation

(23), in an elastic loading process. For every microstructure, the tensor (Ce)homog is determined in a previous

micro-cell analysis.

Material parameters for M1, M2 and M3 are presented in Table 2.

5.2.2 Numerical models.

Two numerical approaches are used for simulating all these cases:
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Figure 16: SENB tests and material type distribution in the specimens. a-c) micro-cell models without pores, with one and three

pores, respectively, d) DNS models; f-g) MS models; e) specimen geometries.

Constitutive E ν G fµ Ultimate tensile Finite element

Name Model stress fc type

[GPa] [N/m] [MPa]

M1 Damage 20 0.20 100. 2.4 Bilinear Quad.

(microscale)

M2 Elastic 20 0.20 − − Bilinear Quad.

(microscale)

M3 Elastic

(microscale 0 0 0. − Bilinear Quad.

voids)

M4 Multiscale − − − − SD Linear

(macroscale) Triangle

Elastic

M5 (homogenized − − − − Bilinear Quad.

macroscale)

Table 2: SENB tests with microstructures: material properties and finite element descriptions according to the denomination given in

Figure 16.
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i) Multiscale Simulations (MS), for which the finite element models are shown in Figure 16-g:f and

inserts a:c. The beam is modeled with 40 (triangular) E-FEM finite elements in the localization

band (material M4) plus 1136 bilinear quadrilateral elements for modeling material M5. The finite

element models of the unit cells are depicted in Figure 16-a:c. These cells are simulated with standard

bilinear quadrilateral elements. The material softening response is regularized through a smeared

crack approach.

ii) Direct Numerical Simulations (DNS). The finite element models of the macro-structure use refined

meshes to capture the details of the microstructure. The DNS model only represents the central part

of the beam, such as shown in Figures 16-e:d and inserts a:c. The remaining part of the beam is

modeled with the material M5. The beam model uses 53703 standard bilinear quadrilateral finite

elements. A smeared crack approach regularizing the material strain softening response is taken. The

pattern adopted to define the midspan vertical band, where failure is expected to occur, is based on

a periodic repetition of microcells, identical in size and geometry, to those used for the RVE’s of

the MS simulations and shown in Figures 16-a, 16-b and 16-c. Also, the material distributions are

identical to those defined for the MS models.

The results obtained with DNS are taken as reference solutions to perform the numerical validation of

the MS responses.

In the MS models, and during the macroscopic stable response, the RVE representing the heterogeneous

material points (vertical band of the beams) is simulated with a minimum kinematical constraint model, such

as that sketched in Figure 17-a. Once detected the bifurcation condition in a macroscopic finite element, the

RVE associated to the PGS singular quadrature point, is endowed with the NSBC. In the present case, we

adopt a sub-model with linear displacement fluctuation increments in the boundary ΓL
µ , such as sketched in

Figure 17-b. Alternatively, the RVE representing the PGR regular quadrature point, is subjected to the same

boundary conditions as that defined in the microcell during the precritical regime, as sketched in Figure 17-

a. However, the responses of all materials characterizing the RVE of the PGR points are forced to respond

elastically during the postcritical regime.

Note that one of the most striking difference between MS and DNS models lies on the fact that, MS

models utilize strong discontinuity kinematics for simulating the macroscopic scale. Meanwhile, the DNS

models are simulated with a continuum kinematics and the softening response is regularized through a

smeared crack model.

5.2.3 Overall fracture energy obtained with the MS models.

Figure 18 plots the structural responses of the SENB tests: loads vs. vertical displacements of point PI.

As can be observed, the DNS and MS models furnish almost the same macroscopic solutions for the three

microstructures. As expected, microstructures with larger fv require less energy to completely exhaust the

structural response.

Furthermore, Figure 19 plots the homogenized traction vs. displacement jump curves which corre-

sponds to the quadrature point where the bifurcation condition is first satisfied (PGS quadrature point

located in PII of Figure 16-f). The plots of Figure 19 represent the normal components of tractions and

displacement jumps. Observe that the crack opening is almost a pure mode I.

