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Abstract

This paper proposes a two-stage algorithm to simultaneously estimate origin-destination

(OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a

congested network. A non-linear optimization model is developed which incorporates a

dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized

Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment

model are iteratively applied until the convergence is reached. To evaluate the performance

of the algorithm, the proposed approach is implemented in a hypothetical network using

input data with high error, and tested under a range of variation coefficients. The root mean

squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the

model estimation results. The results indicate that the estimated dispersion parameter theta

is insensitive to the choice of variation coefficients. The proposed approach is shown to out-

perform two established OD estimation methods and produce parameter estimates that

are close to the ground truth. In addition, the proposed approach is applied to an empirical

network in Seattle, WA to validate the robustness and practicality of this methodology. In

summary, this study proposes and evaluates an innovative computational approach to

accurately estimate ODmatrices using link-level traffic flow data, and provides useful insight

for optimal parameter selection in modeling travelers’ route choice behavior.

Introduction

Urban sprawl and population growth have resulted in increasingly severe traffic congestion in

major cities around the world. City planners and decision makers have recognized the need for

comprehensive traffic management strategies to meet the challenges of rapidly evolving built

environments and population demographics. Effective transportation polices and control
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measures can improve traffic safety and quality of service, as well as promoting economic

development and reducing air pollution. Obtaining origin-destination (OD) traffic demand

matrix in low-cost and high-accuracy manner not only becomes a problem transportation sci-

ence, but also draws attentions from many scholars in various scientific fields. For example,

researchers in statistical physics and complex systems recently proposed a number of novel

methods to estimate OD matrix directly from population data [1, 2, 3, 4, 5, 6]. Reliable OD

matrix estimation can provide critical insight for traffic management, operations, and urban

planning efforts to mitigate congestion [7, 8]. Thus, a reliable OD matrix estimation method is

indispensable for both transportation planners and traffic engineers.

A number of approaches have been developed for estimating ODmatrices in the past several

decades [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Compared with conventional survey-based

method, data-driven OD estimation methods relying on link-level traffic flow measurements

require less effort and offer significantly reduced time and cost for data acquisition and pro-

cessing. For such methods, observed traffic flows at key points throughout the network should

be known as prior information for OD matrix initialization.

Past research on this topic has considered range of different optimization methods, includ-

ing entropy maximizing estimators [21, 22], maximum likelihood estimation [23], Bayesian

inference estimation [24], generalized least squares (GLS) [9, 10, 25] to estimate OD demands.

Entropy maximizing estimators are used to maximize the spread of trip distributions on all

available paths (routes) where the observed traffic flows are used as the only information (i.e.

without a target trip matrix). Maximum likelihood estimation aims to maximize the likelihood

of the closeness between target OD matrix and estimated ODmatrix. In the Bayesian inference

approach, the target OD matrix is a prior probability function of the estimated ODmatrix on a

basis of observed traffic count data. The GLS estimator is a robust and efficient linear unbiased

estimator, which can solve the estimation of ODmatrix by minimizing the Weighted Euclidean

Distances (WED) between the target data and the solution data.

User equilibrium (UE) assignment models are commonly used to obtain path choice behav-

ior based on the estimated OD demand. Deterministic UE assignment models assume that all

users have access perfect information about the generalized link travel costs, and select a route

with the lowest perceived travel cost [26]. Beckman [27] formulated the UE assignment model

by assuming that the OD demands are a function of level of service. A combined distribution

and assignment model which relies on link-level traffic flow data was presented by Fisk and

Boyce [28], and extended by Lam and Huang [29] to address multiclass-user transportation

networks. Fisk [30, 31] proposed a combined entropy maximizing model with UE constraints.

Yang et al. [11] integrated the GLS technique with a UE traffic assignment model for OD

matrix estimation, presented in the form of a convex bi-level optimization problem. Summaries

of the more recent contributions to UE-based traffic assignment are provided in Han [32], Lu

et al. [33], Inoue and Maruyama [34], Kumar and Peeta [35].

The stochastic user equilibrium (SUE) principle allows the perceived cost to vary between

individuals in a heterogeneous population, which can be seen as a more realistic approach than

deterministic UE [15, 36], in which the perceived travel costs cannot vary between travelers. The

probit SUE was first formulated as a generalization of user equilibrium by Daganzo and Sheffi

[37], and developed by Sheffi and Powell [38] as a mathematical programming problem. Liu and

Fricker [39] presented a two-stage SUE approach to estimate ODmatrices and the probit disper-

sion parameter in an iterative manner. Yang et al. [15] improved on the methods described in

Liu and Fricker by incorporating link traffic flows and travel cost obtained using logit-based

SUE traffic assignment. Meng et al. [40] presented a linearly constrained model and solution

algorithm for the probit SUE problem with fixed demand and separable link travel time func-

tions. This modeling approach was extended in Meng et al. [41] using elastic demand and non-
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separable link travel time functions. Time-dependent traffic assignment can be also formulated

as a multinomial logit model [42, 43, 44], and this has become one of the most common methods

for SUE-based traffic assignment [45, 46, 47]. In a fixed-point formulation, fixed target demands

or link flows are used to establish model based on UE and SUE principles [13, 14, 19].

In the multinomial logit model formulation, the link choice probability is a function of a dis-

persion parameter θ [16], which describes road users’ perception of travel costs. Though the

dispersion parameter θ is predetermined in many previous studies [14, 36, 45, 46, 47, 48], here

we assume that this value should be allowed to change with traffic conditions. In addition, Lo

and Chan [16] proposed a maximum likelihood procedure for simultaneously estimating the

OD matrix and the dispersion parameter θ, while the link choice proportions and link flows

can be further calculated based on the maximum likelihood estimators of OD matrix and θ.

Compared with the previous studies, the main contributions of this paper lie in: (1) A fixed-

point model is formulated with a dynamic dispersion parameter θ, where the estimation of link

choice proportions is integrated into the optimization procedure; (2) A GLS estimator is uti-

lized to train this model, and the link choice proportions can be simultaneously calculated

based on the OD matrix and dispersion parameter through a multinomial logit model; (3) A

two-stage iterative algorithm is presented to refine the OD matrix and dispersion parameter

estimates, and Sequential Quadratic Programming (SQP) from the extended quasi-Newton

method is applied in the two-stage algorithm process[49].

The remainder of this paper is organized as follows: In Section2, relevant notation, defini-

tions, and model formulations are presented, followed by a link choice proportion approach

to calculate the observed link flow using a true OD matrix. A two-stage algorithm is described

in Section 3, along with model implementation details. The performance of the proposed

approach is tested in a hypothetical network, and a sensitivity analysis is conducted using a

range of variation coefficients. Results are presented and compared with those obtained

through other established OD estimation methods. In section 4, results are presented for a real-

world network using loop detector data in the city of Seattle, WA to demonstrate the practical-

ity of the proposed approach. Finally, conclusions are summarized in Section 5.

