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Abstract—In this paper, we propose an architecture for voltage
regulation in distribution networks that relies on controlling
reactive power injections provided by distributed energy resources
(DERs). A local controller on each bus of the network monitors
the bus voltage and, whenever there is a voltage violation, it
uses locally available information to estimate the amount of
reactive power that needs to be injected into the bus in order
to correct the violation. If the DERs connected to the bus can
collectively provide the reactive power estimated by the local
controller, they are instructed to do so. Otherwise, the local
controller initiates a request for additional reactive power support
from other controllers at neighboring buses through a distributed
algorithm that relies on a local exchange of information among
neighboring controllers. We show that the proposed architecture
helps prevent voltage violations and shapes the voltage profile in
radial distribution networks, even in the presence of considerable
penetration of variable generation and loads. We present several
case studies involving 8-, 13-, and 123-bus distribution systems to
illustrate the operation of the architecture.

I. INTRODUCTION

D
RIVEN by the US DOE Smart Grid initiative, and its

European counterpart Electricity Networks of the Future,

power distribution systems are undergoing radical transfor-

mations in structure and functionality. These transformations

are enabled by the integration of (i) advanced communication

and control, (ii) variable generation, e.g., photovoltaics (PVs),

and (iii) storage-capable loads, e.g., plug-in hybrid electric

vehicles (PHEVs). These generation and storage resources are

commonly referred to as distributed energy resources (DERs).

To date, the relatively small penetration of DERs in dis-

tribution systems has allowed regulations pertaining to their

control to be limited to (i) maintaining a constant power factor,

(ii) following scheduled dispatches from an operator, and (iii)

disconnecting from the grid when a fault occurs [1]. However, it

has been reported (see, e.g., [2], [3]) that increased penetration

of DERs in distribution systems is likely to cause voltage

problems, thus requiring additional control mechanisms. This

is due to the fact that, unlike transmission systems, typical

line reactance to resistance ratios in distribution systems are

such that bus voltages are much more sensitive to changes

in active power injections [4], [5]. In this regard, PV-based

electricity generation can be highly variable and ramp up on the
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order of 15% of its capacity per minute across a network with

intermittent cloud cover [2]. Additionally, on a clear day, a high

penetration of PV installations has the potential to cause voltage

rise and over-voltages from a reversal of active power flow

originating from net-positive power injections. With respect

to this, the University of Illinois solar decathlon house—the

Gable Home [6]—and the Equinox house [7] are examples of

residential PV installations capable of producing an amount of

power significantly larger than its average load during peak

hours of the day. Similarly, the additional power demand

introduced by massive charging of PHEVs can potentially cause

unacceptable voltage drops [8].

Voltage violations are traditionally handled by automatically-

controlled tap-changing under load (TCUL) transform-

ers, set voltage regulators (SVR), and manually-controlled

fixed/switched capacitors [2], [9], [10]. However, existing

equipment is not inherently designed to handle the variability

introduced by DERs, and the lifetime of these components

(e.g., the switches and tap changers) could be dramatically

reduced due to the increased number of operations that they

may undergo [2]. A potential solution to this problem lies

on the utilization of DERs to provide reactive power support

for voltage regulation through the proper control of the power

electronics that interface them with the grid [11]–[13]. In this

paper, we pursue this idea and propose a two-stage voltage

control architecture that relies on controlling and coordinating

the reactive power provided by DERs. In this regard, the

commercial products described in [13], [14] are examples

of existing rooftop and pole-mount PV solutions capable of

providing reactive power support; these products have wireless

communication capabilities that allow them to be controlled

through cellular, Ethernet, or WiMax backhaul networks.

Our proposed architecture consists of two stages. In the

first stage, the voltages at certain buses in the network are

monitored by a local controller. If the local controller at a

particular bus senses that its voltage is above or below certain

thresholds imposed by performance specifications (e.g., ±5%

around a nominal value [1]), it will first estimate the amount

of reactive power that should be injected into the bus to

clear the voltage violation. This estimate is obtained by using

the sensitivity of the bus voltage magnitude to changes in

reactive power injections in the same bus. Then, if the DERs

directly connected to the bus can provide the estimated reactive

power, they will be instructed to do so; otherwise, they will

output their maximum/minimum capacity. In the second stage,
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the difference in reactive power between the local controller

estimate and what the DERs connected to the bus can provide

will be requested from other buses that have additional capacity.

Through a distributed algorithm that only requires a exchange

of information among neighboring controllers (e.g., through

wireless or power line communications), each local controller

calculates its fair contribution to meet the additional request.

Other (centralized) solutions to the voltage control problem

in distribution networks have been proposed in [15]–[17]. For

example, the authors in [15] propose an optimal multi-agent

scheme that provides reactive power support in distribution

feeders, and assumes that DERs have two-way communication

with a single controller, either directly or through other DERs.

In order to correct limit violations, agents are assigned to be

managers or contractors that bid on reactive power contributions

based on bus sensitivities. In [16], the authors partition the

system buses into groups (agents) and solve local optimal

power flow problems though a hierarchical chain of command

structure. The authors in [17] maintain a database of limited

historical observations and the corresponding solutions to a

nonlinear optimal power flow problem so as to avoid computing

its solution each time. In all the solutions described above, it

is necessary to overlay a communication network connecting a

central controller with each DER, and requires the controller to

know the available DERs at all times. By contrast, our control

architecture offers many potential benefits over a centralized

one: (i) it is more economical because it does not require a

significant communication infrastructure overlay, (ii) computa-

tional requirements for the local controller are relatively low,

and (iii) local information is sufficient to control the DERs.

It is worth noting that there are also several decentralized

or distributed strategies that address the voltage regulation

problem in distribution networks [18], [19]. The authors of

these works propose a switching control scheme where the

DERs are operated with a constant power factor while bus

voltages are within specifications, and, whenever there is a

voltage violation, their reactive power is adjusted so that the

system returns to the desired operating conditions. This is

similar to the first stage of the proposed control scheme, but

lacks the additional support provided by the second stage.

In subsequent developments, we assume that the local con-

troller on each node has aggregate information on the total

reactive power capacity available (upper and lower limits)

from DERs connected to its bus. This collective upper (lower)

capacity limit is determined by the sum of the individual DER

upper (lower) limits, which the local controller needs to obtain.

In practice, this can be accomplished in a variety of ways. One

possibility is to have the local controller directly communicate

with each individual DER. In such case, each DER can directly

report its individual capacity limits, which can vary over time

depending on the specific operating conditions of the DER. An

alternative to the above approach can be implemented using a

variation of the algorithm used in the second stage, which can

be modified to coordinate the DERs on each bus in a distributed

fashion; for further details, the reader is referred to [20], [21].

