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Abstract A two-scale model is developed for fluid flow in
a deforming, unsaturated and progressively fracturing porous
medium. At the microscale, the flow in the cohesive crack
is modelled using Darcy’s relation for fluid flow in a porous
medium, taking into account changes in the permeability due
to the progressive damage evolution inside the cohesive zone.
From the micromechanics of the flow in the cavity, iden-
tities are derived that couple the local momentum and the
mass balances to the governing equations for an unsaturated
porous medium, which are assumed to hold on the macro-
scopic scale. The finite element equations are derived for this
two-scale approach and integrated over time. By exploiting
the partition-of-unity property of the finite element shape
functions, the position and direction of the fractures are inde-
pendent from the underlying discretization. The resulting dis-
crete equations are nonlinear due to the cohesive crack model
and the nonlinearity of the coupling terms. A consistent line-
arization is given for use within a Newton–Raphson iterative
procedure. Finally, examples are given to show the versatility
and the efficiency of the approach. The calculations indicate
that the evolving cohesive cracks can have a significant influ-
ence on the fluid flow and vice versa.
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1 Introduction

Since the pioneering work of Terzaghi [24] and Biot [4]
the flow of fluids in deforming porous media has received
considerable attention. Recently, Lewis and Schrefler [13]
have given an account of a topic which is crucial for under-
standing and predicting the physical behaviour of many sys-
tems of interest, for example, in geotechnical and petroleum
engineering, but also for soft tissues. Because of the compli-
cated structure and functioning of human tissues, the
classical two-phase theory has been extended to three and
four-phase media, taking into account ion transport and
electrical charges [10,14,23]. A general framework for
accommodating multi-field problems has been presented by
Jouanna and Abellan [12].

In spite of the importance of the subject, flow in damaged
porous media has received little attention. Yet, the presence of
damage, such as cracks, faults, and shear bands, can markedly
change the physical behaviour [6,22]. Furthermore, the fluid
can transport contaminants which can dramatically reduce
the strength of the solid skeleton. To account for such phe-
nomena, the fluid flow must be studied also in the presence
of discontinuities in the solid phase. The physics of the flow
within such discontinuities can be very different from that of
the interstitial fluid in the deforming bulk material as shown
by Schrefler et al. [22]. These differences affect the flow pat-
tern and therefore also the deformations in the vicinity of
the discontinuity. As we will show at the end of the pa-
per, the local differences in flow characteristics can even

123



228 Comput Mech (2008) 42:227–238

influence the flow and deformations in the entire body of
interest.

In this contribution, we will develop a general numeri-
cal model for flow in progressively fracturing porous media.
Building on earlier work in which we have constructed a
numerical model for shear-band propagation in deforming,
fluid-saturated porous media [8,20], we now extend the the-
ory to include flow inside a propagating cohesive crack. Like
in Réthoré et al. [21] the flow inside the evolving crack can
also be in the tangential direction. This is achieved by a priori
adopting a two-scale approach. At the fine scale the flow in
the cavity created by the cohesive crack is modelled using
a Darcy relation for a damaged porous material. Since the
cross-sectional dimension of the cavity is small compared to
its length, the flow equations can be averaged over the width
of the cavity. The resulting equations provide the momentum
and mass couplings to the standard equations for an unsat-
urated porous medium, which are assumed to hold on the
macroscopic scale.

Numerically, the two-scale model which ensues, imposes
some requirements on the interpolation of the displacement
and pressure fields near the discontinuity. The displacement
field must be discontinuous across the cavity. Furthermore,
the micromechanics of the flow within the cavity require that
the flow normal to the cavity is discontinuous, and in con-
formity with Darcy’s relation which is assumed to hold for
the surrounding porous medium, the normal derivative of the
fluid pressure field must also be discontinuous from one face
of the cavity to the other. For arbitrary discretizations, these
requirements can be satisfied by exploiting the partition-of-
unity property of finite element shape functions [2], as has
been done successfully in applications to cracking in single-
phase media: Black and Belytschko [5], Moës et al. [16],
Belytschko et al. [3], Wells and Sluys [25,26], Wells et al.
[27,28], Remmers et al. [17], Réthoré et al. [18,19], de Borst
et al. [7].