Model Formulation

Related Notations and Definitions
The notation and parameter definitions used throughout the paper are as follows:

K the set of network links k 2 K, where T denotes the total number of links

L the set of observed links l 2 L, where Γ denotes the number of observed links

J the set of OD pairs j 2 J, where τ indicates the total number of OD pairs

A the set of paths connecting the OD pair j, a 2 A

ck travel cost of link k

crj travel cost of path r connecting the OD pair j

tk the free flow travel time of link k

Ck the capacity of link k

αk the performance function parameter of link k

βk the exponential value of link k’s performance function

M the set of nodes in the network
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f the vector for estimated link flows, where fk is the estimated flow for link k

f̂ the vector for observed link flow, where f̂ l is the observed link flow for link l

d the estimated OD vector matrix, where dj is the jth element of d for OD pair j

�d the target OD vector matrix, where �d j is the jth element of �d for OD pair j

~d the initial OD vector matrix for SQP algorithm optimization

W' the initial weight matrix in the group of all paths connecting each OD pair

w'mn the initial weight element of all paths connecting nodesm and n,m,n 2M

W the weight matrix in the group of all paths connecting each OD pair

wmn the weight element of all paths connecting nodesm and n,m,n 2M

E the identity matrix with the same dimension as the initial weight matrix

G the vector matrix of observed link flows, where Gi is the ith element of G

U the covariance matrix for the target OD vector and estimated OD vector

V the covariance matrix for the observed link flows and estimated link flows

P the matrix of link choice proportions, where pkj is the kjth element of P. This is equivalent to

the proportion of OD pair j traveling on the observed link k

Prj the probability of path r that connects OD pair j being chosen for a trip

xk the observed traffic flow of link k

x
ðsÞ
k the estimated traffic flow of link k at the sth iteration in the traffic assignment stage

y
ðsÞ
k the auxiliary mean traffic flow of link k at the sth iteration in the traffic assignment stage

θ the estimated dispersion parameter for OD estimation

�y the target dispersion parameter for OD estimation

~y the initial dispersion parameter for SQP algorithm optimization

Q the covariance matrix for θ and �y

Sd the feasible solution set for OD matrix

Sθ the feasible solution set for θ parameter

s2dj the variance for OD demands

s2xk the variance for link flows

s2y the variance for dispersion parameter

λd random term for the target OD matrix

λf the random term for observed link flows

F1 the “distance” between the estimated OD vector matrix d and target demand ODmatrix �d

F2 the “distance” between the estimated link flow vector f and observed link flow vector f̂

Origin-Destination Matrices Estimation
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F3 the “distance” between the estimated dispersion parameter θ and the target dispersion

parameter �y

akrj decision variable, if the link k lies on path r connecting the OD pair j, and set akrj = 1, and 0

otherwise

η the percentage of traffic flow traveling from each node to the most adjacent node

RMSE(OD) the root mean squared error between estimated and true OD matrices

RMSE(LF) the root mean squared error based on estimated and observed (true) link flows

Based on the above notations, the OD estimation model development and validation proce-

dure can be described as follows:

1. A ground truth OD matrix is used as prior information to calculate the link flows based on

the link choice proportion model. These link flows represent the measured traffic flows

obtained through fixed mechanical sensors or other means;

2. The observed link flows are chosen from those calculated link flows at fixed points through-

out the network;

3. The estimated ODmatrix, link flows, and dispersion parameter are obtained via the fixed-point

model and two-stage iterative algorithm using the partial observed link flows from step (2);

4. Results are evaluated and compared with the ground truth as established in step (1).

The Fixed Point Model with Dynamic Dispersion Parameter. As presented in the previ-

ous subsection, the estimated OD vector matrix is expressed as d = [d1,d2,. . .,dj,. . .,dτ]', where

dj denotes the mean traffic flow of the jth element of d for OD pair j. Consider an OD pair j

connected by a link k which is associated with a link performance cost function ck(fk) equal to

the cost of using link k. The link performance cost function [50] is expressed during the traffic

assignment procedure in Eq 1:

ckðfkÞ ¼ tk½1:0þ akð
fk
Ck

Þ
bk �; 8k 2 K ð1Þ

The link flow vector is defined as f = [f1,f2,. . .,fΓ]', and the matrix of link choice proportions is

denoted as P = [pkj], where 0� pkj� 1. This represents the proportion of OD pair j connected

by the link k. Thus, the mathematical expectation of link flow vector f can be calculated as E[f] =

[Pd]Γ×1, where Pd is the product of the observed mean link flow vector and the matrix of link

choice proportions P. P can be adjusted by the link flows and the dispersion parameter θ.

The OD matrix can be estimated via a fixed point formulation by considering the target OD

matrix and observed link flows as follows [9, 10, 13, 14, 15, 16, 18, 19, 51]:

d ¼ arg min
d2Sd

½F
1
ðd; �dÞ þ F

2
ðf ; f̂ Þ�

¼ arg min
d2Sd

½ðd � �dÞ
T
U�1ðd � �dÞ þ ðPðdÞd � f̂ Þ

T
V�1ðPðdÞd � f̂ Þ�

ð2Þ

Where:

P(d) = {pkj(dj)} is the assignment matrix, which represents the proportion of OD pair j using

the observed link k;

f = P(d)d is the estimated link flow vector. f = {fk}, where fk = Sj pkj(dj)dj.

Origin-Destination Matrices Estimation
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In this study, the dispersion parameter is integrated into the objective function (Eq 2) [16,

19] as follows:

ðd; yÞ ¼ arg min
d 2 Sd

y 2 St

½F
1
ðd; �dÞ þ F

2
ðf ; f̂ Þ þ F

3
ðy; �yÞ� ð3Þ

This model can be seen as a Stochastic User Equilibrium (SUE) problem [13]. The General-

ized Least Square (GLS) estimator can be used to solve Eq 3 by minimizing the Weighted

Euclidean Distances (WED) between the target data and the solution vector, and Eq 3 can be

then reorganized as shown in Eq 4 [9, 10, 15, 48]:

ðd; yÞ
GLS

¼ arg min
d 2 Sd

y 2 St

½ðd � �dÞ
T
U�1ðd � �dÞ þ ðPðd; yÞd � f̂ Þ

T
V�1ðPðd; yÞd � f̂ Þ þ ðy� �yÞ

2
Q�1� ð4Þ

Where:

P(d,θ) = {pkj(dj,θ)} is the assignment matrix, and is a function of both ODmatrix and disper-

sion parameter θ.

f = P(d,θ)d is the estimated link flow vector. f = {fk}, where fk = Sj pkj(dj,θ)dj.

The matrix for link choice proportions P can be generally assumed fixed during the optimi-

zation procedure [10, 13, 14, 19]. This procedure performs well for uncongested traffic condi-

tions or an idealized traffic network with fixed link costs. However, when the network becomes

congested, users’ choices are increasingly influenced by adverse traffic condition. In this case,

link flow and cost are not independent, and the assignment matrix P should be assumed to

vary within each optimization step for link flow and OD estimation. Similarly, the GLS estima-

tors of d and θ can be also obtained by solving Eq 4.

The Link Choice Proportion Calculation Using the Dispersion Parameter. As men-

tioned in notation and definitions subsection, the link flow and cost will be updated when a

new set of values of d and θ is received. Drivers’ link choice decisions are influenced by the net-

work-wide traffic condition, and thus the link choice proportion matrix P should be allowed to

vary as well. The method of successive average (MSA) is adopted to calculate equilibrium link

flows in the traffic assignment procedure [7, 16, 45, 52].

