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ABSTRACT. A two-stage double-sided fuzzy version of the chance-constrained mixed-integer programming (TDFCCMP) model was 
developed in this study for supporting municipal solid waste management under multiple uncertainties. TDFCCMP integrates the 
double-sided fuzzy version of the chance-constrained programming (DFCCP) model and the mixed-integer programming (MIP) model 
within a two-stage stochastic programming (TSP) framework. It could deal with possibilistic or probabilistic uncertainties and tackle 
complexities derived from capacity-expansion issues. A hypothetical long-term solid waste management problem was used to 
demonstrate the applicability of the proposed method. The results indicated that TDFCCMP was useful in assisting the decision makers 
analyze policy scenarios that were associated with economic penalties within a multi-stage and multi-period context. The model also 
allowed violation of system constraints at specified confidence-levels under two reliability conditions, leading to solutions with lower 
costs under acceptable magnitudes of system-failure risk. The generated solutions could help decision makers establish various 
waste-flow allocation patterns and capacity-expansion plans under complex uncertainties, and gain in-depth insights into the trade-offs 
between system economy and reliability. 
 

Keywords: fuzzy version of the chance-constrained programming, mixed-integer programming, two-stage stochastic programming, 
solid waste management, uncertainty

 
 

 

1. Introduction 

Municipal solid waste (MSW) management continues to 

be a challenging topic for many urban communities (Huang 

and Chang, 2003; Xi et al., 2008). In a typical MSW mana- 

gement system, many system parameters, such as waste-gene- 

ration rate and treatment capacities, as well as their inter-rela- 

tionships, might be uncertain. Therefore, incorporation of va- 

rious uncertainties and complexities within a general opti- 

mization framework is desired to help evaluate the effects of 

various solid waste management policies (Li et al., 2008; Lv 

et al., 2010; Qin, 2011).  

Over the past decades, many inexact simulation and 

optimization techniques have been developed for management 

of environmental and water resources systems. The majority 

of optimization methods were related to stochastic mathe- 

matical programming (SMP), fuzzy mathematical program- 

ming (FMP) and interval linear programming (ILP) (Huang et 

al., 1993, 1995; Chang and Wang, 1997; Huang and Chang, 

2003; Chang and Davila, 2007, 2008; Li et al., 2008; Liu et al., 

2009; Xu et al., 2009; Zhu et al., 2009; Xu and Qin, 2010; 
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Sun and Huang, 2010; Xu and Qin, 2013, 2014). Among these 

techniques, the two-stage stochastic programming (TSP), as 

one of the SMP methods, was useful for situations where the 

analysis of policy scenarios is necessary and the associated 

uncertainties are expressed as probability distributions func- 

tions (PDFs). Previously, many integrated approaches based 

on TSP were applied in the solid waste management field 

(Maqsood et al., 2004; Li et al., 2008). As the related results 

demonstrated, TSP is effective in tackling the uncertainties 

presented as PDFs and taking corrective actions after a 

random event has taken place. However, it might be limited in 

model formulation, since the available information in real- 

world applications might not be of sufficient quality to be 

presented as PDFs. In addition, TSP cannot reflect the risk of 

constraint violations. 

Recently, the fuzzy version of the chance-constrained 

programming (i.e. FCCP) has been presented as an inno- 

vative FMP method. The fundamental idea of FCCP is that it 

incorporates predefined confidence levels of constraints sati- 

sfaction into optimization models (Liu and Iwamura, 1998). 

According to the differences in the model constraints, FCCP 

is partitioned into the two categories: (i) single-sided FCCP 

(i.e. SFCCP), where the right-hand side coefficients of cons- 

traints were expressed as fuzzy numbers; (ii) double-sided 

FCCP (i.e. DFCCP), where both left-hand and right-hand side 

coefficients of constraints were presented as fuzzy formats 

simultaneously. Currently, applications of SFCCP models 
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have been reported in many fields (Rong and Lahdelma, 2008; 

Cao et al., 2009). However, the applications of DFCCP were 

relatively limited. The main advantages of the DFCCP are that 

it could deal with the fuzzy uncertainties at both the left-hand 

and the right-hand side coefficients in model constraints, and 

allow system constraints be satisfied at specific confidence 

levels. However, it was incapable of providing a linkage be- 

tween the pre-regulated policies and the associated economic 

implications. In addition, the DFCCP method can hardly 

handle binary-decision (i.e. yes/no decision) problems which 

may be important for seeking solutions to capacity-expansion 

or operation-scheduling issues (Li et al., 2008).  