To provide a proper setting, we will first briefly recapit-
ulate the governing equations for a deforming unsaturated
porous medium under quasi-static loading conditions. The
strong as well as the weak formulations will be considered,
since the latter formulation is crucial for incorporating the
micromechanical flow model properly. This micromechan-
ical flow model is the subject of the subsequent section,
where it will be demonstrated how the momentum and mass
couplings of the micromechanical flow model to the sur-
rounding, unsaturated porous medium can be accomplished
in the weak formulation. Time integration and a consistent
linearization of the resulting equations, which are nonlin-
ear due to the coupling terms and the cohesive crack model,
complete the numerical model. Finally, example calcula-
tions are given of a body with a propagating cohesive crack.
Apart from demonstrating the effectiveness of the two-scale
approach, the calculations show that the influence of the

presence of discontinuities on flow and deformation patterns
can be significant.

2 Governing equations

2.1 Strong form

The bulk is considered as a three-phase medium subject to the
restrictions of small displacement gradients and small varia-
tions in the concentrations [12]. The problem is formulated
in terms of the displacement of the solid phase us and the
water and air pressures pw and pa , respectively. The voids
of the solid skeleton (porosity n) are partially filled with water
and partially with air. The partition is given by the degree of
saturation for each fluid phase Sπ which sum to one:

Sw + Sa = 1 (1)

The degrees of saturation are described by means of experi-
mentally determined functions of the capillary pressure pc =
pa − pw:

Sw = Sw(pc) (2)

In the example, the Van Genuchten relation is used, e.g.
Meschke and Grasberger [15], which reads:

Sw(pc) = Sirr + (1 − Sirr )

(
1 +

(
pc

pre f

) 1
1−l

)l

(3)

The degree of saturation for the water is not allowed to
decrease to the irreducible saturation Sirr , and the reference
pressure pre f is used as a scaling factor for the capillarity
pressure pc. l is the porosity index which characterizes the
micro-structure of the solid porous skeleton.

The solid phase is supposed to sustain an effective stress
state given by the Cauchy stress tensor σσσ s . Furthermore, the
assumptions are made that convective terms and the gravity
acceleration can be neglected, and that the processes which
we consider, occur isothermally and quasi-statically. With
these assumptions, the balance of linear momentum for the
mixture reads, e.g. Abellan and de Borst [1]:

∇ · σσσ = 0 (4)

where σσσ is the total stress and the body force has been
neglected. For future use we define p as the average pres-
sure in the fluid phases. Assuming immiscibility we have:

p = Sw pw + Sa pa (5)

The Biot coefficient α, cf. Lewis and Schrefler [13], is given
by the following relation:

α = 1 − Kt/Ks (6)
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with Ks the bulk modulus of the solid material and Kt the
overall bulk modulus of the porous medium.

Under the same assumptions as for the balance of momen-
tum, one can write the balance of mass for each phase. This
is achieved by considering a control volume moving with the
solid skeleton. Over this control volume the mass balance for
each phase π reads:

Sπ

α − n

Ks
ṗ + αSπ∇ · vs + nṠπ

+ nSπ

Kπ

ṗπ + n∇ · (vπ − vs) = 0 (7)

with a superimposed dot denoting time differentiation, ρπ

the mass density and vπ the absolute velocity of constituent
π . The first two terms account for the changes in the porous
skeleton, the third term is due to the variation in the saturation
and the fourth term represents the change in mass density due
to the pressure change. The last term represents the outflow
from the control volume. Taking into account the expression
of the average pressure (5) and Eq. (2), the time derivative of
the average pressure is:

ṗ =
(

Sw + (pa − pw)
∂Sw

∂pc

)
ṗw

+
(

Sa − (pa − pw)
∂Sw

∂pc

)
ṗa (8)

The governing equations, i.e. the balance of momentum
of the saturated medium, Eq. (4), and the balances of mass,
Eq. (7), are complemented by the kinematic relation,