Using the plots of Figure 19, we can evaluate the effective density of dissipated energy in point PII, which

is put into play to completely exhaust the macroscopically homogeneous material point. The dissipated
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RVE Effective Fract. Energy (MS) Pore ratio fv Fract. Energy estimation

G f ( that intersects G f e

[N/m] ΩL
µ ) [N/m]

fv = 0.0 99.90 0 100.

fv = 0.037 88.42 0.1111 88.89

fv = 0.111 66.16 0.3333 66.67

Table 3: SENB test. Effective fracture energy evaluated with different void volume fractions ( fv) in ΩL
µ .

energy is evaluated by determining the area of the plots in Figure 19-a:b, and defining the effective fracture

energy:

G f =

∫ ∞

tN

(T · β̇) dt (63)

This parameter is depicted in Table 3, column 2. Alternatively, we evaluate the energy dissipated by the

RVE through the dissipated energy of those finite elements belonging to the localization band ΩL
µ including

voids, and after the macroscopic bifurcation conditions has been detected (t > tN):

G f e =
1
∣
∣
∣ΩL
µ

∣
∣
∣

∫

ΩL
µ

G fµ dΩ (64)

where G fµ = 100.N/m for the material M1 and G fµ = 0.N/m for the material M3, as shown in Table 2. The

energies G f e are shown in Table 3, column 4, for each microstructure. Note the effect that the variable fv
has on the effective fracture energy.

Comparing the so obtained values G f and G f e, it is observed that, for the RVE without pores, the agree-

ment between both values is almost exact. A slightly larger disagreement is observed when microstructures

with one and three pores are analyzed. This result is explained because G f e is determined by assuming

that, during the stable regime (i.e. previous to the macroscopic bifurcation detection), energy dissipation

has not occurred. In the case of the RVE without pores, the problem is homogeneous before bifurcation

because all materials have the same elastic constant. And macroscopic bifurcation detection happens just at

the moment that the material band, described with the damage model, reaches the limit strength. Then, the

assumption that no dissipation before bifurcation detection happens, is correct. However, in the RVE cases

with pores, damage during the stable regime happens.

Thus, the assumption that the fracture energy is evaluated by (64) is no longer correct and the parameter

G f e thus evaluated, overestimates the fracture energy of the material M4.

The normal vectors to the macroscopic discontinuity surface, evaluated with the condition (44), are

depicted in Figure 19-b.
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Figure 20 shows the objectivity of the structural multiscale response with respect the macroscopic finite

element mesh size. The finite element mesh of Case 2 displays smaller elements with respect to Case 1, in

the zone where the multiscale material M4 is constitutively simulated.

5.3 Uniaxial tensile test.

We simulate the failure of a strip with a microstructure undergoing uniaxial tensile loading in the vertical

direction, such as depicted in Figure 21. A vertical displacement ∆ is imposed uniformly on the upper edge

of the strip, while the lower edge is fixed.

5.3.1 Description of the microstructure

The material is composed of a homogeneous matrix with a statistically uniform distribution of elliptical

microvoids embedded in it. All micro-voids have elliptical shapes and are of identical sizes. Their major

axes are equal to 0.01[mm] and the ratio between the major and minor semi-axes is 1.5. The direction of

the major axis of the elliptical pores, as well as the position of the centers, are randomly distributed. The

volume fraction of voids is: fv = 0.1.

The mechanical behavior of the matrix material is described by a damage model that is characterized

with the following parameters: Young’s modulus: 200GPa, Poisson’s ratio: 0.2, Fracture Energy: 0.5N/m,

and ultimate tensile stress: 2.4MPa. An exponential softening relation is adopted.

As it was explained in previous tests, the voids are also meshed and a soft material is assigned to them

with a Young’s modulus: 2.0 × 10−9GPa.

5.3.2 Finite element model

The strip, at the macro level, is simulated with two E-FEM triangles. In order to compare solutions

provided by different micro-cells, we have simulated two cells of identical sizes by changing randomly the

distribution and position of voids. In Figure 21, the two cells are denoted: Cell 1 and Cell 2. The meshes of

Cells 1 and 2 have 2142 and 2122 bilinear quadrilateral finite elements, respectively.

