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ABSTRACT A two-stage denoising algorithm based on local similarity is proposed to process lowly and

moderate corrupted images with random-valued impulse noise in this paper. In the noise detection stage, the

pixel to be detected is centered and the local similarity between the pixel and each pixel in its neighborhood

is calculated, which can be used as the probability that the pixel is noise. By obtaining the local similarity

of each pixel in the image and setting an appropriate threshold, the noise pixels and clean pixels in the

damaged image can be detected. In the image restoration stage, an improved bilateral filter based on local

similarity and geometric distance is designed. The pixel detected as noise in the first stage is filtered and

the new intensity value is the weighted average of all pixel intensities in its neighborhood. A large number

of experiments have been conducted on different test images and the results show that compared with the

mainstream denoising algorithms, the proposed method can detect and filter out the random-value impulse

noise in the image more effectively and faster, while better retaining the edges and other details of the image.

INDEX TERMS Image denoising; Random-valued impulse noise; Local similarity; Bilateral filter

I. INTRODUCTION

T
HE digital images are often destroyed by impulse noise

due to sensor equipment in the process of image acqui-

sition and transmission. The random-valued impulse noise

(RVIN) is one of the impulse noises whose noise pixel value

is randomly located between 0 to 255. In order to perform

operations such as contour extraction, region segmentation

and target recognition on the image later, it is necessary to

restore the noise image. The image removing algorithm is

mainly divided into two stages. Firstly the noise detection

is performed on the image and then the detected noise is

restored, so that the edge information of the image can be

better preserved and the output image is prevented from being

blurred [1]. Many researchers have done a lot of research

work on image noise detection and denoising algorithms

[2]–[8]. The impulse noise detectors and filters based on

local statistics have been proposed in the early years. X-

iong [9] propose the robust outlyingness ratio (ROR) for

measuring how impulse like each pixel is, and combined it

with non-local mean (NLM) [10] to eliminate general noise.

Garnett [11] proposed a sorted absolute difference (ROAD)

statistic and a general triangular filter. Dong [12] proposed

a ROAD-based rank logarithmic difference (ROLD). These

filters perform well in removing RVIN and retaining edges

and details, but their filtering effect is highly dependent on

an accurate impulse noise detector.

In recently years, the mainstream denoising algorithms can

be divided into methods based on block matching, convo-

lutional neural networks and fuzzy rules [13]–[21]. Gao

[22] introduced a two-stage denoising method based on the

improvement of the HEIND algorithm which uses the shear

wave representation to effectively restore the geometry of

the original image. It is particularly effective in eliminating

jagged edges and other visual artifacts in images at higher

noise levels. Tukkmen [23] proposed a four-phase detection

method based on the neighbor criterion of similar values to

realize the detection of noisy pixels. The pixels are immedi-

ately filtered by the median value after detecting the damaged

pixels in each stage. Since three different thresholds are used

in each detection stage to obtain a more robust filter, the run-

ning time of this method is longer than most other methods.

Signh [24] uses three levels of adaptive thresholds and an

auxiliary condition for detecting noise and restoring images

which can improve the miss detection rate and false detection
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rate of existing noise detection algorithms, but it has better

detection and denoising effects only in noise images with

high density noise levels. Nadeem [25] proposed an image

restoration technique based on adjacent pixels in the spatial

link direction and fuzzy logic to solve medium and highly

damaged grayscale images with random value impulse noise.

The method can adaptively determine and set the threshold

so that the filter can automatically process different types

of images. Azhar uses a switching method that uses local

texture statistics in different directions of the sliding window

to identify damaged pixels in an iterative manner. In the noise

filtering stage, the fuzzy rules are used to obtain noise-free

pixels from the suggested three-way pixels to estimate the

intensity value of the identified damaged pixel [26]. But the

complexity and running time of the algorithm are greatly

increased due to the introduction of fuzzy algorithms and

iterative methods. Chen [27] proposed a blind CNN model

for RVIN denoising with a variable noise ratio predictor

(NRP) as an indicator. This method has the ability to deal

with unknown noise ratios under the guidance of NRP. Zou

[28] proposed an image denoising block matching method

based on convolutional neural network. The solution first

needs to apply a denoising algorithm on the noisy image

to obtain the pilot signal for training CNN. However, the

convolutional neural network model is too complex which

requires a long training time and high hardware equipment.

This will prevent it from becoming a real-time application.