εεεs = ∇sus (9)

with us , εεεs the displacement and strain fields of the solid,
respectively, the superscript s denoting the symmetric part
of the gradient operator, and an incrementally linear stress-
strain relation for the solid skeleton. The effective stress
increment in the solid skeleton, dσσσ ′

s is related to the strain
increment dεεεs by an incrementally linear stress-strain rela-
tion for the solid skeleton,

dσσσ ′
s = D̄tan : dεεεs (10)

where D̄tan is the fourth–order tangent stiffness tensor of the
solid material and the d - symbol denotes a small increment.
Since the effective stress in the solid skeleton is related to the
partial stress by σσσ ′

s = σσσ s/(1 − n), the above relation can be
replaced by

dσσσ s = Dtan : dεεεs (11)

where the notation Dtan = (1 − n)D̄tan has been used. In
the examples, a linear-elastic behaviour of the bulk mate-
rial has been assumed, and we have set Dtan = D, the
linear-elastic stiffness tensor. For the pore fluid flow, Darcy’s

relation for isotropic media is assumed to hold for each of
the fluid phases,

n(vπ − vs) = −kπ∇ pπ (12)

with kπ the permeability coefficient of the porous medium
with respect to the fluid phase π . This parameter depends
on the viscosity µπ of the phase, and on the microstructure
of the solid skeleton through the intrinsic permeability k. A
dependency on the degree of saturation can be included via
the relative permeability coefficient krπ , such that:

kπ = k

µπ

krπ (Sπ ) (13)

Following Van Genuchten, the relative permeability for the
water is defined as

krw = √
Se

(
1 − (1 − S

1
l

e )l
)2

(14)

and that for the air phase as

kra = (1 − Se)
2
(

1 − S
2+3l

l
e

)
(15)

where Se is a relative saturation

Se = Sw − Sirr

1 − Sirr
(16)

The boundary conditions (see Fig. 1)

n� · σσσ = tp, u = up (17)

hold on complementary parts of the boundary ∂�t and ∂�u ,
with � = ∂� = ∂�t ∪ ∂�u , ∂�t ∩ ∂�u = ∅, tp being the
prescribed external traction and up the prescribed displace-
ment at the boundary, and

n(vπ − vs) · n� = qπp · n�, pπ = pπp (18)

hold on complementary parts of the boundary ∂�q and ∂�p,
with � = ∂� = ∂�q ∪ ∂�p and ∂�q ∩ ∂�p = ∅, qp · n�

Γd

ΓdΓp

Γq

Γt
Γu

utp p

n

Ωp

q

p

p

Fig. 1 Boundary conditions and internal discontinuity �d for body �
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and pp being the prescribed outflow of pore fluids and the
prescribed pressures, respectively.

2.2 Weak form and coupling

To arrive at the weak form of the balance equations, we mul-
tiply the momentum balance (4) and the mass balances (7)
by admissible test functions for the displacements ηηη of the
skeleton and for the pressures ζπ . Substitution into Equations
(4) and (7), using Darcy’s relation (12), integrating over the
domain � and using the divergence theorem leads to the cor-
responding weak forms:∫
�

(∇ · ηηη) · σσσ d� +
∫
�d

�ηηη · σσσ � · n�d d� =
∫
�

ηηη · tp d�

(19)

and

−
∫
�

αSwζw∇ · vs d� +
∫
�

kw∇ζw · ∇ pw d�

−
∫
�

ζw

ṗw

Qww

d� −
∫
�

ζw

ṗa

Qwa
d�

+
∫
�d

n�d · �ζw n(vw − vs)� d� =
∫
�

ζwn� · qwp d�

(20)

for the water and

−
∫
�

αSaζa∇ · vs d� +
∫
�

ka∇ζa · ∇ pa d�

−
∫
�

ζa
ṗw

Qaw

d� −
∫
�

ζa
ṗa

Qaa
d�

+
∫
�d

n�d · �ζa n(va − vs)� d� =
∫
�

ζan� · qap d� (21)

for the air. The coefficients Qi j are defined as:

1

Qww

= Sw

α − n

Ks

(
Sw + ∂Sw

∂pc
pc

)
+ nSw

Kw

− n
∂Sw

∂pc

1

Qwa
= Sw

α − n

Ks

(
1 − Sw − ∂Sw

∂pc
pc

)
+ n

∂Sw

∂pc

1

Qaw

= (1 − Sw)
α − n

Ks

(
Sw + ∂Sw

∂pc
pc

)
+ n

∂Sw

∂pc

1

Qaa
= (1 − Sw)

α − n

Ks

(
1 − Sw − ∂Sw

∂pc
pc

)

+n(1 − Sw)

Ka
− n

∂Sw

∂pc

Because of the presence of a discontinuity inside the
domain �, the power of the external tractions on �d and
the normal flux through the faces of the discontinuity are

essential features of the weak formulation. Indeed, these
terms enable the coupling between the bulk and the inner
cavity of the discontinuity.