Periodic standard boundary conditions are assumed, while, for the non-standard boundary conditions,

we impose null-fluctuations (Taylor sub-model) in ΩL
µ . In order to inject the strain dεµ, given by equation

(27), into the micro-cells, it is necessary to determine the normal vectors nµ to the strain localization domain

ΩL
µ . These normal vectors are sketched in the Figure 21-c. And they are evaluated just before inserting the

macro-crack, and once the strain localized zone is known.

5.3.3 Discussion of results

Figure 22 displays the macrostructural responses of the strip, which are obtained with the micro-cells

1 and 2. We plot the load vs. vertical displacement of the upper edge of the strip. When comparing these
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solutions, it is observed a good agreement during the macroscopic stable regime. However, during the

postcritical regime, a small difference is observed. We think that this disagreement is caused by the, well-

known, deficient response supplied by the standard bilinear quadrilateral elements for capturing arbitrary

localized failure modes. An additional argument in favor of this conclusion can be obtained by observing

Figure 24. There, we depict the localized domain that is captured by the cells 1 and 2. The localization

bands, using both cells, have more than one finite element width, probably, due to the poor behavior of the

finite element.

Because the problem is macroscopically homogeneous, all macroscopic points reach the bifurcation

time at the same instant, which is depicted in the plots of the structural response. The bifurcation time has

been detected when the vertical displacement of the upper edge of the strip is ∆ = 0.248 × 10−4[mm] for

Cell 1, and ∆ = 0.254 × 10−4[mm] for Cell 2. Also, a few time steps after, we have marked the macro-

crack insertion instant. It happens when the vertical displacement is ∆ = 0.288 × 10−4[mm] for Cell 1, and

∆ = 0.294× 10−4[mm] for Cell 2. The macro-crack insertion coincides with the model change in the micro-

cells. The bifurcation angle detected with the cells are: θ = −84.6[deg] for Cell 1, and θ = 89.55[deg] for

Cell 2.

Figure 23 displays the evolution of the damage distribution that is obtained with the micro-cell 1. The

sequence of pictures temporally agrees with the points marked in the structural response inserted in the

same Figure. During the initial stage of material degradation and before the detection of the macroscopic

bifurcation, it is observed at the microscopic scale a number of evolving cracks that eventually coalesce into

a single micro-crack with a zigzag path.

Figure 24 displays the evolution of the strain localization zone ΩL
µ for Cells 1 and 2. It is observed that

ΩL
µ changes during the precritical stage. After the bifurcation instant, the strain localization domains remain

fixed because the coalescence phenomenon of the micro-cracks.

6 Conclusions

A Failure-Oriented Multiscale variational Formulation (FOMF), devised for modeling the connection

between failure mechanisms taking place in both macro and micro scales, is presented. Particular attention

is paid to the numerical implementation of the model, which is based on the finite element method. We

introduce an E-FEM technique for simulating the cohesive surface at the macroscale, and a standard finite

element technique at the microscale that regularizes the material response with softening by means of a

smeared crack model.

Within the FOMF framework, the kinematical restrictions (boundary conditions) to be applied at the

RVE-level change, in an incremental sense, during the loading history. In this regard, a generalized and

very flexible treatment given to such boundary conditions has been presented in detail throughout the paper.

It is mandatory to formulate the problem in rates, which allows for introducing the boundary conditions in

an incremental sense.
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In the first numerical test of Section 5, we have evaluated different cell sizes and sub-models in order to

understand their effects on the captured failure modes. In this sense, we conclude that different sub-models

supply similar results under the condition that the micro-cells are large enough. Also, in the same test,

we have evaluated the RVE model capability to reach a complete degradation of the homogenized material

without introducing spurious responses. To reach this goal, a very important aspect of the methodology is

the introduction, after detecting the stability loss at the macro scale, of the hybrid boundary conditions with

periodicity aligned with the crack. This concept was taken from Coenen et al. [6].