The remainder of this paper is organized as follows. Sec-

tion II provides the distribution system model used for control

design purposes, and the communication network model used to

describe the exchange of information between local controllers.

The proposed two-stage control architecture is presented in

Section III, while Section IV illustrates its operation on an 8-bus

network. Section V presents a case study involving the IEEE

123-bus system with a high penetration of PVs and PHEVs.

Section VI discusses extensions to unbalanced three-phase

systems. Concluding remarks are presented in Section VII.

II. SYSTEM MODEL

In this section, we develop a power distribution system

model, which is used in Section III to design the voltage control

system; this model describes the evolution of bus voltage

magnitudes as active and reactive power injections change over

time. Additionally, we introduce the network communication

model that describes the exchange of information between the

local controllers that are geographically dispersed throughout

the electrical network.

A. Power Distribution Network

Consider a distribution system with n + 1 buses indexed

by i = 0, 1, . . . , n. At time instants r = 0, 1, . . . , the voltage

magnitude and angle of bus i are denoted by Vi[r] and θi[r],
respectively. We assume that bus i = 0 is the feeder and will be

treated as an infinite bus, therefore V0[r] and θ0[r] remain con-

stant for all r. The remaining n buses are considered to be PQ

buses. Let V [r] = [V1[r], V2[r], . . . , Vn[r]]
T denote the vector

of bus voltage magnitudes and θ[r] = [θ1[r], θ2[r], . . . , θn[r]]
T

denote the vector of bus voltage angles (both V0[r] and θ0[r]
are omitted). At time instant r, let Pi[r] and Qi[r] be the

active and reactive power injections in bus i, respectively; the

corresponding active and reactive power injections vectors at

the PQ buses are denoted by P [r] = [P1[r], P2[r], . . . , Pn[r]]
T

and Q[r] = [Q1[r], Q2[r], . . . , Qn[r]]
T . We define ∆V [r] =

V [r+1]−V [r] and ∆θ[r] = θ[r+1]−θ[r] as the vectors describ-

ing small variations in voltage magnitudes and angles between

times r and r+1; while variations in active and reactive power

injections at PQ buses are defined as ∆P [r] = P [r+1]−P [r]
and ∆Q[r] = Q[r + 1]−Q[r]. Then,

[

∆P [r]
∆Q[r]

]

=

[

H N
K L

] [

∆θ[r]
∆V [r]

]

, (1)

where

H =

[

∂Pi

∂θj

]

, N =

[

∂Pi

∂Vj

]

,K =

[

∂Qi

∂θj

]

, L =

[

∂Qi

∂Vj

]

.

[Note that all of the partial derivatives defining the entries of

H , N , K, and L are evaluated at V [r], θ[r], P [r], Q[r], and

therefore H , N , K, and L are functions of r; however, in the

remainder, we suppress the argument for ease of notation.]

A standard assumption used in the analysis of transmission

systems is that the entries of H , L are much larger than the

entries of N , K. This effectively decouples (1) so that variations
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in active power injections primarily affect bus voltage angles,

whereas variations in reactive power injections directly affect

bus voltage magnitudes. This is a consequence of the fact

that the per unit reactance to the per unit resistance ratio of

transmission lines, commonly referred to as “x/r ratio”, is large

[22]. In the case of a distribution system, this assumption is not

valid since the transmission line x/r ratios are much lower [4].

As a result, in distribution systems, bus voltages are much more

sensitive to changes in active power than typically observed in

transmission systems.

In our setting, ∆P [r] describes the changes in active power

injections that arise from DERs, e.g., PV rooftop installations

and PHEVs, and represents an external “disturbance” over

which we do not have control. These injections will have a

noticeable impact on the network voltage profile. To mitigate

the effect of ∆P [r] on system voltages, we assume that we

have control over ∆Q[r]. We are interested in the effect

that uncontrolled variations in active power and controlled

variations in reactive power injections have on bus voltage

magnitudes. Assuming that H is invertible, then it follows from

(1) that ∆θ[r] = −H−1N∆V [r] +H−1∆P [r], and

∆V [r] = (L−KH−1N)−1(∆Q[r]−KH−1∆P [r])

= S∆Q[r] + w[r], (2)

where S ≡ (L−KH−1N)−1 is assumed to be invertible, and

w[r] ≡ −(L − KH−1N)−1KH−1∆P [r] captures the effect

of uncontrolled variations in active power injections on bus

voltage magnitude. Now, by unwrapping (2), the recurrence

relation that describes how the bus voltage magnitudes evolve

with time is given by

V [r + 1] = V [r] + S∆Q[r] + w[r]. (3)

Although we did not make it explicit, the matrix S is in general

a function r. On the other hand, the variations of S with r are

relatively small for a wide range of operating conditions [22].

In this regard, for the test systems used in the case studies of

Sections IV–VI, we verified that, for a wide range of operating

conditions, the entries of S typically remain within 3% of their

average value.

B. Network Communication

It is assumed that certain buses of the electrical network have

a local controller that can monitor the bus voltage and make

local control decisions based on the exchange of information

with a subset of other controllers. Some of these controllers

may be located at buses that are directly connected to the

bus of the given controller, but, in general, the exchange of

information between the n controllers can be arbitrary. It is

convenient to capture this exchange of information between

local controllers by a directed graph Gd = {V, E}, where

V = {1, 2, ..., n} represents the set of vertices (nodes, which

represent the controllers), and E ⊆ V × V represents the set

of directed edges, i.e., (j, i) ∈ E when node j can receive

information from node i. By convention, we assume that self-

loops are not contained in E . All of the nodes that can send

r = 0
k = 5

r = 1 r = m

2
nd Stage 2

nd Stage

1
st Stage 1

st Stage 1
st Stage

Figure 1: Timeline for the first and second stages.

information to node j are said to be the in-neighbors of node

j and are represented by the set N−
j = {i ∈ V : (j, i) ∈ E}.

The cardinality of N−
j is called the in-degree of node j and is

denoted by D−
j . The nodes that can receive information from

node j are called its out-neighbors and are represented by the

set N+

j = {l ∈ V : (l, j) ∈ E}; the out-degree of node j is

D+

j . A directed graph is considered strongly connected if any

two vertices i, j ∈ V, i 6= j, can be joined by a path that starts

at node i and ends at node j.