The mechanical coupling stems from the cohesive trac-
tions due to the cracking of the solid phase and the tractions
applied by the fluid in the discontinuity onto the faces of the
discontinuity. We assume that the fluid tractions are the same
on each side of the discontinuity, and that they are imposed
by the fluid pressure inside the discontinuity. Because of the
continuity from the cavity to the bulk, this gives:

σσσ · n�d = td − pn�d on �d (22)

with td the cohesive tractions. Now, the weak form of the
balance of momentum becomes:∫
�

(∇ · ηηη) · σσσ d� +
∫
�d

�ηηη� · (td − pn�d ) d� =
∫
�

ηηη · tp d�

(23)

Since the cohesive tractions have a unique value across the
discontinuity, the pressure p must have the same value at both
faces of the discontinuity, and, consequently, this must also
hold for the test function for the pressure, ζ . Accordingly, the
mass transfer coupling term for the water can be rewritten as
follows:∫
�d

n�d · � ζwn(vw − vs)� d� =
∫
�d

ζwnn�d · � vw − vs� × d� =
∫
�d

ζwn�d · qwdd� (24)

where qwd denotes the flux of the water through the faces
of the discontinuity. The above identities for the coupling
of the mass transfer can be interpreted as follows. Part of
the fluid that enters the cavity through one of its faces flows
away tangentially, that is in the cavity. Therefore, the fluid
flow normal to the cavity is discontinuous. Because the fluid
flow between the cavity and the surrounding porous medium
has to be continuous at each of the faces of the discontinu-
ity, and because the fluid velocity is related to the pressure
gradient via Darcy’s law, the gradient of the pressure nor-
mal to the discontinuity must be discontinuous across the
crack. Next, the influence of the tangential ‘micro’-flow in-
side the discontinuity on that at the ‘macro’-scale will be
quantified.

In order to derive a relation for the mass transfer between
the cavity and the bulk, we consider the fluid flow inside the
cohesive zone. The permeability inside this porous and dam-
aged zone is denoted by kπd . The geometry of the cavity is
shown in Fig. 2. For simplicity, and because the contribu-
tion of the gas phase can be neglected, pa is assigned a zero
value over the entire domain. The problem is now specialized
to an unsaturated porous medium with a passive air phase.
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Fig. 2 Cavity geometry
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Under the assumptions listed in the preceding section, the
mass balance for the water inside the cohesive zone reads:

α∇ · vs + n∇ · (vw − vs) + 1

Qww

∂pw

∂t
= 0 (25)

Because the width of the cavity 2h is negligible compared to
its length, the mass balance is enforced in an average sense
over the cross section:

h∫
−h

[α∇ · vs + n∇ · (vw − vs) + 1

Qww

∂pw

∂t
]dy = 0 (26)

The variation of the pressure over the height of the cavity is
neglected and the last term becomes:

h∫
−h

1

Qww

∂pw

∂t
dy = 2h

1

Qww

∂pw

∂t
(27)

For the two first terms, the divergence operator leads to differ-
ent contributions. For the first term, we obtain:

h∫
−h

α∇ · vsdy =
h∫

−h

α[∂vs

∂x
+ ∂ws

∂y
]dy (28)

where vs and ws are the component of the solid velocity
tangential and normal to the crack, respectively. The contri-
bution that involves derivatives with respect to y is directly
rewritten as:

h∫
−h

α
∂ws

∂y
dy = α[ws(h) − ws(−h)] = α� ws� (29)

The second term is elaborated as follows:

h∫
−h

α
∂vs

∂x
dy = ∂

∂x

⎛
⎝ h∫

−h

αvsdy

⎞
⎠

−α

(
vs(h)

∂h

∂x
− vs(−h)

∂(−h)

∂x

)
(30)

Assuming that vs varies linearly with y, the integral can be
solved analytically:

h∫
−h

α
∂vs

∂x
dy = ∂

∂x

(
2hα

vs(h) + vs(−h)

2

)

−2α
vs(h) + vs(−h)

2

∂h

∂x
(31)

Because α depends on the capillarity pressure only, it is
supposed to be constant over a cross section. Rearranging
Eq. (31) and defining 〈vs〉 = vs (h)+vs(−h)

2 :

h∫
−h

α
∂vs

∂x
dy = 2α〈∂vs

∂x
〉h (32)