As a rigorous proof of the model performance, a comparative study in terms of the Load-Displacement

curves (at macro-level) obtained using the FOMF and DNS approach have been conducted for a typical

problem in the fracture mechanics context (the three-point bending test). The numerical results show full

consistency between both methodologies during the pre and post-bifurcation regimens, as well as when

comparing the dissipated energy at the macroscopic level. These conclusions are clearly proven with the

structural responses obtained in Figure 18.

According with the last numerical example presented in this contribution, we can conclude that the

present formulation can handle rather complex microstructural mechanisms leading to material failure,

either during the macroscopic stable regime of the material, as well as during the postcritical regime.

Finally, a very important conclusion of this work, that complements previous results of the authors, is

referred to the objectivity displayed by the homogenization procedure with respect to the micro-cell sizes.
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A Appendix

Sub-Section 3.2.1 presents the numerical treatment given to the kinematical constraints in order to

define different sub-models of the RVE. In this Appendix, we show additional details about the handling

and computational implementation of these generic kinds of boundary conditions.

A.1 Partitioning of d.o.f.’s and static condensation.

The linear system of equations (59)-(61) expresses the most general kinematical constraints that can be

considered in the proposed model. Any other kind of boundary conditions, such as those specified in the

cases i) to iii) in Sub-Section 3.2.1, can be treated as particular cases of the hybrid boundary condition, by

removing equations from the mentioned equation system. Let us now rewrite (59)-(61) as follows:

J ∆q = 0; (65)

with

J =

[ Ic

Ip − Nµ
H

]

(66)

with J ∈ R(m×n), being m = nc + 2np + 3. These equations implicitly define a natural partition of the

vector ∆q = [∆qd; ∆q f ]
T , where ∆qd ∈ R

m collects all the dependent d.o.f.’s, and ∆q f collects all the free

d.o.f.’s. Using the same sets of d.o.f.’s, the matrix J and the system of equations (66) can be partitioned and

rewritten as:

J ∆q =
[

Jd J f

]
[

∆qd

∆q f

]

= 0 (67)
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which allows for a static condensation of the ∆qd d.o.f.’s, which is given by:

∆qd = L∆q f ; (68)

with: L = −(Jd)−1 J f .

Thus, we can typify the different spaces: Ũq and Vq, for each RVE sub-model, by means of the following
unified notation:

Ũq ≡

{

∆q =
[

∆qd, ∆q f

]T
| ∆qd = L ∆q f

}

(69)

Vq ≡

{

q̂ =
[

q̂d, q̂ f

]T
| q̂d = L q̂ f

}

(70)

A.2 Selection of dependent nodal d.o.f.’s.

The selection of the dependent d.o.f.’s of the vector ∆q, should be based on the fact that the static

condensation defined in equation (68) can be performed. This requires that the square matrix Jd has to be

nonsingular. Note that an admissible static condensation of the d.o.f.’s ∆qd does not automatically guarantee

the well-posedness of the finite element micro-cell model, i.e. the non-singularity of the reduced stiffness

matrix.

The selection of the dependent nodal d.o.f.’s, ∆qd, is based in the following considerations, see Fig-

ure 25:

i) All the d.o.f.’s of the nodes which are prescribed through equations of the type (59), must belong to

∆qd. The partition of the displacement vector associated with these d.o.f.’s, is generically denoted as

∆qc
d
;

ii) All the d.o.f.’s of the nodes in (y+), which are linked to points y− (∈ Γ−) through equation (60), belong

to ∆qd. The partition of the displacement vector associated with these d.o.f.’s, is generically denoted:

∆q
p

d
.

iii) Every block of equations (61) adds three additional d.o.f.’s to the list of ∆qd. These three d.o.f.’s are

associated to nodes in the boundary Γ̆. The partition of the displacement vector associated with the

three d.o.f.’s, is generically denoted: ∆qh
d
.