With various strengths and limitations, these methods are 

potentially combined into a general framework for tackling 

more complicated problems. Therefore, this study aims to de- 

velop an integrated model, namely two-stage double-sided 

fuzzy version of the chance-constrained mixed-integer pro- 

gramming (TDFCCMP) model, and apply it to a MSW mana- 

gement system. The objective entails: (i) formulation of a 

TDFCCMP model based on TSP, DFCCP and MIP approa- 

ches; (ii) application of the proposed model to a MSW 

management case; (iii) analysis of results and discussion of 

model applicability. 

2. Overview of Solid Waste Management System 

In a typical MSW management system, the manager is 

responsible for designing rational waste-flow allocation pa- 

tterns with low cost and environmental damage. In addition, 

the manager also needs to decide whether the capacity-expan- 

sion planning of the treatment facilities should be implement- 

ted for meeting the waste-disposal demands. Optimization 

models can be used for dealing with such a problem. Many 

parameters within MSW system, such as waste-generation 

rate and disposal capacities, may appear uncertain; Mean- 

while, these uncertainties could be further complicated by the 

dynamic features of the system and the interrelationships 

among various system components. Generally, these uncer- 

tainties could be addressed by different optimization approa- 

ches such as SMP, FMP and ILP.  

Among them, TSP is effective for handling optimization 

problems where an analysis of policy scenarios is desired and 

the model’s right-hand side uncertainties are expressed as pro- 

bability distributions (Huang and Loucks, 2000). The waste- 

generation rate is directly associated with the decision alter- 

natives and attract more attentions from the experts and public, 

and thus own complete record for generating the PDFs. In 

order to reflect the policies established by the local authority, 

the allowable waste-generation amounts from each district 

should also be incorporated into the management framework. 

The above characteristics of the system can be described by 

TSP. DFCCP improves upon the FMP by allowing fuzzy 

constraints to be satisfied at specified confidence levels with 

two reliability conditions. In the MSW system, the design 

safety coefficients and capacities of the incinerator and 

composting plant are subjected to human judgments, and 

should be represented by fuzzy formats. Along with the 

socio-economic development, the waste-generation rates may 

be increased continuously and lead to high system costs while 

wastes are completely treated. DFCCP is especially useful for 

the above situations when a low system cost with a com- 

promise of environmental protection is desired. In addition, in 

order to alleviate the contradiction between increased waste 

generation rates and decreased waste treatment/disposal capa- 

city, the rational expansion scheme of capacities is necessary. 

Mixed integer programming (MIP) is a useful tool through 

using 0-1 integer variables to indicate whether a facility 

development or expansion option needs to be undertaken 

(Huang et al., 1995). Therefore, in this study, a TDFCCMP 

model is considered more advantageous and flexible in dea- 

ling with MSW management issues under multiple uncertain- 

ties. 

3. General Methodology 

3.1. Double-Sided Fuzzy Version of the Chance-Constrain- 

ed Programming 

Double-sided fuzzy version of the chance-constrained 

programming (DFCCP) was firstly proposed by Fiedler et al. 

(2006). In a DFCCP model, both left-hand and right-hand side 

coefficients in some constraints are represented by traingular 

fuzzy numbers. In addition, the ability to satisfy fuzzy con- 

straints is expressed as a series of confidence levels with two 

reliability scenarios. According to Fiedler et al. (2006), a 

general DFCCP model could be written as: 

1

  
J

j j
j

Minimize f c x


  (1a) 

Subject to: 

1

, ,
J

ij i ij j i s
j

Pos a b a x b i


     
  

    (1b) 

1

,
J

jk j k
j

t x e k


   (1c) 

0,jx j   (1d) 

, , 0, , , .j ij jkc a t i j k   (1e) 

where j (j = 1, 2, ..., J) is the index of decision variables; i is 

the index of fuzzy constraints, where i = 1, 2, ..., I; αs is the 

predefined confidence level where s = 1, 2, ..., S, and S is the 

total number of the confidence levels; k is the index of 

deterministic constraints, where k = 1, 2, …, K; xj are deter- 

ministic decision variables; ija  and ib  are assumed to be 

traingular fuzzy numbers with fuzzy membership functions 

( )ija  and ( )ib  , respectively; cj, tjk and ei are fixed coeffi- 

cients.  
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Referring to Fiedler et al. (2006), each confidence level 

consists of two scenarios (i.e. the minimum and maximum 

reliabilities): 

 
 
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sup min( ( ), ( )) , ,

( ) ( )

a sb

L R

s s

Pos a b

x y x y x y

a b

  

 



   

 





 (2a) 

 
 

max

inf max(1 ( ),1 ( )) , ,

(1 ) (1 )

a sb

R L

s s

Pos a b

x y x y x y

a b

  

 

 

    

   





 (2b) 