Applying the same operations to the second term of Eq. (26),
the following expression can be derived:

h∫
−h

n∇ · (vw − vs)dy = � n(ww − ws)�

+ ∂

∂x

⎛
⎝ h∫

−h

n(vw − vs)dy

⎞
⎠

−
(

n(vw − vs)(h)
∂h

∂x
− n(vw − vs)(−h)

∂(−h)

∂x

)
(33)

The term � n(ww − ws)� can be identified as the coupling
term n�d ·qd of the weak form of the mass balance. Introduc-
ing Darcy’s relation projected onto the axis tangential to the
crack, n(vw − vs) = −k ∂pw

∂x , with k a generic permeability,
the following relation is obtained:

h∫
−h

n∇ · (vw − vs)dy = � n(ww − ws)� − ∂

∂x

⎛
⎝ h∫

−h

k
∂pw

∂x
dy

⎞
⎠

+
(
k
∂pw

∂x
(h)

∂h

∂x
− k

∂pw

∂x
(−h)

∂(−h)

∂x

)

(34)
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At the faces of the cavity the permeability equals that of
the bulk kw, and for continuity reasons ∂pw

∂x (h) = ∂pw

∂x (−h).
Inside the crack, k is assumed not to depend on y, but it is
supposed to be affected by the decohesion of the solid skel-
eton. Consequently, the following expression is assigned to
the permeability inside the cavity:

k = kwd(Sw, � us�) (35)

which will be specialized in the next subsection. Finally,
introducing this expression in Eq. (34) and inserting the result
obtained in Eq. (26), the coupling term is written as:

n�d · qwd = 2h
1

Qww

∂pw

∂t
+ α� ws�

+2α〈∂vs

∂x
〉h − ∂

∂x

(
2kwd

∂pw

∂x
h

)

+2kw

∂pw

∂x

∂h

∂x
(36)

2.3 Cohesive interface relation

The decohesion of the solid skeleton inside the interface is
modelled using a discrete relation between the interface trac-
tions td and the relative displacements � us�:

td = td(� us�, κ) (37)

with κ a history parameter. After linearization, necessary to
use a tangential stiffness matrix in an incremental-iterative
solution procedure, one obtains:

δtd = Tδ� us� (38)

with T the material tangent stiffness matrix of the discrete
traction–separation law:

T = ∂td

∂� us�
+ ∂td

∂κ

∂κ

∂� us�
(39)

Whichever formalism is used, plasticity or damage, a key
element in a cohesive law is the presence of a work of separa-
tion or fracture energy, Gc, which governs nucleation of voids
and enters the interface constitutive relation (37) in addition
to the tensile strength ft . It is defined as the work needed to
create a unit area of fully developed crack:

Gc =
∞∫

0

td(� us�, κ) d� us� (40)

and thus equals the area under the decohesion curve. The
initiation criterion is written in term of maximum traction at
the tip

tmax = max
θ∈]−π,π [

teq = teq(θmax ) ≥ tc (41)

where tc is the cohesive strength and t gives the angle θ with
the local tangent vector to the crack. The equivalent traction

teq [9] is computed from the tractions of an averaged stress
tensor at the crack tip:

teq =
√

t2
n + t2

t /β (42)

where

tn = n · σσσ ti p · n , ts = t · σσσ ti p · n (43)

Typically, β = 1.5.
The stresses vary strongly in the vicinity of the tip and

an accurate computation is less straightforward. Following
Wells and Sluys [25] and Jirasek [11] we use a smoothing of
the stresses around the tip and compute the stress at the tip
by the following nonlocal-like procedure:

σσσ ti p =
∫
�

wσσσ d�∫
�

w d�
(44)

where w is a Gaussian weight function:

w = e−r2/2l2

with r the distance to the tip, and l a characteristic length
which defines the size of region of influence of the stress.
Because of the variation of the stress, a small value of l is
desired, preferably in the same order of magnitude as the
characteristic element length. This is accomplished in the
following manner. By virtue of the linear behaviour of the
solid phase in the bulk, a separate, independent integration
domain can be defined, which follows the tip during propa-
gation. This domain contains integration cells smaller than
those of the mesh used in the discretization—typically their
length is in the order of 15–20% of the element size. More-
over, a higher-order Gaussian quadrature is used over this
domain, which results in a very accurate determination of
the tip stress.