III. TWO-STAGE VOLTAGE CONTROL ARCHITECTURE

In this section, we first provide an overview of the proposed

two-stage voltage control architecture. Then we formulate each

stage that comprise the architecture and analyze their stability

and convergence properties.

A. Overview

Figure 1 shows the timeline for the operation of the two

stages. Without loss of generality, assume that at each bus j
of the network, there is a local controller that monitors the bus

voltage magnitude Vj . At fixed time instants r = ⌊k/k0⌋, k =
0, 1, . . . , for some sufficiently large k0 (to be precisely defined

later), each local controller executes the first stage. In this stage,

if the local controller on bus j detects a voltage violation, i.e.,

Vj is outside specifications, it estimates the amount of reactive

power that, if injected (or consumed) in bus j, will correct the

violation; then, if the DERs connected to bus j collectively

have the capacity to inject (or consume) the estimated reactive

power request, the controller instructs these DERs to do so.

[In Section I we discussed two alternatives for how the local

controller connected to bus j can, a priori, determine the

DER collective upper/lower capacity limits.] Otherwise, the

local controller will execute the second stage by initiating

a request for an additional amount of reactive power to be

injected in other buses of the network to help clear its voltage

violation. This request is relayed by the local controller to other

neighboring local controllers through a distributed iterative

algorithm that ensures that nodes with available reactive power

capacity will provide additional support.

The second stage exploits the sensitivity of Vj to reactive

power injections in neighboring buses and has a net effect

of a globally homogeneous raising (or lowering) of all the

bus voltages. This effect is similar to the one that results

from adjusting the taps on a TCUL transformer or a SVR

in the sense that it affects all bus voltages; however, there
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are some differences. In particular, the action of a TCUL,

or a SVR, will uniformly raise (or lower) the voltage across

the network. In the two-stage control architecture, the reactive

power injections in bus j will primarily affect the voltage

at this bus and the voltages at buses downstream of it (in a

radial system), with the effect attenuating as we move towards

the feeder. It is important to note that the proposed voltage

control architecture is not intended to replace current voltage

control systems, but rather to supplement their action while (i)

minimizing their usage by handling faster voltage variations due

to changes in renewable-based power injections, and (ii) having

them intervene only during extreme circumstances rather than

minor, possibly temporary, violations.

B. First Stage Control

At time instants r = 0, 1, . . . , the local controller located on

bus j measures the voltage Vj [r]. If it detects a voltage violation

(i.e., Vj [r] 6∈ [V j , V j ], where V j and V j are bus j’s upper and

lower voltage limits, respectively), then the local controller will

estimate the amount of additional reactive power ρj [r] needed

to clear the violation. In the first stage, we assume that the

controller at bus j does not have voltage information for other

buses available. Therefore, the estimate of ρj [r] is given by

ρj [r] =



















α

sjj
(V j − Vj [r]), Vj [r] < V j ,

0, V j ≤ Vj [r] ≤ V j ,
α

sjj
(V j − Vj [r]), V j < Vj [r],

(4)

where α > 0 is some constant (to be made precise later)

and sjj = ∂Vj/∂Qj . Thus, if the DERs connected to each

bus j collectively have the capacity (with respect to their

previous demand) to provide ρj [r], then the net change in

reactive power injections for all of the nodes in the network is

given by ∆Q[r] ≡ ρ[r], where ρ[r] = [ρ1[r], ρ2[r], . . . , ρn[r]]
T

(assuming that the reactive power consumed by loads does

not substantially change). Next, we provide a condition on the

value that α must take to ensure the stability of the closed-loop

system that results from applying ∆Q[r] ≡ ρ[r] to (3).

1) Choice of α for stability: Note from (4) that, by defining

V ref
j [r] =







V j , Vj [r] < V j ,

Vj [r], V j ≤ Vj [r] ≤ V j ,

V j , V j < Vj [r],

(5)

we can write

∆Q[r] ≡ ρ[r] = αD
(

V ref [r]− V [r]
)

, (6)

where V ref [r] = [V ref
1 [r], [V ref

2 [r], . . . , V ref
n [r]]T , α > 0, and

D is a diagonal matrix with dii = 1/sii. Then, by substituting

(6) into (3), we get

V [r + 1] = (I − αSD)V [r] + αSDV ref [r] + w[r], (7)

with V ref [r] as defined in (5), from where it is easy to see that

V ref [r] is bounded for all r. Also, from the definition of w[r]
in (3), it is obvious that w[r] is also bounded for all r.

Then, since the system (7) is a linear time-invariant system

driven by bounded inputs V ref [r] and w[r], ensuring the

stability of this system, i.e., that V [r] remains bounded for all

r, is equivalent to ensuring that the system is internally stable

(see, e.g., [23]), i.e., the eigenvalues of (I − αSD) must lie

within the unit circle. This can be accomplished by choosing

α such that

α < αc = min
i

{

2Re{λi}

|λi|2

}

. (8)

where λi = Re{λi} + j Im{λi} denotes the ith eigenvalue of

SD. The derivation of (8) is included in Appendix B.

Remark 1: The developments above assume a fixed electri-

cal network configuration that results in a single S; however,

the control system should be able to adapt to configuration

changes (potentially resulting in different S’s) and ensure that

the system in (7) is stable for all possible configurations. In

this regard, we envision that the local controller at each bus

j could have a database, calculated off-line, with the value of

sjj and α corresponding to each network configuration. Then,

upon a change in configuration, the local controllers would be

notified, and they would update α and the sjj’s accordingly. �

2) Practical considerations for implementation: The action

of (6) on the system dynamics as defined by (3), which results

in (7), is equivalent to those of a discrete-time integrator. Thus,

whenever there is a voltage violation at bus j, the action of the

first stage controller will asymptotically drive the voltage Vj to

either V j or to V j depending on the nature of the violation.

In practice, it is desirable that the first stage controller stops

iterating after a finite number of steps r0. In order to achieve

this, in (4), we replace V j by V j − ε1 and V j by V j + ε1 for

some ε1 > 0 small. The result is such that, for any ε1 > 0,

there is some finite r0 such that Vj [r] ∈ [V j , V j ] for all r ≥ r0
and all j; thus the controller action stops after r0 steps.