Thus, the vector ∆qd can be partitioned according to: ∆qd = [∆qc
d
;∆q

p

d
;∆qh

d
]T . With this partitioning,

the equation system (66) can be rewritten as follows:

m






nc{

2np{

3{





I
c 0 0 0

J
p

dc
I

p J
p

dh
J

p

f

Jh
dc

Jh
dp

Jh
dh

Jh
f









∆qc
d

∆q
p

d

∆qh
d

−−

∆q f





=





0

0

0




(71)

It can be observed that the matrix Jd, in expression (67), corresponds to the square matrix formed by the

first 3 × 3 sub-block matrices on the left part of equations.

Also, note in the second line of equations (71), that the blocks of three sub-matrices: J
p

dc
, J

p

dh
and J

p

f
,

contain the negative expressions of the shape functions Nµ evaluated in the point y−, as described in the

right part of equation (52). Thus, the second block of 2np equations includes different possible scenarios of

prescribing periodic conditions between boundary points. As an example, let us consider a node placed in

y+ and having a displacement ∆qp, see Figure 5 and equation (52). This node is linked to the point y− which

may not coincide with a finite element mesh node. In this case, the displacement of the point y− should

be interpolated as shown in the right part of equation (52). This interpolation could involve nodes which:

i) are prescribed, ii) belong to the minimum kinematical constraint condition, or iii) are fixed nodes (i.e.

prescribed with zero displacement increment). Their respective displacements belong to the blocks denoted

∆qc
d
, ∆qh

d
, ∆q f . Then, the sub-matrices: J

p

dc
, J

p

dh
J

p

f
will be constituted by the negative expressions of the

shape functions associated to those nodes, respectively.

In the third line of (71), the block of three equations (assuming problems in R2) are built with matrices

H j, as shown in equations (55)-(57), and the addition of zero-matrix blocks, depends on which d.o.f.’s, ∆qc
d
,

∆q
p

d
, ∆qh

d
or ∆q f are linked through the minimum kinematical constraint (61).
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A.3 Strategy for solving the finite element governing equations.

The incremental equilibrium problem of the micro-cell finite element model is written in terms of the

displacement fluctuations increments, as follows:

q̂T · R(∆q) = q̂T ·
[

nelem∧

e=1

∫

Ωe
µ

(Be
µ)

T∆σµ(∆q) dΩe
µ

]

= 0; ;∀ q̂ ∈ Vq (72)

where R represents the residual vector of the incremental internal forces which should be zero;
∧

is the

standard assembling operator, nelem the number of finite element in the RVE mesh, Be
µ is the element strain-

displacement matrix, Ωe
µ is the finite element domain in the microscale. We make explicit the dependence of

∆σµ with ∆q. In fact, from the material constitutive relation, the microscopic stress increment ∆σµ depends

on the strain increment: ∆εµ := ∆ε + ∇s
x(Niµ∆qi).

The nonlinear system of equations resulting from (72), after inserting the kinematical constraints forcing
the finite element functions to belong to (69) and (70), respectively, can be solved through a Newton-
Raphson iterative scheme. Then, a typical iteration “k” can be written as follows:

[

L q̂ f

q̂ f

]T

·






[

Rd

R f

](k−1)

+

[

Kdd Kd f

K f d K f f

]

︸            ︷︷            ︸

K

(k−1) [

L Dq f

Dq f

](k)






= 0 ; ∀ q̂ f (73)

where K is the Jacobian matrix of the residue, K = ∂R/∂∆q and Dq f is the increment of ∆q f at iteration k.

Expression (73) is partitioned according to the vector partition [∆qd, ∆q f ]
T discussed above. Condensing

the dependent d.o.f.’s at iteration k, the system of equations (73) results:

(

LT Kdd L + Kd f L + LT K f d + K f f

)(k−1)
Dq

(k)

f
= −
[

R f + LT Rd

](k−1)
(74)

Box 4 shows a pseudo-code written in Matlab, with the implementation of the Newton-Raphson itera-

tive scheme for solving the micro-cell evolution problem. As can be seen, the static condensation procedure

is easily implemented by defining two list of d.o.f.’s: the free ones, do f f , and dependent ones do fd, respec-

tively. These d.o.f.’s lists, and also the matrix L, may be re-evaluated in every time step that is required by

the problem type. The stiffness matrix, KT and the residual vector ∆Fint are assembled using the complete

set of d.o.f.’s, and posteriorly, every partition of both terms are selected using the list do f f and do fd.