For the bulk material, it has been assumed that the cur-
rent value of the porosity equals its initial value. Thus, the
intrinsic permeability of the skeleton is not affected by the
strains. This hypothesis is considered to be less applicable
to the cohesive zone. At this point, discrete relation is intro-
duced between the porosity inside the interface, nd , and the
displacement jump � us�:

nd = nd(� us�) (45)

The change in porosity affects the permeability in the process
zone via a coefficient kn , as kwd is defined by:

kwd = k kn krw

µw

(46)

where kn is given by the following heuristic relation [15]:

kn(nd) = 10δn with δn = 6(nd − n)

0.3 − 0.4n
(47)
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3 Numerical elaboration

3.1 Discretization

The model presented in the previous section puts some
restrictions on the displacement and pressure fields in the
vicinity of the discontinuity. The opening of the disconti-
nuity must be described with sufficient accuracy in order to
reproduce the cavity geometry properly. The pressure field
has to be continuous across the discontinuity, but its nor-
mal derivative should be discontinuous from one face of the
cavity to the other. These requirements can be satisfied by
exploiting the partition-of-unity property of finite element
shape functions [2].

In the spirit of previous work on cracks in single-phase
media [3,17] the interpolation of each component of the dis-
placement field of the solid phase is enriched with discontin-
uous functions:

us =
∑
i∈N

Ni ūi +
∑

i∈Ncut

NiH�d ûi (48)

where Ni are standard finite element shape functions sup-
ported by the set of nodes N included in the discretized
domain �. Nodes in Ncut have their support cut by the dis-
continuity, Fig. 3. They hold additional degrees of freedom
ûi corresponding to the discontinuous function

H�d (x) = x · n�d

‖x · n�d ‖
(49)

Fig. 3 Enrichment strategy: circles denote Ncut

Symbolically, Eq. (48) can be written as

us = NU (50)

where the matrix N contains the standard interpolation poly-
nomials Ni as well as the discontinuous function H�d , and
the array U contains the displacement degrees of freedom ūi

and ûi . Furthermore, we define the matrix �N� which contains
the jumps in the interpolation polynomials, and the matrix
B, which contains the bounded part of spatial derivatives
of N.

For the pressure approximation, the standard finite ele-
ment interpolation is enriched with the function D�d , which
is the distance to the discontinuity. D�d is continuous through
the discontinuity, but its normal derivative is discontinuous
and equal to H�d :

n�d · ∇D�d = H�d (51)

All nodes whose support is cut by the discontinuity, Ncut ,
hold additional pressure degrees of freedom:

pw =
∑
i∈N

Hi p̄i +
∑

i∈Ncut

HiD�d p̂i (52)

Hi are the finite element shape functions used as partition of
unity for the pressure interpolation. In a fashion similar to the
displacement interpolation, we write Eq. (52) symbolically
as:

pw = HP (53)

where H contains the shape functions Hi as well as the dis-
tance function D�d , and the array P contains the degrees of
freedom p̄i and p̂i .

The choices for Ni and Hi are driven by modelling require-
ments. Indeed, the modelling of the fluid flow inside the cav-
ity needs the second derivatives of the pressure, see Eq. (36).
Hence, the order of the finite element shape functions Hi has
to be sufficiently high, otherwise the coupling between the
fluid flow in the cavity and the bulk will not be achieved.
Further, the order of the finite element shape functions Ni

must be greater than or equal to the order of Hi for consis-
tency in the discrete balance of momentum equation. In prac-
tice, we will use quadrilateral elements with bilinear shape
functions for the displacement as well as for the pressure
discretization.

3.2 Discrete equations and resolution

In a Bubnov–Galerkin sense we choose the test functions for
the displacements and the pressures, ηηη and ζw, respectively,
in the same space as the displacement and pressure interpola-
tions defined by Eqs. (48) and (52), and require that Eqs. (19)
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and (20) hold for all admissible ηηη and ζw. This gives:∫
�

BTσσσd� + Finter = Fext (54)

−
∫
�

αHTmT∇u̇sd� +
∫
�

kw∇HT∇ pw d�

−
∫
�

Q−1
wwHT ṗw d� + Qinter = Qext (55)

where, for two dimensions, m = [1, 1, 0], and the external
force and flux vectors, Fext and Qext , are given by:

Fext =
∫
�

NTtpd� (56)

Qext =
∫
�

HTnTqwpd� (57)

The time integration is carried out using a backward finite
difference scheme:(

d(.)

dt

)t+�t

= (.)t+�t − (.)t

�t
= �(.)