Iqbal [29] proposed an adaptive noise detector and a new

weighted average filter which uses an edge recognition stage

to ensure that edge pixels are not mistakenly detected as

noise pixels to further improve the detection accuracy, but

the filter effect is not very good. Veerakumar [30] proposed

a novel algorithm to identify and correct images affected

by impulse noise in which empirical mode decomposition

is used to identify pixels affected by impulse noise and an

adaptive bilateral filter is used to restore those noisy pixels.

The accuracy of the method may be reduced in a few images

with random-valued impulse noise. In addition, this method

may not produce better results if impulse noise is affected

in smoother or blurred areas of the image. In [31] Pok

proposed an effective block-based image denoising method.

With the scheme, a block similar to a given block can be

processed by considering only the block pointed to by the

pointer corresponding to the pixel value of the block. Due to

the reason that search without comparing all the blocks in the

input image, it performs well in terms of filtering effect and

running time but no detailed experimental data is given in the

noise pixel detection stage.

Judging from the popular denoising algorithms in recent

years, a good filtering effect has been achieved due to the

introduction of fuzzy rules and convolutional neural net-

works, but it has also led to increased algorithm complexity,

longer running time and high equipment costs. In order to

solve the above problems and improve the performance of

image noise detectors and filters, we propose a two-stage

denoising algorithm to detect random value impulse noise

of images and restore the damaged images. In the noise

detection stage, a 5×5 detection window is constructed with

any pixel x to be detected as the center, and the similarity

between the pixel x and each pixel in its detection window is

calculated and summed. Then the weighted average operation

and normalization are performed to obtain the local similarity

(LS) of a given center pixel, which can certainly indicate

the probability of a given pixel being noise free. Through

obtaining the local similarity value of each pixel in the

image and setting an appropriate LS detection threshold,

the noise pixels and clean pixels can be filtered out. In the

image restoration stage, an improved bilateral filter based

on local similarity and geometric distance is proposed, the

pixel detected as noise in the first stage is filtered and its new

intensity value is the weighted average of all pixel intensities

in its neighborhood. Different from the traditional bilateral

filter, the two weights used in proposed filter are related to

the geometric distance of the pixel and the local similarity

information. The parameters of the proposed filter are small,

which greatly reduces the amount of calculation and running

time, and the filtering effect is better than many existing

filters.

The remainder of this paper is organized as follows: the

proposed impulse noise detection scheme is described in

Section II, the proposed filter is designed in Section III, sim-

ulation results are compared in Section IV and conclusions

are presented in Section V.

II. IMPULSE NOISE DETECTION

The intensity value of the damaged pixel is randomly be-

tween 0 and 255 when the image is damaged by random

value impulse noise. Figure 1(a) is obtained by applying

40% random impulse noise to the original Peppers image,

then do the gray-scale difference operation between it and

the original image to know which pixels are noise in the

corrupted image. Then the four regions A, B, C and D with a

5×5 patch size are selected from the Figure 1(a), and their

pixel intensity are show in Figure 1(b). We use gray and

white background colors to present the noise pixels and clean

pixels respectively, and red for the center pixel itself. It can

be seen that there should be a certain number of pixels with

similar intensity in its area if a given center pixel is free of

noise. For example, the center pixel of the flat region C has

18 similar pixels in its neighborhood. For an impulse pixel,

usually few pixels with similar intensity can be found near it

regardless of whether it is located in a complex region B or a

flat region D. Therefore, we can measure whether it is noise

or not by calculating the similarity between the center pixel

and all pixels in its neighborhood.

A. DEFINITION OF LOCAL SIMILARITY

It can be seen from the bilateral filtering algorithm [32]

and some other denoising algorithms [26], [33] that in the

noise detection and removal stage, not only the influence

of the difference in pixel values in the neighborhood of the

center pixel, but also the distance factor must be considered.
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FIGURE 1. (a) Image of Pepper with 40% random-valued impulse noise, marked with four special regions whose intensities within are listed on the right (b), all use

gray and white background color to indicate the impulse and clean pixels.

If the size of detection window is 3×3, the influence of the

distance factor on the detection of the center pixel is ignored.