The cost of path r connecting the OD pair j can be expressed as:

crj ¼

X

k

akrjck; 8k 2 K ð5Þ

The probability Prj can be then computed according to the path choice logit model [45]:

Prj ¼
expð�crjyÞ

X

a

expð�cajyÞ

¼
1

X

a

expð�cajyÞ
expð�y

X

k

akrjckÞ

¼
1

X

a

expð�cajyÞ
½expð�ya

1rjc1Þ � expð�ya
2rjc2Þ � . . . � expð�yaTrjcTÞ�

ð6Þ
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For a driver traveling along the path r, the weight assigned to link k is equal to exp(-ckθ). It

is worth noting that the sum of probabilities over all feasible paths for each OD pair is equal to

one.

As previously noted,W' = [w'mn] is the initial weight matrix of all possible paths connecting

each OD pair. With the initial weight is set to w'mn = exp(-ckθ), thenW',W 0
2
, andW 0

3
represent

the weight matrix in the group of paths with one link, two links and three links respectively.

Therefore, the weight matrix for all possible paths can be formulated as:

W 0 þW 0
2
þW 0

3
þ � � � ¼ ðE �W 0Þ

�1
� E ð7Þ

Wong [53] and Lo and Chan [16] have proven that the right side of Eq 7 is convergent for

any acyclic networks, and is equal toW = (E−W')−1 − E. Therefore, the probability of a trip

from nodem to node n (OD pair j) choosing link k can be calculated as follows:

pkj ¼
wmgexpð�yckÞwnn

wmn

ð8Þ

Where link k connects node g and node v, and wmn expresses weight matrix of all possible

paths connecting nodesm and n,m,n 2M. wmn is set to 1 for all nodes in the network.

Following the previous definition, the auxiliary mean traffic flow y
ðsÞ
k of link k is defined for

each incoming d and θ via the following equation:

y
ðsÞ
k ¼ ½Pd�k

¼
X

j
pkjdj

; 8k 2 K ð9Þ

The equilibrium traffic link flows can be then obtained using the MSA method. Specifically,

the flow of link k can be calculated at the (s+1)th iteration with the following equation:

x
ðsþ1Þ
k ¼ x

ðsÞ
k þ

1

s
ðyðsÞk � x

ðsÞ
k Þ

¼
1

s

X

s

j¼1

y
ðjÞ
k

; 8k 2 K ð10Þ

As shown in Eq 10, the flow of link k at the (s+1)th iteration is equal to the mean of the aux-

iliary traffic flow of link k in the previous s iterations.

When a new set of values of d and θ is received, the matrix P of link choice proportions is

updated following the procedure described above, and is then integrated into the Eq 4 to

update the values of d and θ. This optimization procedure continues until convergence of the

OD matrix and dispersion parameter estimation is reached.

Model Solution Algorithm

To solve the Stochastic User Equilibrium (SUE) problem described above, a two-stage algo-

rithm for GLS estimation and SUE traffic assignment is proposed: First, the OD matrix d and

the dispersion parameter θ are simultaneously estimated under the condition of the fixed link

flows, link costs, and weight matrix. Second, the link flows, link costs, and link choice propor-

tions are updated according to the new values of d and θ in the SUE assignment process. The

two-stage algorithm is executed iteratively until the convergence of values of d and θ is reached.

Sequential quadratic programming (SQP) from the extended quasi-Newton method is chosen

as the solution method [49].

Origin-Destination Matrices Estimation
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Two-Stage Algorithm
The initialization procedure of the two-stage algorithm can be described as follows:

1. Initialize the counter t = 0, set the initial OD vector matrix dð0Þ ¼ �d , the initial dispersion

parameter yð0Þ ¼ �y, and the initial link flow x
ð0Þ
k ¼ 0, k 2 K.

2. Calculate the initial link costs for all links in the network using Eq 1, and calculate the

weight matrixW for all paths based on the initial link costs and θ(0).

3. Calculate the link choice proportion matrix P using the weight matrixW and θ(0).

4. Calculate the initial mean auxiliary traffic flow for all the observed links with Eq 9, and

update t = t + 1.

The first stage of the algorithm is described as follows:

Step 1. The objective function (Eq 4) can be updated with the new mean auxiliary observed

link flows as follows:

ðdðtÞ
; y

ðtÞÞ
GLS

¼ arg min
d � 0

y > 0

½ðdðtÞ � �dÞ
T
U�1ðdðtÞ � �dÞ þ ðPðtÞdðtÞ � f̂ Þ

T
V�1ðPðtÞdðtÞ � f̂ Þ þ ðyðtÞ � �yÞ

2
Q�1� ð11Þ

Where:

U−1, P(t), V−1, and Q−1 can be updated using the new mean auxiliary observed link flows,

estimated OD vector matrix, dispersion parameter, and link flow vector respectively;

The feasible set for d and θ should meet the requirements d� 0, θ> 0. When the value of θ

approaches zero, the path choice probabilities for all paths tend to be equal. As the value of

θ increases, the path choice probabilities tend to be deterministic.

Step 2. Use the SQP algorithm to obtain a new set of values of d(t) and θ(t) that minimizes the

objective function. The starting point for optimizing the OD vector ~d ðtÞ and dispersion param-

eter ~yðtÞ should be fixed in advance. During the iterative process of the SQP algorithm, when-

ever a new value θ is received, the link choice proportion matrix P will be updated by changing

the value of exp(−θck) in Eq 8, while the link cost and weight matrix should remain unchanged.

The second stage of the algorithm can be described as follows:

Step 3. Initialize the counter s = 1.

Step 4. Calculate the weight matrixW with the new dispersion parameter θ(t).

Step 5. Calculate the link choice proportion matrix P(t) using the weight matrixW and disper-

sion parameter θ(t).

Step 6. Calculate the mean auxiliary traffic flow for all observed links as follows:

y
ðsÞ
l ¼ ½PðtÞdðtÞ�l ¼

X

j
pljdj; l 2 L

Step 7. Calculate the equilibrium traffic link flow of link k via the MSA method:

x
ðsþ1Þ
l ¼ x

ðsÞ
l þ

1

s
ðyðsÞl � x

ðsÞ
l Þ; l 2 L

Origin-Destination Matrices Estimation
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Step 8. The maximum relative difference between current and previous mean link flows should

satisfy the following requirement:

max
8l2L

jxðsþ1Þ
l � x

ðsÞ
l j

x
ðsþ1Þ
l

( )

� ε
1

ð12Þ

If the above requirement is met, the algorithm proceeds directly to step 11, otherwise pro-

ceed to step 9.

Step 9. Calculate the new link costs according to x
ðsþ1Þ
l , l 2 L.

Step 10. Calculate the weight matrix using the updated link costs, set s = s + 1, and return to

step 5.

Step 11. The maximum relative difference between the current and previous OD matrix esti-

mates should satisfy the following requirement:

max
8j2J

jdðtÞ
j � d

ðt�1Þ
j j

d
ðtÞ
j

( )

� ε
2

ð13Þ

If the above requirement is met, terminate the procedure and output the current estimates

of OD vector matrix d and dispersion parameter θ as d(t) and θ(t). Otherwise, set t = t + 1,

and proceed to step 12.