�t
(58)

where �t is the time increment, while (.)t and (.)t+�t denote
the unknowns at t and t + �t , respectively. Substitution in
the semi-discrete equation (55) leads to:

−
∫
�

αHTmT�∇usd� + �t
∫
�

kw∇HT∇ pw d�

−
∫
�

Q−1
wwHT�pw d� + �tQinter = �tQext (59)

The interfacial force vector Finter is derived from Eq. (23)
by integrating �ηηη� · (td − pwn�d ) along �d :

Finter =
∫
�d

�N�Ttdd� −
⎛
⎜⎝∫

�d

�N�Tn�d Hd�

⎞
⎟⎠ P (60)

In a similar fashion, Eq. (24) is integrated along �d to give:

Qinter =
∫
�d

HTnT
�d

qwdd� (61)

The interfacial flux vector Qinter is then elaborated by incor-
porating the discrete form of Eq. (36), yielding:

nT
�d

qwd = nT
�d

�N�U
1

Qww

HṖ + αnT
�d

�N�Ṗ

+α
(

tT
�d

〈N〉U̇
)

nT
�d

�N�U

−tT
�d

∇
(

kwd

(
tT
�d

∇HP
) (

nT
�d

�N�U
))

+kw

(
tT
�d

∇HP
) (

nT
�d

�∇N�t�d U
)

(62)

Because of the cohesive-zone model in the interface, and
since Qinter and Finter are nonlinear, an iterative procedure
must be used to compute the solution at each time step. For
this purpose, a residual vector Ri is defined at iteration i :

Ri =
[

0 0
KT

up K(1)
pp

](
�U
�P

)i

+
[

Kuu Kup

0 �tK(2)
pp

](
U
P

)i

+
(

Finter

�tQinter

)i

−
(

Fext

�tQext

)
(63)

where the stiffness matrices are defined as:

Kuu =
∫
�

BTDtanBd� (64)

Kup = −
∫
�

αBTmHd� (65)

K(1)
pp = −

∫
�

Q−1
wwHTHd� (66)

K(2)
pp = −

∫
�

kw∇HT∇Hd� (67)

In a full Newton–Raphson algorithm, the iterative matrix Ki

is the Jacobian matrix of the residual R:

Ki =

⎡
⎢⎢⎣

Kuu + ∂Finter

∂U
Kup + ∂Finter

∂P

KT
up + �t

∂Qinter

∂U
K(1)

pp + �tK(2)
pp + �t

∂Qinter

∂P

⎤
⎥⎥⎦

(68)

where all quantities are evaluated at iteration i .
The coupling terms, Finter and Qinter , cause the Jaco-

bian matrix to become unsymmetric. To restore symmetry,
the contributions due to the coupling terms are omitted in
the Jacobian matrix, and the iterations in the example cal-
culations in the next section have been carried out with the
following stiffness matrix:

Ki =
⎡
⎢⎣ Kuu + ∂Finter

∂U
Kup

KT
up K(1)

pp + �tK(2)
pp

⎤
⎥⎦ (69)

where

∂Finter

∂U
=

∫
�d

NTTNd� (70)

This restoration of symmetry probably decreases the con-
vergence rate as this leads to a modified Newton–Raphson
algorithm. Nevertheless, the symmetric format of the itera-
tive matrix allows for more flexibility in the implementation
as well as a better conditioning of the matrix.
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4 Example calculation

To illustrate the effects of the fluid flow inside the crack at
the ‘macro’-scale as well as at the ‘micro’-scale, we simu-
late the rupture of a plate under plane-strain conditions. As
shown in Fig. 4, a pre-notch is located at the symmetry axis
of the plate. The plate has sides of 0.25 m and the pre-notch is
0.05 m deep. A fixed vertical velocity v = 2.35×10−2 µm/s
is prescribed in a opposite direction at the bottom and at the
top of the plate (tensile loading). All boundaries of the plate
are assumed to be impervious. The analysis is continued until
the crack reaches the right side of the plate.

The material properties are summarized in Table 1. The
mesh consists of 20 × 20 quadrilateral elements with bilin-
ear shape functions for the pressure and the displacement
fields. This degree is high enough to obtain non-zero second
derivatives of the pressure field and the convergence of the
discretization scheme has been checked in Réthoré et al. [21].
The time step size is 1 s.