For images with fine details, a processing window of 3×3

may not be able to distinguish between noise and details

[34]. If the window is too large, it will greatly increase the

amount of calculation. Based on the above analysis, a 5×5

neighborhood Ω0
x can be constructed to be a window size

with any given pixel x as the center and then the similarity

between the pixel x and any pixel y in Ω0
x can be expressed

as [35] :

D(x, y) = exp

(

−
‖(m,n)− (s, t)‖2

2σ2

D

)

, y ∈ Ωo
x (1)

I(x, y) = exp

(

−
‖Gx −Gy‖

2

2σ2

I

)

(2)

S(x, y) = D(x, y) · I(x, y) (3)

where S(x, y) represents the similarity between the center

pixel x and y. (s, t) represents the coordinate of the center

pixel x and (m,n) represents the coordinate of any pixel y in

the x neighborhood Ω0
x, Gx and Gy represent the gray value

of the pixel x and pixel y respectively. D(x, y) and I(x, y)
are Gaussian functions of the geometric distance and intensi-

ty difference between pixels x and y respectively. Obviously,

D(x, y) and I(x, y) decrease when the distance and the gray

level difference between the two pixels get bigger, which also

means that if the gray difference between two pixels is large

or the distance is far, then the similarity between x and y is

very small and even the Euclidean distance can be omitted.

The parameters σD and σI are the standard deviation of the

Gaussian function D(x, y) and I(x, y), respectively. They

control the sensitivity of the geometric distance and absolute

intensity difference of D(x, y) and I(x, y) respectively. Their

influence for D(x, y) and I(x, y) can be change by adjusting

the values of these two parameters generally. Through a lot

of experiments, it is found that the denoising algorithm has

achieved good performance in all aspects when σD = 10 and

σI = 6.7.

Then the sum of the similarity between pixel x and all

pixels in the neighborhood can be obtained by the following

formula:

ζx =
∑

y∈Ω0
x

S(x, y) =
∑

y∈Ω0
x

[D(x, y) · I(x, y)] (4)

Since the edges and complex areas of the image refer to

the parts where the brightness of the local area of the image

changes significantly, the gray profile of this area can gener-

ally be regarded as a step, which means that a pixel changes

sharply in a small buffer area to another pixel with a large

grayscale difference. Therefore, when the central pixel x is in

the edge area, the gray scale difference between the pixel x
and the pixels in its neighborhood is generally larger. Hence,

I(x, y) is smaller and ζx decreases accordingly according

to Formulas (2)-(3). Similarly, because the intensity of the

pixel in the flat area changes slowly, the grayscale difference

between x and any pixel in its neighborhood is relatively

small when the central pixel x is in the flat area. Hence,

I(x, y) is larger and ζx increases accordingly, so the ζx of

the pixels in the flat area is larger than that of the pixels in the

edge and texture complex area since the intensity of pixels

in the flat area changes more slowly. In order to improve the

robustness of ζx, an averaging operation can be performed

on the ζx of the pixel x so that the ζx of the noise pixel or the

clean pixel almost reaches the same value, and the influence

of the complexity of the region on ζx is reduced. The new

statistics are defined as follows:

ζx = ζx/





∑

y∈Ω0
x

ζy



 (5)

where
(

∑

y∈Ω0
x

ζy
)

denotes the averaging operation for
∑

y∈Ω0
x

ζy.
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Through observation, it can find that ζx of each pixel in

the noise image is basically scattered in [0, 2.5]. In order to

process the data more conveniently and quickly, the follow-

ing formula can be used to normalize the ζx of any pixel to

be [0, 1] interval:

LSx =

{

1, ζx > 2.5

ζx/2.5, ζx ≤ 2.5
(6)

where LSx represents the local similarity between a given

central pixel x and the pixels in its neighborhood, which can

indicate the probability of whether the pixel x is noise. If the

LSx value is smaller, the similarity between the pixel x and

the pixels in its neighborhood is smaller. In other words the

pixel x is more likely to be noise. The process of calculating

the LSx value of a given pixel x is shown in Figure 2 for

better understanding.

Obviously, the LSx threshold can be set to filter out noise

pixels and clean pixels in the image. Properly setting the

threshold of LSx helps to improve the accuracy of noise

detection. As we can know in Section II-A, the ζx of the

noise pixel is smaller than the ζx of the clean pixel, and the

neighborhood of the center pixel contains more noise pixels

instead of clean pixels when the noise level of the image

increases. Based on the above two premises and Formula

(5), it can be known that when calculating the ζx of the

center pixel x, the value will increase as the image noise

level increases, which will result in a larger LSx value of the

center pixel. In addition, since the ζx of the pixels in the flat

area is larger than that of the pixels in the edge and texture

complex area, the LSx value of a pixel in a flat area will

be larger than that of a pixel in a complex area according to

Formula (3). Based on the above analysis, it can be known

that the LS detection threshold is related to the noise level

of the image, and different LS thresholds should be used for

pixels in different regions to determine whether it is noise.