In all our numerical experiments, we verified that letting

α = 1/n (where n is the number of buses in the network with

the feeder omitted) be the default gain satisfies the condition in

(8). This choice of α may not necessarily result in the shortest

settling time; however, it helps prevent overshoots if several

local controllers are acting simultaneously. In this regard, we

have observed that S is in general a full matrix whose entries

are usually on the same order of magnitude, except for those

associated with buses that are furthest apart, i.e., buses at the

end of a sublateral have a low voltage sensitivity with respect

to injections into buses near the feeder, and vice versa. This

implies that injections of reactive power at any bus affect

(to a more or less extent) all other bus voltages throughout

the network. Furthermore, for typical distribution system line

parameter values, the column and row sums of SD are typically

well below 1.5n, so scaling the contribution of each bus by 1/n
ensures that the spectral radius of SD is less than 2 [24]. This

accounts for the worst-case scenario in which all the buses

are subject to either under-voltage or over-voltage violations.

Finally, it is worth noting that the local controllers can easily

estimate n using a distributed algorithm similar to the one to

be described in Section III-C.
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C. Second Stage Control

If the reactive power estimate ρj [r] is within the limits that

the DERs connected to bus j can provide for all j, then

the second stage is not required at step r. Otherwise, the

second stage compensates for the capacity constraint violations

from the first stage by adjusting every node’s contributions to

globally raise, or lower, bus voltages across the network. This

is accomplished through a distributed algorithm that relies on a

local exchange of information among neighboring controllers.

We assume that the graph that describes the exchange of

information between local controllers is strongly connected, but

not necessarily complete, i.e., it is not necessarily the case that

each node can communicate directly with every other node in

the graph. [If the graph was complete, then we could easily use

a centralized dispatch strategy.]

Let q
j
, qj , where q

j
≤ 0 ≤ qj , be the total lower and upper

limits on the amount of reactive power that DERs at bus j can

provide. Let qj [r] be the amount1 of reactive power provided

by the DERs connected to bus j at instant r. Then, assuming

that q
j
≤ qj [r] ≤ qj , ∀j, the total estimated reactive power to

be provided by node j is

q̂j [r + 1] = qj [r] + ρj [r], (9)

where ρj [r] is the estimate from (4). Then, if q
j
≤ q̂j [r+1] ≤

qj , ∀j, the second stage is is not necessary, i.e., every node j
can provide itself the amount of reactive power estimated in the

first stage. Otherwise, whenever q̂j [r+1] ≥ qj or q̂j [r+1] ≤ q
j
,

for some j (which means that at least one node cannot correct

its voltage violation by itself), the buses that have additional

capacity will calculate the amount of reactive power they need

to provide as an attempt to raise the voltage in the network

through the distributed iterative algorithm described next.

1) Second stage algorithm: Let G = {V, E} be a strongly

connected directed graph describing the exchange of informa-

tion between local controllers. Each node j ∈ V maintains

three auxiliary variables µj [k], νj [k], and νj [k], and updates

them to µj [k + 1], νj [k + 1], and νj [k + 1], respectively,

via a weighted linear combination of their previous µj [k],
νj [k], and νj [k], respectively, and those of its in-neighbors, i.e.,

{µi[k] | i ∈ N−
j }, {νi[k] | i ∈ N−

j }, and {νi[k] | i ∈ N−
j },

respectively; specifically,

µj [k + 1] =
∑

i∈{N−

j
}∪{j}

1

1 +D+

i

µi [k] , (10)

νj [k + 1] =
∑

i∈{N−

j
}∪{j}

1

1 +D+

i

νi [k] , (11)

νj [k + 1] =
∑

i∈{N−

j
}∪{j}

1

1 +D+

i

νi [k] , (12)

1In (3), we defined ∆Qj [r] = Qj [r+1]−Qj [r], where Qj [r] is the total

reactive power injection (with appropriate sign) in bus j that arises from both
DERs and loads, i.e., Qj [r] = qj [r]+qLj , where qLj denotes the (uncontrolled)

reactive power injection arising, e.g., from loads, which is assumed to remain
constant, i.e., ∆Q[r] = Q[r + 1]−Q[r] = q[r + 1]− q[r].

where D+

i is the out-degree of node i. Each node j sets its

initial conditions in (10)–(12) respectively to

µj [0] =







q̂j [r + 1]− qj , q̂j [r + 1] > qj ,
q̂j [r + 1]− q

j
, q̂j [r + 1] < q

j
,

0, otherwise,

(13)

νj [0] =

{

qj − q̂j [r + 1], q̂j [r + 1] < qj ,
0, q̂j [r + 1] ≥ qj ,

(14)

νj [0] =

{

q
j
− q̂j [r + 1], q̂j [r + 1] > q

j
,

0, q̂j [r + 1] ≤ q
j
.

(15)

Then, at every step k, for each j such that νj [k] 6= 0 or νj [k] 6=
0, the corresponding local controller computes

ηj [k] =























µj [k]

νj [k]
νj [0], µj [k] < 0,

µj [k]

νj [k]
νj [0], µj [k] ≥ 0,

(16)

where ηj [k] will asymptotically converge to

ηj =























∑n

i=1
µi[0]

∑n

i=1
νi[0]

νj [0], limk→∞ µj [k] < 0,

∑n

i=1
µi[0]

∑n

i=1
νi[0]

νj [0], limk→∞ µj [k] ≥ 0;

(17)

the derivation of this result can be found in Appendix C.

From (17), it is obvious that
∑n

j=1
ηj =

∑n

j=1
µj [0], i.e.,

the total amount of reactive power (including both positive

and negative contributions) that constrained nodes cannot pro-

vide remains asymptotically constant. Also, ηj ≤ νj [0] if

limk→∞ µj [k] ≥ 0 and ηj > νj [0] if limk→∞ µj [k] < 0.

Finally, bus j adjusts its reactive power contribution to

qj [r + 1] =







qj , q̂j [r + 1] + ηj > qj ,
q
j
, q̂j [r + 1] + ηj < q

j
,

q̂j [r + 1] + ηj , otherwise.

(18)

From the above development, it follows that the additional

reactive power to be requested in the second stage will either

be a net injection or a net consumption. In this regard, it is

reasonable to assume that a distribution network will typically

experience one type of voltage violation at any given moment.

Simultaneous over- and under-voltage violations would imply

that the distribution system lines have substantial losses, which

is unlikely in real system; however, we assume that this is a

possibility. Thus, each node j maintains νj [k] and νj [k], and

computes the appropriate solution in (17) once µj [k] converges.