Step 12. Calculate the new starting points as follows: ~d ðtþ1Þ ¼ 1

t
dðtÞ þ t�1

t
dðt�1Þ,

~yðtþ1Þ ¼ 1

t
~yðtÞ þ t�1

t
~yðt�1Þ, and return to step 1.

Model Evaluation
To evaluate the performance of the proposed method, the root mean squared errors (RMSE)

for OD matrix and link flows after convergence are defined as follows:

(1) The root mean squared error (RMSE) of the estimated link flows x
ðsþ1Þ
l relative to the true

link flow xl is computed as follows:

RMSEðLFÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

G

X

G

l¼1

ðxðsþ1Þ
l � xlÞ

2

v

u

u

t ð14Þ

Similarly, the RMSE of the observed (target) link flows f̂ l relative to the true link flows xl

can be defined as RMSE ðL�FÞ, where x
ðsþ1Þ
l

is replaced by f̂ l in Eq 14.

(2) The RMSE of the estimated ODmatrix d(t) relative to the true OD matrix d can be defined

as RMSE (OD):

RMSEðODÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

t

X

t

j¼1

ðdðtÞ
j � djÞ

2

v

u

u

t ð15Þ
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Likewise, the RMSE of target OD matrix �d relative to the true OD matrix d is defined as

RMSE (O�D), where d(t) is replaced by �dj in Eq 15.

Numerical Experiment and Result Analysis

A Hypothetical Network Test
In this section, the performance of the proposed approach is tested in a hypothetical network.

The network and data proposed by Yang et al. [15] and Caggiani et al. [19] are adopted as the

test bed with some slight modifications. The network (presented in Fig 1), is composed of 9

nodes (3 origin centroids and 3 destination centroids), and 14 links. The true and initial OD

vector matrices d and ~d for the SQP algorithm are shown in Table 1. The initial dispersion

parameter ~y is assumed to be 4, and the true dispersion parameter ŷ is fixed to 1.5. Note that

the initial OD matrix ~d and dispersion parameter ~y are quite dissimilar from those of the

ground truth data.

The following parameters in the Bureau of Public Roads (BPR) [50] link performance func-

tion are used: αk = 0.15 and βk = 4, 8k 2 K. In addition, the free flow travel time (tk) and capac-

ity (Ck) for each link are predetermined as shown in Table 2.

The ground truth link flows can be generated by allocating the true ODmatrix to the traffic

network using SUE-Logit assignment method presented in Section 2.3. The true dispersion

parameter is θ = 1.5, resulting in the link flows shown in Table 3. The set of links {5, 6, 7, 11, 13}

is selected as the observed links.

In this example, we assume that the OD vector and link flow vector follow the Poisson dis-

tribution. The covariance matrices U (for OD demands) and V (for link flows) in Eq 4 can be

assumed to be diagonal matrices [9, 14, 54]. The diagonal element for U, V and Q can be com-

puted respectively through the following equations:

s2

dj
¼ ðcvd � djÞ

2
; s2

xk
¼ ðcvx � x

ðsþ1Þ
k Þ

2
; s2

y
¼ ðcvy � yÞ

2

Where cvd, cvx and cvθ represent the variation coefficients for OD demands, link flows, and dis-

persion parameter respectively. Specifically, these parameters are set as cvd = 0.3, cvx = 0.05,

and cvθ = 0.1.

The target OD matrix �d , observed link flow vectors f̂ , and target dispersion parameter �y can

be generated separately by adding random terms into the corresponding true values. The ran-

dom terms are sampled from independent normal variables with zero means. For instance, the

target OD matrix can be calculated by adding a random term with λd = 0.3 to the values of the

true OD matrix divided by two, the observed link flow vectors can be generated by adding a

random term with λf = 0.1, and the target parameter can be set as �y ¼ 4. In addition, the error

tolerance threshold used in the optimization is set to ε1 = ε2 = 10−3. The convergence for theta

is plotted in Fig 2, which shows the estimate slowly falling in the first 120 iterations before rap-

idly converging to the true value at 1.5099. This is a very slight deviation with the true value of

1.5. In addition, the convergence of the objective function is presented in Fig 3, where the value

of the objective function sharply falls at the first iteration and then gradually decreases and lev-

els off at a lower value. Poor initial choices of OD input vector and dispersion parameter may

lead to the slower convergence.

In order to further evaluate the effectiveness of the proposed approach, a sensitivity analysis

is conducted with parameter cvθ(CVT) varying from 0.1 to 0.5 and cvd(CVD) changing from

Origin-Destination Matrices Estimation

PLOS ONE | DOI:10.1371/journal.pone.0146850 January 13, 2016 10 / 24



0.1 to 1. This generates 50 different estimates for RMSE (OD), RMSE (LF) and Theta as pre-

sented in Figs 4–6.

As shown in Fig 4, RMSE (OD) increases with the variation coefficient cvθ when cvd falls

between 0.2 and 0.8. With cvθ fixed between 0.3 and 0.5, RMSE(OD) can be seen as a convex

Fig 1. The test network used in the numerical example.

doi:10.1371/journal.pone.0146850.g001

Table 1. The true and initial OD vector matrices.

OD pair 1–6 1–8 1–9 2–6 2–8 2–9 4–6 4–8 4–9

j 1 2 3 4 5 6 7 8 9

d 120 150 100 130 200 90 80 180 110

~d 30 20 10 30 30 30 30 40 20

doi:10.1371/journal.pone.0146850.t001

Table 2. Free flow travel time and capacity for each link.

link 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tk 2.0 1.5 3.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0

Ck 280 290 280 280 600 300 500 400 500 700 250 300 350 520

doi:10.1371/journal.pone.0146850.t002

Table 3. True link flows in the hypothetical network.

link 1 2 3 4 5 6 7 8 9 10 11 12 13 14

xk 125 143 103 172 474 172 201 313 307 393 279 148 313 475

doi:10.1371/journal.pone.0146850.t003
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function of cvd. Alternatively, when cvθ is between 0.1 and 0.2, cvd has a negligible impact on

RMSE (OD). Thus, the maximum value (19.9022) of RMSE (OD) can be found at cvd = 0.5 and

cvθ = 0.5, and the minimum value (4.6859) is obtained at cvd = 0.3 and cvθ = 0.1. Compared

with the initial RMSE (OD) of 93.8971 calculated from Table 1, a 78.8% reduction is achieved

at the maximum RMSE (OD), and a 95% reduction is obtained at the minimum RMSE (OD).

Fig 5 shows the impact of cvd and cvθ on RMSE (LF). With the value of cvd fixed, RMSE (LF)

increases with the variation coefficient cvθ. For a fixed value of cvθ, the RMSE (LF) decreases with

an increase in cvd. Thus, we can conclude that maximum RMSE (LF) value of 19.6597 is located

at cvd = 0.1 and cvθ = 0.5, and the minimum value of 8.6696 can be found at cvd = 0.6 and cvθ =

0.1. Compared with the initial RMSE (LF) value of 30.8347, 36.2% and 71.9% reductions can be

achieved for the maximum value of RMSE (LF) and minimum value of RMSE (LF) respectively.