Hence, we must first estimate the noise level of the image and

determine what region the center pixel is locate before setting

the LS detection threshold. The two problems are discussed

in the next sections.

B. PIXEL REGION DETECTION

For a noise-free image, the variance is small because the pixel

intensity in the flat area changes gently. In other words, the

pixel x can be considered to be in a flat area if the intensity

variance of all pixels in its neighborhood is small [36]. In

order to estimate the variance of a local area more accurately

in a noisy image, the intensity of the clean pixels in the area

should be used as much as possible to calculate the variance

instead of the intensity of the noise pixel. Since LS can indi-

cate the probability of whether a pixel is noise, the variance

of the region can be estimated by performing a weighted

average operation on all pixels in the pixel neighborhood

where the weight of each pixel is related to its corresponding

LS value. When the variance of the area where the pixel x
located is not greater than the preset threshold, the pixel is

regarded as being in a flat area, otherwise it is regarded as

being in a complex area. The method can be expressed as:

a =
∑

y∈Ω0
x

(LSy)
W1 (7)

µx =
∑

y∈Ω0
x

(LSy)
W1 ·Gy

a
(8)

b =
∑

y∈Ω0
x

(LSy)
W2 (9)

σ2

x =
∑

y∈Ω0
x

(LSy)
W2 · (Gy − µx)

2

b
(10)

x ∈

{

flat region, σ2
x ≤ Tσ

complex region, σ2
x > Tσ

(11)

where σ2
x represent the estimated variance deviation of the

intensity of all pixels in Ω0
x. LSy is the similarity of any

pixel y in the neighborhood of the center pixel x, which

can be obtained by Formulas (1)-(6). W1 and W2 are the

weights of LSy , which are used to adjust the proportion of the

influence of clean pixels and noise pixels on the calculation

of local variance. µx represents the estimated mean value

of all pixels in the neighborhood Ω0
x of the center pixel x,

Gy is the gray value of any pixel y in Ω0
x. a and b are

the sum of the weights used as a normalizer. Tσ is a preset

threshold to distinguish whether the pixel is in a complex

area or a flat area. W1, W2 and Tσ are adjustable parameters.

Through a lot of experiments it is found that the detection

accuracy of the area where the pixel located has achieved

good performance when W1 = 2, W2 = 4 and Tσ = 0.12.

C. NOISE LEVEL ESTIMATION

As mentioned earlier, the intensity value of the pixel in the

flat area changes smoothly and the larger the LS of a pixel,

the more likely it is to be a clean pixel. Based on these two

premises, the given pixel x and the pixel y with the largest

LS value in Ω0
x can be subjected to the intensity difference

calculation. The pixel x can be seen as a clean pixel if the

difference is not greater than the preset threshold, otherwise

it is a noise pixel. The method can be expressed as:

x is =

{

an impulse noise , Ix − Iy > θ
a clean pixel, Ix − Iy ≤ θ

(12)

where Iy is the gray of the pixel with the largest LS value in

Ω0
x. θ is an empirical threshold and we set θ to 5 in this paper.

It should be noted that here we only use this formula for noise

pixels in flat regions because they are easier to detect [37].

Then select some flat areas with a patch size M in the

image, filter out the noise pixels and clean pixels in each area

by formula (12) and then use formula (13) to estimate the

noise level of each area. Finally the overall noise level of the
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FIGURE 2. Flowchart of the computation process of LSx for a given center pixel x.

image can be estimated by performing a average operation on

the noise level of these areas [38] as shown in Formula (14):

σi =
Qn

Qc +Qn

, i = 1, 2, 3, . . . , d (13)

σ =
1

d

d
∑

i=1

σi (14)

where Qn and Qc are the quantity of noise pixels and clean

pixels given by (12). The parameters d represents the number

of selected flat regions and d = 10, M = 11 in this paper.