2) Effect of network connectivity on convergence speed:

For any strongly connected graph G = {V, E} describing the

exchange of information between local controllers, the steady-

state solution of the distributed algorithm in (17) is independent

of G. However, for a given size of the vertex set V , the connec-

tivity between the nodes as described by E , which determines

the weights in (10)—(12), affects the convergence speed of

the distributed algorithm. In this regard, by letting µ[k] =



6

[µ1[k], µ2[k], . . . , µn[k]]
T , ν[k] = [ν1[k], ν2[k], . . . , νn[k]]

T ,

and ν[k] = [ν1[k], ν2[k], . . . , νn[k]]
T , and defining a matrix

P = [pji], with

pji =











1

1+D+

j

, j = i,
1

1+D+

i

, j 6= i, (j, i) ∈ E ,

0, j 6= i, (j, i) /∈ E ,

(19)

then, we can write the iterations in (10)—(12) in matrix form

(as in (20)—(22) in Appendix C). The matrix P is column

stochastic and has the same sparsity structure (except for the

diagonal entries) as the adjacency matrix of G. Furthermore,

since G is strongly connected, the matrix P is primitive [24].

Now, it is well-known (see, e.g., [24]) that, for some accuracy

level ε0, the second largest eigenvalue modulus |λ2| of P deter-

mines the number of iterations k0 after which ‖µ[k]−µ‖∞ ≤ ε0
and ‖ν[k]− ν‖∞ ≤ ε0 (‖ν[k]− ν‖∞ ≤ ε0), ∀k ≥ k0.

In general, the more connected the graph is the faster the

algorithm converges, i.e., the smaller k0 is; however, in order to

make a quantitative statement, it is necessary to check the value

of |λ2|. On the other hand, there are results in the spectral graph

theory literature (see, e.g., [25]) that establish upper bounds on

|λ2| in terms of the number of nodes and the diameter of G,

e.g., the maximum shortest path between any two nodes. In

order to determine the execution time of the algorithm, we

need to fix the time τ0 for completing each iteration. In this

regard, we have shown in [26] that using commercial off-the-

shelf hardware we can complete an iteration step τ0 within 10
to 40 ms; should the hardware be designed specifically for this

application, the iteration step time τ0 might be decreased even

further. Then, given τ0 and k0, the actual time it takes for the

distributed algorithm to converge is τ1 = k0τ0, which in turn

determines the minimum time between actions of the first stage

controller. Note that in the case studies that follow, we ensure

that τ1 is much smaller than the reaction time2 for TCULs.

IV. EXAMPLE: 8-BUS DISTRIBUTION SYSTEM

Consider the 8-bus system shown in Fig. 2; operational

requirements specify that bus voltage magnitudes must lie

within ±5% of 1 p.u. at all times. Line impedance data, system

loading data, and the aggregated reactive power capacity limits

of the DERs on each bus can be found in Appendix D, from

which the matrices S and D in (7) can be obtained. Then,

given S and D, and following the notation in (8), we obtain

that αc = 0.4, thus, for the first stage, the gain α of each local

controller needs to be chosen so that α < αc.

A. Second Stage Implementation

We consider the two communication network topologies

displayed in Fig. 3. Topology 1 (Fig. 3(a)) mirrors the physical

network with undirected communication links between the

2This partially explains why the effect of TCULs was not included in the
case studies, since we naturally wanted to focus on the effectiveness of the
proposed control scheme; nevertheless, future work will consider the coupling
of TCULs with the proposed control scheme.

Feeder

1 2 3 4 5

6

7

Figure 2: 8-bus system: electrical network graph

1 2 3 4 5

6

7

(a) Topology 1.

1 2 3 4 5

6

7

(b) Topology 2.

Figure 3: 8-bus system: communication network graphs.

controllers of any two buses that are electrically connected

by a line. In Topology 2 (Fig. 3(b)), we add bidirectional

communication links between nodes 1 & 7 and nodes 5 & 7,

as well as make the links between nodes 1 & 2 and nodes

4 & 5 directional (directed from 1 to 2, and from 4 to 5,

respectively). For each topology, the matrix P , with entries

as defined in (19), is given in Appendix D. We assume that

each iteration of the distributed algorithm requires τ0 = 10
ms, which is consistent with the experimental findings in [26]

(see also discussion in Section III-C2). For an accuracy level of

ε0 = 10−3, the algorithm needs k0 = 39 iterations to converge

when implemented over Topology 1, and k0 = 17 iterations

when implemented over Topology 2. Thus, the time that it takes

for the algorithm to converge is 0.39 s for Topology 1 and 0.17 s

for Topology 2.

B. System Response for Different Scenarios

Next, we illustrate the operation of the voltage control

architecture for both over-voltage and under-voltage violations.

Additionally, for the under-voltage violation, and assuming

different values of α and ε1, we study the time it takes for

the control system to correct this violation.

1) Feeder over-voltage: We consider a scenario in which bus

1 is subject to an over-voltage violation; this could potentially

arise if there is a severe over-voltage in the transmission

network and the transformers at the substation could no longer

adjust their taps to lower the bus voltages. In this case, we

assume the feeder’s voltage is 1.08∠0 p.u., which results in

V1 = 1.0642 p.u. We set the gain of each controller to be

α = 0.3 < αc = 0.4. When the second stage is implemented

over the network in Fig. 3(a), the evolution of the voltage profile

in the network is displayed in Fig. 4(a) for the first 25 s. The

corresponding evolution of reactive power injections that result

from the combined action of first and second stages is displayed

in Fig. 4(b), whereas the individual responses of both stages

are displayed in Fig. 5 for the first 3 s. In this case, the first

stage controller in bus 1 tries to fix the voltage violation by
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Figure 4: 8-bus system: response to over-voltage.
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(b) Second stage control η.

Figure 5: 8-bus system: first and second stage response to

over-voltage.

demanding local consumption of reactive power; as it can be

seen in Fig. 4(b), this results in the reactive power provided

by bus 1 reaching its minimum capacity within 1 s. Then, the

action of the second stage makes the local controllers in the

other buses react in order to bring down the voltage magnitude

of bus 1, thus reactive power starts being consumed in these

nodes. This causes an under voltage violation in buses 5 and

7. However, the violation is corrected by subsequent actions of

the controllers, and the voltage in all buses is restored to values

within ±5% of 1 p.u. after approximately 15 s.
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(b) Reactive power support.

Figure 6: 8-bus system: system response to under-voltage.
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(b) η for Topology 2.

Figure 7: 8-bus system: distributed algorithm response to

under-voltage.