Figure 5 gives the amount of fluid attracted into the cavity
of the crack. Obviously, this amount is closely related the
crack opening displacement and vanishes at the crack tip. As
a consequence the water pressure decreases in the vicinity of
the crack.

Figure 6 gives the pressure fields for a simulation with a
full coupling at the interface as derived in the previous sec-
tion and for a simulation without a mass transfer coupling
term (and also without pressure enrichment). In the latter
case, the crack is not recognized as a discontinuity in the
pressure field and the fluid phase flows through the crack

.u x = 0

.u x = 0

.u y = −v.t

.u y = v.t

Fig. 4 Geometry and loading for the pre-notched plate

Table 1 Material properties

Name Symbol Value

Young’s modulus E 25.85 GPa

Poisson’s ratio ν 0.18

Tensile strength tc 2.7 MPa

Cohesive fracture energy Gc 95.0 J/m2

Initial porosity n 0.2

Intrinsic permeability k 2.78e − 21 m2

Biot’s coefficient α 1.0

Solid bulk modulus Ks 13.46 GPa

Water density ρw 1000.0 kg/m3

Water bulk modulus Kw 0.2 GPa

Water dynamic viscosity µw 5.0e − 4 N/m2s

Irreducible saturation Sirr 0.0

Reference pressure pre f 18.6 MPa

Porous index l 0.4396

Fig. 5 Profile of the coupling term n�d · qwd along the crack [m2/s]

as it does in the bulk. Accordingly, the pressure and pressure
gradient are continuous at the interface. The results presented
in the two graphs of Fig. 6 are very different. Because of the
mass transfer coupling, the water is sucked into the crack
and high negative pressures occur around the crack. As a
consequence, the water saturation decreases in this zone and
intense cavitation occurs, Fig. 7 (left).

Because of the negative values of the water pressure, suck-
ing tractions modify the global response of the plate. As
shown in Fig. 8, the load-displacement curve obtained with
the coupling term result in a higher load-carrying capacity.

This effect can also be observed on Fig. 9 which shows
the norm of the pressure gradient distribution. The coupling
induces high gradients in the elements surrounding the crack.
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Fig. 6 Pressure field in Pa. Left
The case with full coupling;
Right The case without coupling

Fig. 7 Water saturation. Left
The case with full coupling;
Right The case without coupling
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Fig. 8 Load-displacement curves

The water velocity fields shown in Fig. 10 also illustrate the
difference between both simulations. The effect of the mass
transfer coupling is strong and changes the fluid flow in the

entire domain. Moreover, the fluid velocity is increased by
an order of magnitude.

Finally, the profile the tangential component of the Dar-
cian velocity is plotted in Fig. 11. The graphs are plotted
such that the velocity is positive when it is oriented from the
actual crack tip to the initial pre-notch. When the coupling
is activated, the water flow from the actual tip to the initial
pre-notch with a value depending on the crack opening dis-
placement whereas the orientation of the flow in the uncou-
pled case depends on the position on the interface (the peak
close to the actual crack is due to a numerical effect). Again,
the velocity is increased by the mass transfer coupling.

5 Concluding remarks

A methodology has been proposed to insert discontinuities
such as cracks, faults, or shear bands, in an unsaturated porous
medium. The discontinuities can be located arbitrarily, not
related to the underlying discretization. For the fluid flow
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Fig. 9 Norm of the pressure
gradient in Pa/m (logarithmic
scale). Left The case with full
coupling; Right The case
without coupling

Fig. 10 Water velocity in m/s.
Above The case with full
coupling; Below The case
without coupling

in the progressively fracturing porous medium a two-scale
approach has been chosen, where the flow of the fluid inside
the discontinuity (the ‘micro’-scale) is modelled indepen-
dently from the flow of the pore fluid in the surrounding
porous medium (the ‘macro’-scale). The mechanical and the
mass transfer couplings between the two scales are obtained

by inserting the homogenized ‘constitutive’ relations of the
‘micro’-flow into the weak form of the balance equations of
the bulk. The assumptions made for the fluid flow in and near
the discontinuity require the addition of special enrichment
functions for the displacement and the pressure fields. These
conditions are satisfied by exploiting the partition of unity
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Fig. 11 Water tangential
Darcian velocity profile inside
the crack in m/s

property of the finite element polynomial shape functions.
The examples confirm the efficiency of the method and the
strong effect of the coupling between the flow induced by
damage inside the crack and the flow in the bulk.
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