D. SELECTION OF LS THRESHOLD

In order to obtain the optimal LS detection threshold, a large

number of parameter tuning experiments have been carried

out on some common test images and it is found that even if

the test images are different but the noise level is similar, the

optimal threshold of LS is close. As the noise level increases

the optimal threshold becomes larger. In addition, the LS
threshold of the pixel in the complex area will be lower

than that of the flat area because the pixel intensity of the

complex area changes significantly. The above experiment

results is in line with our previous theoretical analysis in

the last paragraph of the second Chapter II-A. In order to

correctly estimate the LS detection threshold of pixels in the

flat area and the detailed area under different noise levels,

we performed polynomial fitting on a large amount of data

obtained from experiments to obtain the calculation formula

of the LS threshold with respect to the image noise level, as

shown in formulas (15) and (16):

θf = −0.12σ3 + 0.07σ2 + 0.75σ + 0.19 (15)

θc = 0.31σ3 + 0.63σ2 + 0.52σ + 0.03 (16)

where θf and θc are the LS detection thresholds of pixels

in the flat area and the complex area, respectively. σ is the

noise level of the corrupted image, which was estimated from

Formula (12)-(14). Then the impulse noise detector based on

LS can be designed as follows:

(1) If the pixel x is in a complex area, then the formula

(17) can be used to detect whether it is noise.

x ∈

{

impulse noise , LSx ≤ θc
clean pixel, LSx > θc

(17)

(2) If the pixel x is in a flat area, the formula (18) can be

used.

x ∈

{

impulse noise , LSx ≤ θf
clean pixel, LSx > θf

(18)

E. IMAGE PREPROCESSING

When a clean pixel is on the edge or contour of the image,

the intensity difference between it and nearby pixels is more

obvious, which can easily lead to the edge and contour pixels

as noise in the noise detection process [29]. In order to

make the noise detection scheme more accurate and robust,

a limited condition is added to the LS threshold detection

method to avoid false detection of edge pixels as noise pixels.

This step is performed only when the pixel x is identified as

a noisy pixel by the LS detection method. Firstly the original

noise image is preprocessed with median filter and Gaussian

filter, then the processed image and the original noise image

are subjected to intensity difference calculation. The pixel

is considered as a noise pixel when the absolute difference

between the pixels of the two images at the same coordinate

is greater than the threshold. The method is shown in formula

(19):

x ∈

{

clean pixel, |Ix − I ′x| ≤ θp
impulse noise , |Ix − I ′x| > θp

(19)

where Ix is the intensity value of pixel x in the original noise

image, I ′x is the intensity value of the corresponding pixel

x after preprocessing. θp is the threshold and θp = 15 in this

paper. In summary the whole framework of the impulse noise

detection algorithm proposed in this paper is shown in Figure

3. The main steps are summarized as follows:

VOLUME 4, 2016 5
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Step 1: Calculate the LS value of each pixel in the noise

image according to formulas (1)-(6).

Step 2: Judge whether each pixel is in a flat area or a

complex area through formulas (7) - (11).

Step 3: Estimate the overall noise level of the original

noisy image through (12)-(14) and then obtain the best LS
detection thresholds for pixels in the flat area and the complex

area through formulas (15) and (16).

Step 4: When the pixel x of the original noise image meets

the conditions of the noise pixel in formulas (17)-(19), it is

marked as a noise pixel, otherwise it is a clean pixel.

III. THE IMPULSE NOISE FILTERING METHOD

A good filter is needed to replace the noisy pixels in the

second stage after the noise detection. The bilateral filtering

proposed by Tomasi is a non-linear filtering method that

combines the spatial proximity of the image and the sim-

ilarity of the pixel value, and considers the spatial infor-

mation and gray-scale similarity to achieve the purpose of

edge preservation and denoising. The basic idea is that the

filtered gray value of the noise pixel is determined by the

pixel in its neighborhood, and the weight of the pixel in the

neighborhood to this value depends on the distance and gray

difference between the two pixels [32]. The filter method can

be described as follows:

D(x, y) = exp

(

−
‖(m,n)− (s, t)‖2

2σ2

D

)

, y ∈ Ω◦

x (20)

I(x, y) = exp

(

−
‖Gx −Gy‖

2

2σ2

I

)

(21)

Gxf =

∑

y∈Ω◦

x

[D(x, y) · I(x, y) ·Gy]
∑

y∈Ωo

x

[D(x, y) · I(x, y)]
(22)

where Gxf is the intensity value of the original noise pixel

x after filtering, and other parameters are similar to the

Formula (1)-(3). Zhang [33] improved the bilateral filter to

eliminate impulse noise but the proposed ABF tends not to

be good at processing images corrupted by strong block wise

noises. This is because ABF is a pixel-based filtering scheme

and is not qualified for addressing noises exhibiting regional

characteristics.