2) Sublateral under-voltage: In this case, the feeder voltage

is set to 0.98∠0 p.u., which results in under-voltages on buses

2 through 7, with the lowest voltage magnitude of 0.8830 p.u.

on bus 5. For the first stage, we set the gain of each local

controller to be α = 0.22. Figure 6(a) shows the evolution

of the voltage profile in all nodes when the second stage is

implemented over the network in Fig. 3(b). In this case, we can

see that it takes about 2.1 s to bring the bus voltage magnitudes

within the levels specified by operational requirements (±5% of

1 p.u.). Figure 6(b) shows, as time evolves, the reactive power

injections on each of the buses that result from the combined

actions of first and second stages. In this figure, we can see

that the local controllers on buses 2 through 7 swiftly begin

to demand reactive power so as to raise their bus voltages. On

the other hand, since bus 1 is initially within its voltage limits,

the reactive power injection on this bus does not start until

other buses reach their reactive power capacity limits. Then, the

second stage starts demanding reactive power from any bus that

has available capacity, which includes bus 1; thus, the evolution

of q1 is entirely determined by the action of the second stage.
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Table I: 8-BUS SYSTEM: SETTLING TIME FOR DIFFERENT

PARAMETER VALUES.

Accuracy Controller Gain Topology

ε1 α Time 1 [s] Time 2 [s]

10−2

1/n 1.17 0.51

0.22 0.39 0.17

αc 0.39 0.17

10−3

1/n 5.46 2.38

0.22 2.34 1.02

αc 0.39 0.17

10−4

1/n 9.36 4.08

0.22 4.68 2.04

αc 0.39 0.17

For both communication topologies, Table I compares the

settling times for different values of ε1 and α. From the results

in this table and Fig. 7, it is clear that the system response is

always faster when the second stage is implemented using the

communication topology in Fig 3(b), where Fig. 7 compares

the first two intervals of the second stage for Figs. 3(a) and

3(b), respectively. Additionally, the time it takes for the system

to correct a violation substantially decreases when α is chosen

to be closer to its critical value.

V. CASE STUDY: 123-BUS DISTRIBUTION SYSTEM

In this section, we illustrate the performance of the two-

stage control architecture in a 123-bus system with a significant

penetration of PV installations and loading from PHEVs.

A. Modified IEEE 123-bus Distribution System

The system for this case study was adapted from the IEEE

123-bus test system [27]. The one-line diagram is displayed in

Fig. 8, where the 85 load buses are denoted by triangular-shaped

markers. The original IEEE 123-bus system was modeled as a
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Figure 8: 123-bus system: electrical network graph.
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Figure 9: 123-bus system: seven-day loading, PV generation,

and PHEV charging profile.

three phase unbalanced network, but was simplified to be ana-

lyzed as a single phase network (for the system data, see [28]);

however, as discussed in Section VI, the results can be extended

to unbalanced systems. The communication network used to

implement the second stage mirrors the physical network with

the additional communication links that are represented as red

dashed lines in Fig. 8. This results in k0 = 600 iterations

compared to k0 = 5750 without the additional links. As in

the 8-bus system, we assume that τ0 = 10 ms, so it takes

τ1 = k0τ0 = 6 s for the algorithm to converge. Operational

requirements constrain voltage magnitudes to lie within ±5%

of 1 p.u.

We held the taps constant for all of the TCUL transformers

and automatic SVRs for the following reasons: (i) cases are

structured such that additional injections/loads will induce over-

and under-voltages, (ii) it is assumed that the ability of the

nodes to react to voltage violations is faster than that of the

TCUL transformer (in fact, we ensure this by the particular

choices of k0 and τ0 above), and (iii) the purpose of the pro-

posed control method is to minimize the execution of traditional

voltage control strategies, so we are interested in studying the

ability of our control architecture to correct violations3 without

additional help from the TCULs.

B. Seven-Day Scenario

For a time frame of seven days, we analyze the impact of

loading, variable PV generation, and PHEV charging on the

system voltage profile when (i) there is no voltage control, and

(ii) the two-stage voltage control system is implemented.

3Certainly, it is worthwhile for future work to carefully study the coupling
between the proposed control mechanism and TCULs, however, this is beyond
the scope of this article.
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Figure 10: 123-bus system: voltage profile evolution with and

without control.

1) Loading, PV generation , and PHEV charging profiles:

In order to develop a realistic loading profile, we utilized

historical data about consumer demand gathered from the PJM

interconnection [29], which offers 18 years of metered data

supplied by their electric distribution companies. Figure 9(a)

shows the average hourly diversified demand for the PJM Mid-

Atlantic Region from the last week of 2011 normalized so that

the peak value of the curve is 1. Then, in order to properly

scale the profile in Fig. 9(a), we assumed that all of the loads

in our case study are residential, so that we can compare the

total energy used on each load bus with the average residential

energy consumption to determine the number of consumers

located at that bus. A typical American household consumed,

on average, 953 kWh per month in 2010 [30]. Since weekly

behaviors are cyclic, we estimated that the average weekly

energy usage is approximately 219 kWh.

For generating realistic PV generation profiles, we used data

acquired in 2007 by the University of Nevada, Las Vegas [31];

this dataset has a highest resolution of 1 min. For generating

uncontrolled PHEV charging profiles, we used an hourly load

curve for charging obtained from the National Renewable En-

ergy Laboratory (NREL) [32]. Similar to the loading profile in

Fig. 9(a), Fig. 9(b) plots the normalized active power injections

for the PV systems and the uncontrolled load curve for the

PHEVs. In order to properly scale the PV generation profile,

we consider a scenario where there is a 50% penetration of PV

installations whose capacities are half that of the Gable Home’s

[6], i.e., 4.5 kW installed capacity with a 5 kVA inverter and

±2.18 kVAr of reactive power provision capacity provided by

the inverter, which is slightly overrated. Similarly, in order to
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Figure 11: 123-bus system: voltage response with and without

control for a one-hour period with highly-variable PV.

properly scale the PHEV charging profile, we assume there is a

40% penetration of PHEVs whose charging peak is at 1.3 kW

with inverters sized at 1.72 kVA and ±1.13 kVAr [32].

2) Base case (no voltage control): We fix the feeder voltage

to its upper limit of 1.05∠0 p.u. and, for a week-long period,

simulate the evolution of the voltage profile in the network.

The results for buses 2, 55, 71, 81, 89, 106, 112, 115,

and 123 are plotted in Fig. 10(a), where max{V2, V89} and

min{V55, V71, V81, V106, V112, V115, V123} represent the upper

and lower bounds for all bus voltage magnitudes at any given

time, respectively. In this figure, we can see that the maximum

voltage (outside operational requirements) among all the buses

in the network, which takes the value of 1.0568 p.u., is reached

by bus 89, whereas the minimum voltage (outside operational

requirements) among all the buses in the network, which takes

the value of 0.9132 p.u., is reached by bus 123. Note that the

voltage on bus 89 exceeds that of the feeder; this results from

the fact that many of the customers in this network are assumed

to have PV installations capable of creating net active power

injections similar to those of the Gable Home and the Equinox

House. As a result, there is a power flow reversal at midday

when the load is at its lowest and the PV generation is at its
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(b) Second stage control η.