As shown in Fig 6, the value of theta varies negligibly with the choice of cvd and cvθ. In other

words, the estimated value of theta always converges to approximately the true value. As

shown in Fig 6, for a fixed value of cvd, the estimated θ is close to the true value for any given

cvθ. For example, the value of θ fluctuates between 1.37 and 1.51 when cvd = 0.3. Likewise, for

any fixed cvθ, the estimated θ varies minimally about the true value of θ using the proposed

method. For example, the estimated θ is between 1.35 and 1.52 for cvθ = 0.1.

The above discussion reveals a fact that the initial value of �d , �y, and observed link flow vec-

tors f̂ do not affect the theta estimation performance. This is equivalent to a convex optimiza-

tion problem, where the optimal results tend to converge near the true dispersion parameter

value. This implies that the estimate of θ is insensitive to the variation coefficients, and can be

used as a stable and accurate parameter to determine travelers’ route decisions.

Fig 2. Convergence of the theta estimate.

doi:10.1371/journal.pone.0146850.g002
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Comparison and Analysis
To further demonstrate the advantages of the proposed methodology, two ODmatrix estima-

tion methods are implemented and compared with the proposed approach. To make this com-

parison, we first implement the algorithm described in Yang et al. [15], which presents an

optimization model for OD matrix estimation in congested networks using the logit-based

Fig 3. Convergence of the objective function.

doi:10.1371/journal.pone.0146850.g003

Fig 4. RMSE(OD) versus cvd and cvθ.

doi:10.1371/journal.pone.0146850.g004
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SUE. The method described in Lo and Chan [16] is implemented for the second comparison.

This method applies both statistical estimation and traffic assignment to simultaneously calcu-

late the OD matrix and link choice proportions based on OD survey data and traffic counts. To

maintain a fair comparison, the same test network and data set are applied in all cases.

The OD matrix estimation method proposed by Yang et al. [15] is given in section 2.2. The

objective function is shown in Eq 16.

ðd; yÞ ¼ arg min
d2Sd

½F
1
ðd; �dÞ þ F

2
ðf ; f̂ Þ�

¼ arg min
d � 0

y > 0

½
1

2
ðd � �dÞ

2
þ
1

2
ðPd � f̂ Þ

2
� ð16Þ

Fig 6. Estimated Theta versus cvd and cvθ.

doi:10.1371/journal.pone.0146850.g006

Fig 5. RMSE(LF) versus cvd and cvθ.

doi:10.1371/journal.pone.0146850.g005
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In Yang et al.’s work, the weighted Euclidean distance function is used to develop a unit

weighting matrix and the value of theta is set to 1.5. The RMSE(OD), RMSE(LF), RMSE ðO�DÞ

and RMSE(ðL�FÞ for Yang et al.’s approach are calculated and compared with the proposed

approach in Table 4:

As shown in Table 4, the proposed method yields significantly lower RMSE (OD) and

RMSE (LF) relative to Yang et al.’s approach. Compared with the initial RMSE values, a 22.6%

reduction in RMSE (OD) is achieved using the proposed approach, while only a 14.1% reduc-

tion is achieved using the method described in Yang et al. Similarly, the proposed approach

resulted in a 34.7% reduction in RMSE(LF), while only a 28.6% reduction was achieved using

Yang et al.’s approach. One reason that the dispersion parameter is estimated and integrated

into the Eq 3 by F
3
ðy; �yÞ in the proposed method, and it is able to yield a better estimate of the

dispersion parameter than previous approaches. The other reason is that the covariance matri-

ces U (for OD demands), V (for link flows) and Q (for dispersion parameter) are not a fixed

variable during the calculation. These improvements can help the method enhance the estima-

tion performance for the OD matrix and link flow vectors.

Lo and Chan [16] present the following maximum likelihood objective function:

ðd; yÞ ¼ argmaxd�0;y>0
ln Lðy; d j f̂ ; �dÞ ð17Þ

In Lo and Chan [16], it is assumed that the observed flows are equal to the true flows in the

test network. For Lo and Chan’s algorithm, we set the target dispersion parameter to �y ¼ 4

(This is also equal to the initial dispersion parameter value used in Lo and Chan [16]’s work),

and the variation coefficients as follows: cvθ = 0.1, cvx = 0.05, and cvd = 0.3. In order to evaluate

the performance of the proposed approach relative to that of Lo and Chan [16]’s method,

RMSE (OD), RMSE (LF), and the estimated Theta are selected for comparison and shown in

Table 5.

Unlike Lo and Chan’s method, random terms are added to the observed link flows in the

proposed approach, thus introducing additional challenges for estimation. However, the results

presented in Table 5 demonstrate that the method proposed in this paper outperforms Lo and

Chan’s approach in terms of OD matrix, link flow, and Theta estimation accuracy.

Table 4. Comparison between Yang et al.’s approach and the proposed approach with ODmatrix and link flow estimation.

Approach Estimated OD matrix Estimated Link flows

RMSE ðODÞ RMSE (OD) RMSE ðLF Þ RMSE (LF)

Yang et al.’s approach 24.27 20.85 26.65 19.02

Proposed approach 24.27 18.79 26.65 17.39

doi:10.1371/journal.pone.0146850.t004

Table 5. Comparison between Lo and Chan’s approach and the proposed approach with ODmatrix, link flow and Theta estimation.

Approach Estimated OD matrix Estimated Theta

RMSE (OD) RMSE (LF) Theta target Theta estimated

Lo and Chan’s approach 5.34 12.08 4 1.572

Proposed approach 4.69 9.77 4 1.509

doi:10.1371/journal.pone.0146850.t005
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Application to A Square Network in Seattle
A square network in Seattle is used as a congested network case study to demonstrate the

applicability and transferability of the proposed approach in a real-world traffic network

(Shown in Fig 7). Empirical data was collected from loop detectors located along one freeway

section in Seattle area, and obtained for this research through the Strategic Highway Research

Program 2 (SHRP 2 program) supported by Washington State Department of Transportation

(WSDOT) [55].

The square test network used in this case study consists of 4 nodes and 8 links, where all

nodes are centroids (origins and destinations). The topology of the test network is outlined in

Fig 7. We assume that the study network is acyclic, such that the traffic flow starting from one

node will leave the network before returning to the original node. Specifically, Links 1 and 2

represent the SR 520 Bridge connecting I-5 in Seattle and SR 202 in Redmond. Interstate 90 (I-

90) is represented by Links 3 and 4, and Interstate 5 (I-5) is represented by Links 5 and 6. Links

7 and 8 represent Interstate 405 (I-405), which intersects I-90 in the south and SR 520 in the

north.

Traffic flows were obtained from loop detectors installed at nodes 1, 2, 3 and 4, illustrated in

Fig 8. The parameters for the BPR link performance cost function (Eq 18) were estimated

based on the empirical data and are presented in Table 6.

ckðfkÞ ¼ tk½1:0þ akð
fk
Ck

Þ
bk �; 8k 2 K ð18Þ

Table 7 indicates the external traffic flow recorded for each node during peak hour, where

1-Link 1 represents the external traffic flow on Link 1 from node 1, and 2-Link 7 represents the

external traffic flow on Link 7 from node 2, and so forth. To convert true link flows into a

ground truth OD matrix, the flow proportion for each node η = 0.6 is assumed based on exten-

sive video records and filed surveys. This implies that, for the traffic leaving each node, 60%

exits the network from an adjacent node while 40% exits from the other nodes. In order to

avoid circular flow in the OD calculation process, it is assumed that the final remaining traffic

Fig 7. Square network in Seattle.Double circle nodes represent zone centroids (origins and destinations).

doi:10.1371/journal.pone.0146850.g007
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flow will leave from the last node before returning to the original node. Based on these assump-

tions, the ground truth OD matrix is calculated and shown in Table 8. In addition, the initial

OD matrix ~d can be computed by rounding the last digit of the true OD matrix as shown in

Table 8.