It can be known from the principle of the bilateral filter

that the noise pixels and clean pixels in the filter window

have the same influence on the center pixel during filtering,

which is obviously unreasonable. Because the gray value

of the noise pixel has been damaged to a certain extent,

it does not have too high reference value. Therefore, more

consideration should be given to the impact of the gray value

of the clean pixel on the center pixel when filtering the center

pixel. As mentioned in Chapter II-A, the pixel is more likely

to be a clean pixel if its LS value is larger. Hence, the new

filter method based on local statistical (LSBF) is designed by

FIGURE 4. The PSNR corresponding to different iteration times of the images.

replacing the above Formula (21) with the function of LS, as

shown in follows:

D(x, y) = exp

(

−
‖(m,n)− (s, t)‖2

2σ2

D

)

, y ∈ Ω◦

x (23)

L(x, y) = LS2

y (24)

Gxf =

∑

y∈Ω◦

x

[D(x, y) · L(x, y) ·Gy]
∑

y∈Ωo

x

[D(x, y) · L(x, y)]
(25)

where LSy is the local similarity of any pixel y in the

neighborhood Ω0
x, which can be obtained by formulas (1)-

(6). Fig.4 shows the three images with a noise level of 60%

filtered ten times and their corresponding PSNR values. It

can be seen that the proposed filter can obtain good results

after the first filtering and the PSNR reaches the highest after

the second or third iteration, but the subsequent iterations did

not achieve better results because of the reason that most of

the noise pixels in the image have been detected and filtered

out in the previous iterations. In addition, too much iteration

can easily misjudge some normal pixels as noise pixels in

the noise detection stage which will cause the PSNR value

to decline. Based on above reasons the LSBF filtering steps

proposed in this article are as follows:

Step 1: Use formula (25) to recover each noise pixel

detected in the first stage.

Step 2: Find the LS value of each pixel again on the

restored image and then detect noise and filter.

Step 3: Repeat step 2 and then stop the iteration when the

PSNR value of the restored image starts to decrease.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, a large amount of experimental data is an-

alyzed to illustrate the performance of the proposed impulse

noise detection and noise reduction algorithm, and compare it

with several latest algorithms. And the size of the test image

used in this article is 512×512 as shown in Figure 5.
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FIGURE 3. Flowchart of the computation process of LSx for a given center pixel x.

A. PERFORMANCE OF PROPOSED NOISE DETECTOR

Since the intensity value of random impulse noise is between

0 to 255, it is easy to consider the clean pixels as noise

or treat noise pixels as clean in the process of detecting

noise when the pixel intensity value of the damaged image

is not much different from the original value. A good noise

detector should have the characteristics of low false detection

(FD) and missed detection (MD) rates. Through using the

proposed noise detector and several mainstream noise de-

tection algorithms to detect Lena images with 40% to 60%

RVIN, the results are shown in Table 1. It can be seen that

ACWM has obvious advantages in low false detections, but

the number of missed detections is very high and DWM has a

similar opposite situation. Although the proposed method has

not reached the lowest number of missed detections or false

detections, it has achieved good results in both aspects and

the total number of false detections has reached the lowest

under different noise levels. In order to further reflect the

performance of the noise detector proposed in this article,

the RVIN of 20% to 60% was applied to the test images

and the tested results are shown in Table 2. It can be seen

that the proposed noise detector shows a very low number

of missed detections and false detections in the first three

images with less texture, especially in the House image. The

number of missed detections and false detections is relatively

high since the textures of the last three images are more rich

and complex, especially in the Baboon image. However, it

also can be seen that the noise detector shows a very stable

detection effect and good performance with the increase of

the image noise level.
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TABLE 1. Different methods’ comparison of detection results for Lena image with 40% to 60% RVIN

Methods
40% 50% 60%

MD FD Total MD FD Total MD FD Total

DWM [2] 9512 7761 17273 9514 11373 20887 12676 12351 25027

ACWM [3] 16052 1759 17811 23683 3623 27306 32712 7644 40356

NWM [8] 10149 5212 15361 9116 11299 20415 15448 7449 22897

AEPWM [29] 10908 7973 18881 11668 9613 21281 13571 9760 23331

ROR-NLM [9] 12890 3328 16218 15297 3487 19084 21827 7808 29635

ROLD-EPR [12] 14373 7158 21531 16682 7619 24301 19245 8235 27480

SDOOD [39] 13269 10324 25393 11742 15574 27316 16989 5923 22912

SRM [40] 21063 2063 23126 24903 3195 28098 32722 5047 37769

Proposed 11039 4213 15252 13562 5285 18847 15071 7521 22592

TABLE 2. Detection results of the proposed method for different images with 20% to 60% RVIN