Figure 12: 123-bus system: first and second stage response.

highest. Hence, the voltage drop across a few lines are towards

the feeder, rather than away from it. Under-voltages are due to

the significant loading introduced by the PHEVs.

3) System response with two-stage voltage control: In ac-

cordance with the base case, and considering an accuracy level

of ε1 = 10−3, Fig. 10(b) displays the evolution of the voltage

in buses 2, 55, 71, 81, 89, 106, 112, 115, and 123. Among all

the buses in the network, bus 89 reaches the highest voltage of

1.0498 p.u. and bus 123 observes the lowest voltage of 0.9504

p.u., which are both within operational requirements. Thus, the

two-stage voltage control is able to maintain all bus voltages

within their performance requirements of ±5% of 1 p.u.

C. One-Hour High-Variability Scenario

Next, we assess the effectiveness of the control system to

handle high-variability scenarios in PV generation. In order to

do so, we consider the highly-variable PV profile of Fig. 11(a)

extracted from the dataset in [31]; which corresponds to a one-

hour time frame between 11:30am to 12:30pm.

As before, the feeder voltage is fixed at 1.05∠0 p.u. Since

we are operating at midday, the loads are held at 82% of their

maximum values and loading from PHEVs is neglected. The

uncontrolled and controlled voltage responses are displayed in

Figs. 11(b) and 11(c), respectively. Without control, 33 buses

experience an over-voltage and 57 buses will trigger the control

actions for the first stage. With voltage control, several buses

experience an over-voltage at 11 min into the simulation with

the highest voltage reading on bus 89 of 1.0546 p.u. This is

promptly corrected with most of the buses within tolerance after

12 s (two control cycles) and bus 89 requiring 36 s. There is a

second instance at 20 min where bus 89 experiences an over-

voltage of 1.0514 p.u., which is corrected in 12 s. Finally, Fig.

12 shows the responses for both stages.
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Figure 13: 13-bus system: electrical network graph.

VI. EXTENSION TO UNBALANCED THREE-PHASE SYSTEMS

The ideas presented in Section III and demonstrated in

Sections IV–V can be extended to three-phase unbalanced sys-

tems by implementing independent two-stage voltage control

architectures on each phase. We assume that there are single-

phase DERs on each phase capable of providing reactive power

support; this assumption is realistic as there are commercially

available residential-PV solutions that are also capable of

providing reactive power [14].

To illustrate the idea, we use the IEEE 13-bus test system,

displayed in Fig. 13, which is unbalanced and contains sublat-

erals that are single, two, and three phase. The line parameters

can be found in [27] and the loads are listed in Appendix E.

Similar to the case studies in Section V, we modified the system

by removing the SVR located between the feeder and bus 632.

We added bus 693 to represent the distributed load defined

along the line, and we increased the loads on phases A and

B to ensure that under-voltages would appear on each phase.

Additionally, we turned the switch between buses 671 and 692

into a transmission line that shares the same length, conductor

type, and configuration as the line between buses 692 and 675.

We assume that the DERs on each bus have aggregated reactive

power capacities between 0.2 and 0.3 p.u.

The communication network mirrors the one-line diagram,

with the exception that phases A and B have 10 nodes and

phase C has 12 nodes that participate due to the single and

two phase interconnections with k0 = 133 and τ0 = 10 ms.

The feeder is modeled as an infinite bus with a fixed voltage

magnitude of 0.975 p.u. and is assumed to be balanced. This

causes under-voltages on 7 buses in phase A, 1 bus in phase B,

and 6 buses in phase C. Figure 14 shows the voltage response

and reactive power support per bus on each phase. Figure 14(e)

reveals the coupling between phases: phase B voltages drop as

a result of the reactive power injected on phases A and C.

Although we have not included the evolution of the second

stage, its impact is evident whenever any particular bus reaches

its capacity. Observe buses 646 and 634 on phase B in Figs.

14(b) and 14(e). Both buses begin to inject reactive power

to raise their voltages, but they quickly reach their capacities.

Once bus 646 exhausts its resources, the buses with available

capacity begin compensating, as a result of the second stage.
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0 50 100 150

0

0.1

0.2

0.3

Time [s]

R
ea

ct
iv

e
P

o
w

er
[p

.u
.]

(d) Phase A reactive power support.
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(e) Phase B reactive power support.
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(f) Phase C reactive power support.

Figure 14: Three-phase implementation of the two-stage architecture.

The interaction between the two stages is noticeable in phases

A and C when buses near the violations reach their capacities as

well. Although each phase was controlled independently from

the other two, the controllers were able to correct all of the bus

voltages within an accuracy of ε1 = 10−3 in 25.27 s, 7.98 s,

and 10.64 s for phases A, phase B, and phase C, respectively.

VII. CONCLUDING REMARKS

In this paper, we proposed a two-stage control architecture

for voltage control in distribution networks with substantial

penetration of variable generation. In order to illustrate the

operation of the proposed architecture, we developed two case

studies involving an 8-bus system and the IEEE 123-bus test

system; both case studies assumed balanced operation. Then,

we extended these ideas to unbalanced three-phase systems and

provided results for a case study involving the IEEE 13-bus test

system.

As already mentioned in the introduction, the main difference

between the proposed control scheme and existing decentralized

or distributed strategies that address the voltage regulation

problem in distribution networks (e.g., [18], [19]) is that the

authors of these works propose a switching control scheme

where the DERs are operated with a constant power factor while

bus voltages are within specifications. Otherwise, whenever

there is a voltage violation, their reactive power is adjusted

so that the system returns to the desired operating conditions.

This is similar to the first stage in our architecture, but lacks

the additional support provided by the second stage.

Future work will carefully study the coupling between the

proposed control mechanism and TCULs. We also intend to

design an optimal high level system control that maintains the

benefits of a low level distributed strategy for the integration

of a large number of devices with minimal communication

requirements.