The true OD matrix in Table 8 is then used to assign the corresponding traffic flow into

each link according to Eq 5 through Eq 10. The calculated traffic flows can be assumed to rep-

resent the true link flows, where link 1, 3, 5, 6, and 8 are selected as the observed links to esti-

mate OD matrix shown in Table 9.

Similar to the hypothetical network, we assume that the OD demands and observed link

flows follow the Poisson distribution, and the covariance matrices U and V can be assumed to

be diagonal. The initial value of the dispersion parameter ~y is set to 40.5. The remaining input

parameters are set identically to the hypothetical network. In addition, a sensitivity analysis

with 50 different combinations of variation coefficients cvd and cvθ was conducted to investi-

gate the optimal parameter initialization for the proposed approach. The results of this sensitiv-

ity analysis are shown in Figs 9–11.

Fig 8. Traffic flow fluctuation by time of day.

doi:10.1371/journal.pone.0146850.g008

Table 6. BPR link performance cost function parameter calibration.

Links Road Name Length(km) tk(h) Ck(pcu/h) αk βk

1,2 SR 520 7.5 0.1162 4149 0.1450 3.5

3,4 I-90 3.6 0.0667 8685 0.1035 2.7

5,6 I-5 3.5 0.1016 9683 0.0988 2.7

7,8 I405 7.8 0.1332 7961 0.1242 3.5

doi:10.1371/journal.pone.0146850.t006

Table 7. The external true traffic flow for each node at peak hour.

Link direction 1-Link 1 2-Link 2 3-Link 3 4-Link 4 4-Link 5 1-Link 6 2-Link 7 3-Link 8

Traffic flow 3199 2480 5499 5535 6018 7169 5628 8153

doi:10.1371/journal.pone.0146850.t007
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Fig 9 shows the value of RSME (OD) versus cvd and cvθ. For a fixed value of cvd between 0.1

and 0.7, RMSE(OD) increases with cvθ. RMSE(OD) is a concave function of cvθ when cvd is

fixed between 0.8 and 1.0, and a convex function of cvd for a fixed value of cvθ between 0.1 and

0.5. Thus, the maximum RMSE (OD) of 85.6123 can be obtained at cvd = 0.7 and cvθ = 0.5, and

the minimum value of 23.5917 can be obtained at cvd = 0.1 and cvθ = 0.1.

As shown in Fig 10, the value of RMSE (LF) increases with cvθ for a fixed value cvd. For a

fixed value of cvθ, the value of RMSE (LF) decreases with an increase of cvd. The maximum

RMSE (LF) of 82.5113 is found at cvd = 0.1 and cvθ = 0.5, and the minimum value of 7.3277 at

cvd = 1.0 and cvθ = 0.1.

As noted in the hypothetical case, the choice of cvd and cvθ has very little impact on the esti-

mation of Theta. As shown in Fig 11, the estimated dispersion parameter θ is between 20.8327

(cvd = 0.5 and cvθ = 0.5) and 22.7165 (cvd = 0.7 and cvθ = 0.2) in all cases. The best estimate of

dispersion parameter θ can be found between 20.8327 and 22.7165.

Finally, using the BPR link performance cost function parameters described in Table 6, differ-

ent combinations of variation coefficient cvd = 0.3 and cvθ = 0.1; cvd = 0.5 and cvθ = 0.5;cvd = 0.7

and cvθ = 0.2 are used to estimate theta for the actual network.

Table 8. True ODmatrix and initial ODmatrix at peak hour for each OD pair.

OD pair 1–2 1–3 1–4 2–1 2–3 2–4 3–1 3–2 3–4 4–1 4–2 4–3

j 1 2 3 4 5 6 7 8 9 10 11 12

d 3067 2489 4814 2389 3774 1946 3277 5772 4604 4497 2773 4284

~d 307 249 482 239 378 195 328 578 461 450 278 429

doi:10.1371/journal.pone.0146850.t008

Table 9. Observed link flows at peak hour.

Link No. 1 2 3 4 5 6 7 8

xk 3711 - 8282 - 8439 7857 - 7591

doi:10.1371/journal.pone.0146850.t009

Fig 9. RMSE(OD) versus cvd and cvθ in the actual network.

doi:10.1371/journal.pone.0146850.g009
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It is interesting to observe that the estimated RMSE(OD), RMSE(LF), and Theta for both

hypothetical and actual networks exhibit a similar trend yet have obvious differences. Two pri-

mary reasons may explain these differences: First, the network topology is quite different for

the two scenarios. The hypothetical network is unidirectional, where each node can be either

origin or destination. In contrast, the actual network is bidirectional, where each node is both

origin and destination, and thus multiple paths may exist between each OD pair. For example,

the traffic flows on both 1-Link 1 and 1-Link 6 contribute to the OD demands from node 1 to

node 2. Second, compared with the hypothetical network with equal cost parameters for all

links, a more realistic BPR link performance cost function is adopted for the actual network. In

the real-world network, the parameters (e.g. free-flow travel time and link capacity) are

Fig 11. Theta estimated versus cvd and cvθ in the actual network.

doi:10.1371/journal.pone.0146850.g011

Fig 10. RMSE(LF) versus cvd and cvθ in the actual network.

doi:10.1371/journal.pone.0146850.g010
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calibrated for each link based on empirical data. That said, the sensitivity analysis for Theta

produced similar results for both the hypothetical and actual networks, indicating that this

parameter is not sensitive to the choice of variation coefficients. In addition, the theta estimates

obtained using a range of different parameter settings exhibits a similar and regular trend over

time of day as shown in Fig 12. These findings provide guidance for initial parameter selection,

and offer useful insight for interpreting modeling results.

Conclusions

This paper proposes a two-stage algorithm to simultaneously estimate origin-destination

matrices and link choice proportions by incorporating a dynamic dispersion parameter into

the route choice model. The dispersion parameter θ is of practical significance in describing

travelers’ route choice decisions, but has typically been assumed constant in previous studies.

Finding the optimal dispersion parameter is not a straightforward task. To address this issue,

this paper presents a model calibration procedure to simultaneously estimate the dispersion

parameter θ, link choice proportions, and ODmatrix. In order to obtain the Generalized Least

Square (GLS) estimators of the above listed parameters, a two-stage algorithm is proposed

which integrates GLS estimation into the SUE traffic assignment procedure. The first and sec-

ond stages of the algorithm are applied iteratively until the maximum relative difference pre-

sented in Step 11 is achieved, after which the estimated OD matrix, link choice proportion, and

dispersion parameter θ can be obtained. The SQP approach based on the extended quasi-New-

ton method is used to search for the optimal solution in the first stage of the algorithm. The

SUE traffic assignment procedure is applied to incorporate both OD matrix and link choice

proportion estimation into the second stage of the algorithm, and MSA is used to obtain the

equilibrium link flows.