The Box 5 shows the pseudo-code of the function that evaluates both lists: do f f and do fd, and the

matrix L.
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...

%Loop on the time integration

for t = 0 :∆t : tE

...

%update the macrostrain

ε = ε+∆ε;

%If required, build new boundary condition data set

[doff,dofd,L] = BCDefinition(t,...); %See Box 5

...

Dq = zeros(doff,1);

%Non-Linear Newton-Raphson iteration

while ∼(ConvergenceCriteria)

%Evaluation of the stiffness matrix KT and

% incremental internal force vector ∆Fint

[KT,∆Fint,∆σ] = Assembly(q,ε,σ,ConstitutiveModel,...);

%Static Condensation

K = KT(doff,doff)+L’*KT(dofd,doff)+KT(doff,dofd)*L+...

L’*KT(dofd,dofd)*L;

R = (∆Fint(doff)+L’*∆Fint(dofd))-∆Fext(doff);

if |R| < tol; break ; end % end of while

%Equation System Solution

Dq = -K\R;

%Update displacement fluctuations

q(doff) = q(doff)+Dq;

q(dofd) = q(dofd)+L*Dq;

end

...

%update the macrostress

σµ = σµ+∆σµ;

∆σ = Homogenization(∆σµ,...);

σ = σ+∆σ;

...

end

...

Box 4: Pseudo-code (Matlab) adapted to manage diverse RVE models (do fd and do f f are the list of constrained and free d.o.f.’s,

respectively).
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function [doff,dofd,L] = BCDefinition(t,...)

...

%1- Build the list of d.o.f’s with prescribed displacements

% ( case i, SubSection 3.2.1)

[dofc
d
] = DispPrescBCDef(t,...);

%2- Build the list of d.o.f’s associated to the minimum kinematical

% constraint loops ( case iii, SubSection 3.2.1)

...

%Loop on all the homogenization domains

for iDH = 1:nDomainHomogenization(t)

...

%Loop on the elements of the domain boundary discretization Γ̂iDH

for iElFr = 1:nFrontierElem(iDH)

[dofh
f
(iDH,iElFr,:),dofh

d
(iDH,iElFr,:),Jh(iDH,iElFr,:)] = ...

DomHomBCDef(t,...);

end

end

%3- Find the d.o.f.’s subjected to rigid links,

% select the dependent ones ( case ii, SubSection 3.2.1)

...

%Loop on all rigid links between node and point y

for iPR = 1:nPeriodicRestriccion(t)

[dof
p

f
(iPR,:),dof

p

d
(iPR,:),Jp(iPR,:)] = ...

PerRestBCDef(t,y(iPR),...);

end

%4- Build the matrices of the overall boundary conditions.

[doff,dofd,J] = AssemblyBC(dofc
d
,dofh

f
,dofh

d
,dof

p

f
,dof

p

d
,...

,Jh,Jp,...);

%5- Static condensation BC matrices

L = -J(dofd,dofd)\J(dofd,doff);

end

Box 5: Pseudo-code (Matlab). Data-set-definition to manage the RVE boundary conditions (do fd and do f f are the list of constrained

and free d.o.f.’s, respectively).
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[35] D. Peric, E.A. de Souza, R.A. Feijóo, M. Partovi, and A.J. Carneiro Molina. On micro-to-macro transition for multiscale

analysis on non-linear heterogeneous materials: unified variational basis and finite element implementation. Int. J. Num. Meth.

Eng., 87:149–170, 2011.

[36] M. Pindera, Khatam H, A.S. Drago, and Y. Bansal. Micromechanics of spatially uniform heterogeneous media: A critical review

and emerging approaches. Composites: Part B, pages 349–378, 2009.
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