APPENDIX

A. Notation

S Sensitivity matrix ∂V/∂Q
ρj Reactive power increment to be injected in node j as

estimated by the first stage

N−
j Set of nodes that can send information to node j

D+

j Number of nodes that node j can send information to

k0, ε0 Number of steps k required for the distributed algo-

rithm to converge within some tolerance ε0
r0, ε1 Number of steps r needed to correct the limit violation

within some accuracy level ε1
τ0 Time required to perform a single iteration step

τ1 Time required by both stages to correct a violation

q̂j Node j’s first stage reactive power support estimate

qj Node j’s actual reactive power support

qj , qj Node j’s upper/lower reactive power constraints

α Gain used by the local controller in the first stage

µj Node j’s reactive power request to other nodes

νj , νj Node j’s reported available capacities for second stage

ηj The solution for node j from the distributed algorithm
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B. Stage One Stability Analysis

Consider the system in (7); in order to ensure its stability, we

need to ensure that |σi(I−αSD)| < 1, ∀i, where σi(I−αSD)
denotes the ith eigenvalue of I − αSD. Let λi = Re{λi} +
j Im{λi} denote the ith eigenvalue of the matrix SD. Then,

it follows that every σi(I − αSD) is given by σi = 1 − αλi.

Therefore, σi = (1−αRe{λi})+ jα Im{λi}, and |σi|
2 = 1−

2αRe{λi}+ α2|λi|
2. Then, |σi|

2 < 1, if α < 2Re{λi}/|λi|
2.

Thus, |σi(I − αSD)| < 1, ∀i, if α < αc = mini

{

2Re{λi}
|λi|2

}

.

C. Stage Two Convergence Analysis

Let µ[k] = [µ1[k], µ2[k], . . . , µn[k]]
T , ν[k] = [ν1[k],

ν2[k], . . . , νn[k]]
T , and ν[k] = [ν1[k], ν2[k], . . . , νn[k]]

T . Then

the iterations in (10)—(12) can be rewritten in matrix form as

µ[k + 1] = Pµ[k], (20)

ν[k + 1] = Pν[k], (21)

ν[k + 1] = Pν[k], (22)

where P ∈ R
n×n is a primitive column stochastic matrix.

Primitivity follows since P is (i) a nonnegative matrix, (ii) the

assumption that the graph of P is strongly connected implies

that P is irreducible, and (iii) P is aperiodic since it contains

at least one pjj > 0 [24]. This ensures that (20)–(22) converge

to the unique solutions µ = limk→∞ µ[k] = (
∑n

i=1
µi[0])π,

ν = limk→∞ ν[k] = (
∑n

i=1
νi[0])π, and ν = limk→∞ ν[k] =

(
∑n

i=1
νi[0])π, where π = [π1, π2, . . . , πn]

T is the unique

solution of π = Pπ satisfying
∑n

i=1
πi = 1, and πi > 0, ∀i,

(see, e.g., [24]). If
∑n

i=1
µi[0] ≥ 0, then lim

k→∞
µj [k] ≥ 0 ∀j,

and therefore

lim
k→∞

µj [k]

νk[k]
=

∑n

i=1
µi[0]

∑n

i=1
νi[0]

, (23)

from where it follows that

ηj = lim
k→∞

ηj [k] =

∑n

i=1
µi[0]

∑n

i=1
νi[0]

νj [0], ∀j. (24)

A similar reasoning can be used to establish that, whenever
∑n

i=1
µi[0] ≤ 0, ηj = (

∑n

i=1
µi[0]/

∑n

i=1
νi[0])νj [0], ∀j.

D. Data for 8-bus System Example

For the topology shown in Fig. 3(a), the transition matrix P
that results from the set of weights that define the distributed

algorithm is given

P =





















1/2 1/3 0 0 0 0 0
1/2 1/3 1/4 0 0 0 0
0 1/3 1/4 1/3 0 1/3 0
0 0 1/4 1/3 1/2 0 0
0 0 0 1/3 1/2 0 0
0 0 1/4 0 0 1/3 1/2
0 0 0 0 0 1/3 1/2





















, (25)

whereas for the topology shown in Fig. 3(b) is given by

P =





















1/3 0 0 0 0 0 1/4
1/3 1/2 1/4 0 0 0 0
0 1/2 1/4 1/3 0 1/3 0
0 0 1/4 1/3 0 0 0
0 0 0 1/3 1/2 0 1/4
0 0 1/4 0 0 1/3 1/4
1/3 0 0 0 1/2 1/3 1/4





















. (26)

The load and DER capacity data for the example in Section

IV are listed in Table II. Note that the capacities are denoted

by under and over for the under-voltage and over-voltage

examples, respectively. Line parameters are listed in Table III.

Table II: 8-BUS LOADING DATA.

Bus PL QL qover qover qunder qunder

1 0.70 0.10 1.000 -1.000 0.20 -0.20
2 0.85 0.25 0.7 00 -0.700 0.20 -0.20
3 0.60 0.15 0.625 -0.625 0.30 -0.20
4 1.25 0.50 0.500 -0.500 0.50 -0.50
5 0.90 0.30 0.425 -0.425 0.35 -0.35
6 0.10 0.10 0.650 -0.650 0.40 -0.40
7 1.00 0.35 0.625 -0.625 0.20 -0.20

Table III: 8-BUS LINE DATA.

From Bus To Bus R [p.u.] X [p.u.] B [p.u.]

1 2 0.0010 0.0077 0.0158
2 3 0.0029 0.0145 0.0275
3 4 0.0015 0.0083 0.0142
4 5 0.0035 0.0153 0.0322
3 6 0.0015 0.0065 0.0134
6 7 0.0011 0.0091 0.0188

E. 13-bus Three Phase Distribution Network

The load and DER capacity data for the example in Section

VI are listed in Table IV (note that q = −q); line parameter

data can be found in [27].

Table IV: 13-BUS LOADING DATA.

Bus SA [p.u.] SB [p.u.] SC [p.u.] qA qB qC

611 - - 1.70− j0.2 - - 0.20
632 0 0 0 0.21 0.21 0.21
633 0 0 0 0.22 0.22 0.22
634 1.92 + j1.32 1.68 + j1.35 1.20 + j0.90 0.22 0.22 0.22
645 - 2.38 + j1.88 0 - 0.23 0.23
646 - 3.22 + j1.98 0 - 0.24 0.24
652 1.54 + j1.03 - - 0.25 - -
671 4.62 + j2.64 5.39 + j3.30 3.85 + j2.20 0.26 0.26 0.26
675 5.82 + j0.28 0.95− j1.10 2.90 + j0.12 0.27 0.27 0.27
680 0 0 0 0.28 0.28 0.28
684 0 - 0 0.28 - 0.28
692 0 0 1.70 + j1.51 0.29 0.29 0.29
693 0.17 + j0.10 0.66 + j0.38 1.17 + j0.68 0.30 0.30 0.30
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