A hypothetical network was constructed to test the performance of the proposed approach,

followed by a comprehensive sensitivity analysis with 50 combinations of variation coefficient

Fig 12. Estimated Theta values in the actual network by time of day.

doi:10.1371/journal.pone.0146850.g012
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combinations cvd (CVD) and cvθ (CVT) to investigate the stability of the estimated OD matrix,

link flows, and Theta. A comparison with two different methods described in Yang et al. [15]

and Lo and Chan [16] suggests that the proposed approach can achieve superior performance

in terms of RMSE (OD), RMSE (LF), and accuracy of the estimated Theta parameter. More-

over, a case study is presented using a real-world congested square network in Seattle, WA to

demonstrate the practicality of the proposed approach, in which the true OD matrix and

observed link flows are calculated via ground-truth traffic count data collected by loop detec-

tors. The proposed method is shown to be robust under a range of initial parameter values. The

RMSE (OD) can be reduced from 3426.9 to 23.6 at cvd = 0.1 and cvθ = 0.1 when traffic flows are

observed on five out of eight links. In addition, the estimated dispersion parameter exhibits a

consistent and regular trend by time of day for all combinations of initial parameters. For

future research, the proposed approach should be tested on a network of greater complexity

and size, and the impact of input data inaccuracy should be considered. Additionally, further

work is needed to determine the number and location of observed links required for accurate

OD estimation using the proposed approach.

Supporting Information

S1 Dataset. The dataset includes the Link Speed Data and Link Volume data, and the data

were collected from loop detectors located along the freeway section (I-5, I-90, I-405 and

SR 520) in Seattle area, and are retrieved via the Strategic Highway Research Program 2

(SHRP 2 program). The file named as “S1 Link Speed Data” records the average speed for all

links every 20-second time interval, and the other file named as “S1 Link Volume data” records

volume for all links every 20-second time interval.

(RAR)

Acknowledgments

The helpful comments from the two anonymous reviewers are gratefully acknowledged. This

research is supported by National Natural Science Foundation of China (Project No. 71402011,

71471024, 51408019, 71301180, 51329801), National Social Science Foundation of Chongqing

of China (No. 2013YBJJ035), and the Scientific and Technological Research Program of

Chongqing Municipal Education Commission (No. KJ1400307), and the Natural Science

Foundation of Chongqing of China(No. cstc2015jcyjA30012), National Key Technologies

R&D Program of China (2014BAG01B03), Science and Technology Project on Transportation

Construction by the Ministry of Transport of China (2015318835200).

Author Contributions

Conceived and designed the experiments: Yong W. XM Yinhai W. Performed the experiments:

Yong W. XM YL KG. Analyzed the data: YongW. XM YL KGMX. Contributed reagents/

materials/analysis tools: KCH Yinhai W. Wrote the paper: YongW.

References
1. Simini F, González M C, Maritan A, Barabási A-L. A universal model for mobility and migration patterns.

Nature, 2012; 484: 96–100. doi: 10.1038/nature10856 PMID: 22367540

2. Simini F, Maritan A, Néda Z. Human mobility in a continuum approach. PloS one, 2013; 8(3): e60069.
doi: 10.1371/journal.pone.0060069 PMID: 23555885

3. Yan X-Y, Zhao C, Fan Y, Di Z, WangW-X. Universal predictability of mobility patterns in cities. Journal
of the Royal Society Interface, 2014; 11: 0834.

Origin-Destination Matrices Estimation

PLOS ONE | DOI:10.1371/journal.pone.0146850 January 13, 2016 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146850.s001
http://dx.doi.org/10.1038/nature10856
http://www.ncbi.nlm.nih.gov/pubmed/22367540
http://dx.doi.org/10.1371/journal.pone.0060069
http://www.ncbi.nlm.nih.gov/pubmed/23555885


4. Gao Z K, Jin N D. A directed weighted complex network for characterizing chaotic dynamics from time
series. Nonlinear Analysis: Real World Applications, 2012; 13(2): 947–952.

5. Tang J J, Wang Y H, Wang H, Zhang S, Liu F. Dynamic analysis of traffic time series at different tempo-
ral scales: A complex networks approach. Physica A: Statistical Mechanics and its Applications, 2014;
405, 303–315.

6. Gao Z K, Yang Y X, Fang P C, Zou Y, Xia C Y, Du M. Multiscale complex network for analyzing experi-
mental multivariate time series. Europhysics Letters, 2015; 109(3): 30005.

7. CheungWM,Wong SC, Tong CO. Estimation of a time-dependent origin-destination matrix for con-
gested highway networks. Journal of Advanced Transportation, 2010; 40(1): 95–117.

8. Ma XL, Yu HY, Wang YP, Wang YH. Large-scale Transportation Network Congestion Evolution Predic-
tion Using Deep Learning Theory. PloS one, 2015; 10(3): e0119044. doi: 10.1371/journal.pone.
0119044 PMID: 25780910

9. Cascetta E. Estimation of trip matrices from traffic counts and survey data: a generalized least squares
approach. Transportation Research Part B: Methodological, 1984; 18(4–5): 289–299.

10. Cascetta E, Nguyen S. A unified framework for estimating or updating origin/destination matrices from
traffic counts. Transportation Research Part B: Methodological, 1988; 22(6): 437–455.

11. Yang H, Sasaki T, Iida Y, Asakura Y. Estimation of origin-destination matrices from link traffic counts on
congested networks. Transportation Research Part B: Methodological, 1992; 26(6), 417–434.

12. Hazelton ML. Some comments on origin-destination matrix estimation. Transportation Research Part
A: Policy and Practice, 2003; 37(10), 811–822.

13. Cantarella GE. A general fixed-point approach to multimode multi-user equilibrium assignment with
elastic demand. Transportation Science, 1997; 31(2), 107–128.

14. Cascetta E, Postorino MN. Fixed point approaches to the estimation of O/D matrices using traffic counts
on congested networks. Transportation Science, 2001; 35(2): 134–147.

15. Yang H, Meng Q, Bell MGH. Simultaneous estimation of the origin-destination matrices and travel-cost
coefficient for congested networks in a stochastic user equilibrium. Transportation Science, 2001; 35
(2): 107–123.

16. Lo HP, Chan CP. Simultaneous estimation of an origin-destination matrix and link choice proportions
using traffic counts. Transportation Research Part A: Policy and Practice, 2003; 37(9): 771–788.

17. Manley E. Estimating urban traffic patterns through probabilistic interconnectivity of road network junc-
tions. PLOS ONE, 2015; 10(5): e0127095. doi: 10.1371/journal.pone.0127095 PMID: 26009884

18. Ródenas RG, Marín Á. Simultaneous estimation of the origin–destination matrices and the parameters
of a nested logit model in a combined network equilibrium model. European Journal of Operational
Research, 2009; 197(1): 320–331.

19. Caggiani L, Ottomanelli M, Sassanelli D. A fixed point approach to origin-destination matrices estima-
tion using uncertain data and fuzzy programming on congested networks. Transportation Research
Part C: Emerging Technologies, 2013; 28: 130–141.

20. Shao H, LamWHK, Sumalee A, Chen A, Hazelton ML. Estimation of mean and covariance of peak
hour origin-destination demands from day-to-day traffic counts. Transportation Research Part B: Meth-
odological, 2014; 68: 52–75.