Images
20% 30% 40% 50% 60%

MD FD Total MD FD Total MD FD Total MD FD Total MD FD Total

Lena 8167 1214 9381 11704 1738 13442 11039 4213 15252 13562 5285 18847 15071 7521 22592

Peppers 7678 1701 9379 11244 2096 13340 11891 4313 16204 12538 7030 19568 15581 7560 23141

House 6299 52 6351 9304 172 9476 10004 653 10657 12202 1035 13237 12882 2476 15358

Boat 9796 3494 13290 14060 4509 18569 14482 10236 24718 17524 10587 28111 19013 14523 33536

Barbara 10783 2619 13402 15442 3528 18970 16029 9617 25646 19134 10395 29529 20645 14007 34652

Baboon 16465 9667 26132 24192 11506 35698 23592 23816 47408 28371 23356 51727 29396 28328 57724

FIGURE 5. Test images: (a) Lena (b) Peppers (c) House (d) Boat (e) Barbara

(f) Baboon.

B. PERFORMANCE OF PROPOSED FILTER

The proposed filter is used on the test images after the first

stage of noise detection. In order to evaluate the filtering

effect of the proposed filter, Peak Signal-to-Noise-Ratio (P-

SNR) [41] and Structure Similarity Index Measure (SSIM)

[42] are used as evaluation indicators, which definitions are

shown in formulas (26) and (27) respectively.

PSNR = 10 log10
2552

1

M1M2

∑M1

i=1

∑M2

j=1
(oi,j − ri,j)

2
(26)

SSIM =
(2µxµy + C1) (2δxy + C2)

(

µ2
x + µ2

y + C1

) (

δ2x + δ2y + C2

) (27)

where M1 × M2 is the dimension of the image, oi,j and

ri,j are the corresponding intensities of pixels in the clean

and restored images. µx and µy are the means of the noisy

and restored image respectively. δ2x and δ2y are the variances

of the noise and restored image respectively and δxy is the

covariance of the noise and restored image.

Table 3 and Table 4 list the PSNR and SSIM values of

Lena and Boat images contaminated by RVIN with a noise

density ranging from 40% to 60%. It can be seen from

Table 3 and Table 4 that the proposed filter shows good

performance whether it is in Lena image with a simple

texture or in Boat image with a more complex texture. Al-

though DWM, ACWM and AEPWM perform better at lower

noise density, the performance decays quickly at higher noise
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TABLE 3. Comparison of restoration results in PSNR (dB) on the Lena and

boat images corrupted by 40% to 60% RVIN

Methods
Lena Boat

40% 50% 60% 40% 50% 60%

DWM [2] 33.12 32.98 29.76 27.25 25.97 24.52

ACWM [3] 32.87 31.24 28.8 27.13 25.49 23.76

NWM [8] 27.66 26.34 25.18 27.66 26.34 25.18

AEPWM [29] 31.77 30.01 28.03 27.85 26.61 24.87

ROR-NLM [9] 31.42 29.21 25.61 27.23 25.43 24.21

SDOOD [39] 32.06 30.24 27.42 26.78 25.79 24.44

SRM [40] 30.1 29.3 25.8 27.19 25.1 23.6

SBF [34] 30.78 28.16 26.62 27.14 26.01 24.62

TF [11] 31.36 29.44 27.09 27.72 26.79 24.91

Proposed 31.14 30.01 28.96 27.25 26.32 25.34

TABLE 4. Comparison of restoration results in SSIM on the Lena and Boat

images corrupted by 40% to 60% RVIN

Methods
Lena Boat

40% 50% 60% 40% 50% 60%

DWM [2] 0.901 0.866 0.775 0.816 0.737 0.665

ACWM [3] 0.877 0.779 0.589 0.819 0.715 0.759

SRM [40] 0.886 0.826 0.742 0.865 0.812 0.71

SDOOD [39] 0.898 0.869 0.797 0.756 0.728 0.649

DnCNN [27] 0.891 0.844 0.793 0.878 0.806 0.760

SBF [34] 0.889 0.836 0.787 0.764 0.719 0.656

TF [11] 0.866 0.847 0.747 0.731 0.672 0.639

Luo’s [43] 0.881 0.796 0.631 0.802 0.719 0.568

Proposed 0.904 0.868 0.817 0.805 0.761 0.693

density because these methods mainly replace noise pixels

by considering all pixels in the window. The proposed filter

is more inclined to replace the intensity value of the central

noise pixel with clean pixels through LS weighted average.

The performance of the proposed filter decays slowly even

with the increase of the noise density level, which indicates

that the filter has better stability and robustness.

In order to evaluate the effect of the proposed filter intu-

itively, the Lena and Baboon images with 50%-60% RVIN

are filtered and the results are shown in Figure 6. It can be

seen that the proposed filter can restore the edges and detail

regions of the image very well even in highly damaged Lena

image. As for the Baboon image with complex texture, there

are still some noises in the filtered image due to the number

of miss and false detected pixels left in the noise detection

stage. But the good recovery effects have been obtained for

those detected noises and non-detail regions.

Figure 7 shows the filtering results of different filtering

TABLE 5. Comparison of running time consumption in Lena with 40% to 60%

RVIN (in seconds)

Methods 40% 50% 60%

SAFF [25] 82.62 83.37 84.18

DnCNN [27] 6.34 6.38 6.75

Proposed 2.95 3.14 3.87

methods on the Peppers image of 60% RVIN. It can be seen

that the proposed method has fewer noise pixels and higher

PSNR values in the filtered image. We can also find that the

proposed method can restore the edges and textures of the

image better than other methods by observing the detailed

regions of the image. In summary, the method proposed in

this paper has achieved significant results in both the noise

detection stage and the noise removal stage.

C. ALGORITHM EXECUTION COST COMPARISON

The execution time and equipment investment of the algo-

rithm are also used as an important index to measure the

performance of the image denoising algorithm. Therefore,

we compared the proposed method and two methods with

significant filtering effects on the Lena image with 40% to

60% RVIN and the results of running time are listed in Table

5. Our computing environment is: Processor: Intel Core i3-

6100 CPU 3.70 GHz; running memory: 8.0 GB; system type:

Windows 7 of 64-bit operating system. It can be seen that

although [25] and [27] achieve very good filtering effects,

the time cost is huge due to the addition of iteration and

fuzzy control in [25]. And [27] uses a convolutional neural

network so more expensive hardware equipment is required.

However, the proposed method only iterates 2 or 3 times

in the filtering stage so it spends a lower cost in hardware

equipment and algorithm execution time.

V. CONCLUSION

In this paper we propose a two-stage denoising algorithm

based on local similarity to detect and remove random-valued

impulse noise in the image. The proposed method first uses

the neighborhood information of the pixels to be detected to

identify the impulse noise in the image, and then improves

the traditional bilateral filter based on the local similarity

of the pixels to recover the pixels affected by the impulse

noise. Through a large number of experiments and analysis

on different test images, it can be found that the proposed

method has shown significant effects in both the noise de-

tection stage and the image restoration stage. In the image

restoration stage, the method only needs a few iterations to

achieve the optimal image restoration effect. Although other

denoising algorithms have achieved higher PSNR and SSIM

values after multiple iterations, it increases the calculation

time and equipment cost. In summary, the proposed method

has achieved satisfactory results in terms of image processing
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FIGURE 6. The filtering effects of proposed method on Lena and Baboon noisy images: (a)-(b) Lena image with 50%-60% RVIN; (c)-(d) Baboon image with

50%-60% RVIN; (e)-(f) Restored image of Lena with 50%-60% RVIN; (g)-(h) Restored image of Baboon with 50%-60% RVIN.

performance and operating cost, which will be more helpful

for algorithm transplantation in small devices.

Through observation it is found that the miss detected and

false detected pixels in the first stage mainly exist in the

contour and edge regions of the image, which is caused by

the large difference between the intensity values of the pixels

on the contour and the surrounding pixels. In a sense, the

pixels in the contour region are also regarded as a kind of

noise. When there are too many detail regions in the image

or too much noise in the detail regions, this will not only

increase the difficulty of noise detection, but also affect the

filtering effect in the image restoration stage. In the subse-

quent improvement work, we will continue to discuss and

analyze how to obtain the optimal parameters when judging

whether the pixel is in a detailed area or a flat area. In order

to improve the detection accuracy of the noise detector in the

detail region of the image, we will also consider introducing

other better edge noise detection methods for improvement

in the later stage.
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