21. Van Zuylen HJ, Willumsen LG. The most likely trip matrix estimated from traffic counts. Transportation
Research Part B: Methodological, 1980; 14(3): 281–293.

22. Bell MGH. The estimation of an origin destination matrix from traffic counts. Transportation Science,
1983; 17(2): 198–217.

23. Spiess H. A maximum likelihood model for estimating origin-destination matrices. Transportation
Research Part B: Methodological, 1987; 21(5): 395–412.

24. Maher MJ. Inferences on trip matrices from observations on link volumes: a Bayesian statistical
approach. Transportation Research Part B: Methodological, 1983; 17(6): 435–447.

25. Bell MGH. The estimation of origin-destination matrices by constrained generalized least squares.
Transportation Research Part B: Methodological, 1991; 25(1): 13–22.

26. Sheu JB. A composite traffic flow modeling approach for incident-responsive network traffic assign-
ment. Physica A: Statistical Mechanics and its Applications, 2006; 367: 461–478.

27. Beckmann M, McGuire CB, Winsten CB. Studies in the Economics of Transportation. New Haven:
Yale University Press; 1956.

28. Fisk CS, Boyce DE. A note on trip matrix estimation from link traffic count data. Transportation
Research Part B: Methodological, 1983; 17(3): 245–250.

Origin-Destination Matrices Estimation

PLOS ONE | DOI:10.1371/journal.pone.0146850 January 13, 2016 22 / 24

http://dx.doi.org/10.1371/journal.pone.0119044
http://dx.doi.org/10.1371/journal.pone.0119044
http://www.ncbi.nlm.nih.gov/pubmed/25780910
http://dx.doi.org/10.1371/journal.pone.0127095
http://www.ncbi.nlm.nih.gov/pubmed/26009884


29. LamWHK, Huang HJ. A combined trip distribution and assignment model for multiple user classes.
Transportation Research Part B: Methodological, 1992; 26(4): 275–287.

30. Fisk CS. On combining maximum entropy trip matrix with user optimal assignment. Transportation
Research Part B: Methodological, 1988; 22(1): 69–73.

31. Fisk CS. Trip matrix estimation from link traffic counts: The congested network case. Transportation
Research Part B: Methodological, 1989; 23(5): 331–336.

32. Han SJ. A route-based solution algorithm for dynamic user equilibrium assignments. Transportation
Research Part B: Methodological, 2007; 41(10): 1094–1113.

33. Lu CC, Mahmassani HS, Zhou XS. A bi-criterion dynamic user equilibrium traffic assignment model
and solution algorithm for evaluating dynamic road pricing strategies. Transportation Research Part C:
Emerging Technologies, 2008; 16(4): 371–389.

34. Inoue SI, Maruyama T. Computational Experience on Advanced Algorithms for User Equilibrium Traffic
Assignment Problem and Its Convergence Error. Procedia-Social and Behavioral Sciences, 2012; 43:
445–456.

35. Kumar A, Peeta S. Entropy weighted average method for the determination of a single representative
path flow solution for the static user equilibrium traffic assignment problem. Transportation Research
Part B: Methodological, 2015; 71: 213–229.

36. Zhang HL, Mahmassani HS, Lu CC. Dynamic pricing, heterogeneous users and perception error:
Probit-based bi-criterion dynamic stochastic user equilibrium assignment. Transportation Research
Part C: Emerging Technologies, 2013; 27: 189–204.

37. Daganzo CF, Sheffi Y. On stochastic models of traffic assignment. Transportation Science, 1977; 11
(3): 253–274.

38. Sheffi Y, Powell WB. An algorithm for the equilibrium assignment prolem with random link times. Net-
works, 1982; 12(2): 191–207.

39. Liu S, Fricker JD. Estimation of a trip table and the θ parameter in a stochastic network. Transportation
Research Part A: Policy and Practice, 1996; 30(4): 287–305.

40. Meng Q, LamWH, Yang L. General stochastic user equilibrium traffic assignment problem with link
capacity constraints. Journal of Advanced Transportation, 2008; 42(4): 429–465.

41. Meng Q, Liu Z. Mathematical models and computational algorithms for probit-based asymmetric sto-
chastic user equilibrium problem with elastic demand. Transportmetrica, 2012; 8(4): 261–290.

42. LamWHK, Yin YF. An sctivity-based time-dependent traffic assignment model. Transportation
Research Part B: Methodological, 2001; 35(6): 549–574.

43. LamWHK, Li ZC, Huang HJ, Wong SC. Modeling time-dependent travel choice problems in road net-
works with multiple user classes and multiple parking facilities. Transportation Research Part B: Meth-
odological, 2006; 40(5): 368–395.

44. Londono G, Lozano A. Dissuasive queues in the time dependent traffic assignment problem. Procedia-
Social and Behavioral Sciences, 2014; 162: 378–387.

45. Bell MGH. Alternatives to dial’s logit assignment algorithm. Transportation Research Part B: Methodo-
logical, 1995; 29(4): 287–295.

46. Conti PL, Giovanni LD, Naldi M. Blind maximum likelihood estimation of traffic matrices under long-
range dependent traffic. Computer Networks, 2010; 54(15): 2626–2639.

47. Guo XL, Yang H, Liu TL. Bounding the inefficiency of logit-based stochastic user equilibrium. European
Journal of Operational Research, 2010; 201(2), 463–469.

48. Akamatsu T. A dynamic traffic equilibrium assignment paradox. Transportation Research Part B: Meth-
odological, 2000; 34(6): 515–531.

49. Boggs PT, Tolle JW. Sequential quadratic programming for large-scale nonlinear optimization. Journal
of Computational and Applied Mathematics, 2000; 124(1–2): 123–137.

50. Bureau of Public Roads. Traffic assignment manual. U.S. Department of Commerrce, Urban Planning
Division, Washington, D. C., 1964.

51. Lu ZB, RaoWM,Wu YJ, Guo L, Xia JX. A Kalman filter approach to dynamic OD flow estimation for
urban road networks using multi-sensor data. Journal of Advanced Transportation, 2015; 49(2): 210–
227.

52. Liu HX, He XZ, He BS. Method of successive weighted averages (MSWA) and self-regulated averaging
schemes for solving stochastic user equilibrium problem. Networks and Spatial Economics, 2009; 9(4):
485–503.

53. Wong SC. On the convergence of Bell’s logit assignment formulation. Transportation Research Part B:
Methodological, 1999; 33(8): 609–616.

Origin-Destination Matrices Estimation

PLOS ONE | DOI:10.1371/journal.pone.0146850 January 13, 2016 23 / 24



54. Cascetta E, Russo F. Calibrating aggregate travel demand model with traffic counts: estimators and
statistical performance. Transportation, 1997; 24(3): 271–293.

55. Ma X, Wu Y, andWang Y. DRIVE Net: An E-Science of Transportation Platform for Data Sharing, Visu-
alization, Modeling, and Analysis. Transportation Research Record: Journal of the Transportation
Research Board. 2011; 2215: 37–49.

Origin-Destination Matrices Estimation

PLOS ONE | DOI:10.1371/journal.pone.0146850 January 13, 2016 24 / 24