 1( ) sup ( )R

s sb b b     (2c) 

 1( ) inf ( )L

s sa a a     (2d) 

where mina b  and maxa b  present that the equation a b  be 

satisfied at the minimum and maximum reliability, respec- 

tively. The item 1  is the inverse function of  . According to 

Zadeh (1978), a triangular fuzzy set can be transformed into 

two deterministic values at each α-cut level (except for the 

peak point). Under the maximum reliability, the left-hand side 

parameters should achieve their maximum values, and the 

right-hand side parameters reach their minimum ones. This 

could guarantee that the “less than or equal to” constraints be 

more reliably satisfied under the impact of uncertainties. Con- 

versely, under the minimum reliability, the left-hand side 

parameters reach their minimum values, and the right-hand 

side parameters would be maximum; the solutions from such 

a loose-restricted condition would easily lead to violation of 

constraints when system is deviated by influences of uncer- 

tainties. Based on Eqs (2a) to (2d), the constraints (1b) can be 

converted to two crisp equivalents, respectively. The two 

transformed models can be formulated as follows (Fiedler et 

al., 2006). 

(1) Confidence levels under the minimum reliability: 

1
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(2) Confidence levels under the maximum reliability: 

1
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Finally, two groups of deterministic solutions, including 

the objective function values and decision variables (i.e. fopt 

and xj,opt ), are obtained through solving models (3) and (4), 

respectively. 

 

3.2. Two-Stage Stochastic Programming 

The fundamental idea behind the TSP is the concept of 

recourse, which defines the ability to take corrective actions 

based on the identified results of the random event. A TSP 

model can be formulated as (Huang and Loucks, 2000): 

1 1 1
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where h is the probabilistic level, where h = 1, 2, . . ., H, and 

H is the total number of probabilistic levels; xj and yjh are the 

first-stage and second-stage decision variables, respectively; 

zih is a discrete random variable described as a deterministic 

value at the probabilistic level h;  E  is the expected value of 

a random variable. To solve the model (5), each value of i and 

h in constraints (5b) and (5c), it is necessary to repeat the 

basic constraint set that relates zih to xj and yjh. Finally, the 

solutions of the objective function value, first-stage and se- 

cond-stage decision variables will be obtained (i.e. fopt, xj,opt 

and yjh,opt). Thus, the optimal scheme is formulated as 

, , ,[ ], , .jh opt j opt jh optW X y j h    

 

3.3. Two-stage Double-Sided Fuzzy Version of the Chance- 

Constrained Programming 

In real-world applications, it is difficult to find such 

variables (i.e. aij, gij, and bi in Eq. 5b), which are completely 

deterministic. It is also allowable that some constraints (i.e. 

Eq. 5b) are satisfied in acceptable confidence levels in order 

to obtain cost-effective alternatives. In addition, some para- 

meters may be described by many kinds of uncertain proper- 

ties rather than single characteristic. To address these pro- 

blems, an integrated two-stage double-sided fuzzy version of 

the chance-constrained programming (TDFCCP) model is for- 

mulated as follows: 

1 1 1
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j j h j jh
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Based on models (3) to (5), two groups of objective 

values, first-stage and second-stage decision variables at 

various confidence levels would be obtained (i.e. fopt, xj,opt and 

yjh,opt). Thus, the optimal schemes at various confidence levels 

are calculated as , , ,[ ], ,jh opt j opt jh optW X y j h   . The optimiza- 

tion model in this study is coded in LINGO 12.0, which is a 

standard optimization software platform. Previously, many 

applications have demonstrated that LINGO provides an 

easy-to-use programming language and friendly user interface, 

and is mostly suitable for tackling large-scale real-world 

problems. 

4. Case Study 

4.1. Overview of the Study Case 

In this study, a MSW management case is used for de- 

monstrating the applicability of the proposed method (as 

shown in Figure 1). A typical MSW management system 

involves a number of processes, such as waste generation, 

storage, collection, transportation and treatment (Wilson, 

1985). The municipal solid wastes typically include paper, 

yard waste, food waste, plastics, metals, glass, wood and 

others (Li et al., 2008). It is assumed that the above types of 

wastes are classified and pre-treated in the storage process, 

such that different types of wastes are allocated to the respe- 

ctive treatment plants according to their properties and faci- 

lity capacities. In the studied system, three treatment options 

are available for disposing of solid wastes, including landfill, 

incineration and composting. A landfill is used to meet the 

demand of waste disposal or to receive residues from incine- 

rators or composting plants; it typically has a cumulative ca- 

pacity limit. In order to encourage residents to reduce the 

amount of wastes that end up at the landfill, the incinerator 

and composting plant are also used to dispose of wastes, and 

generate revenue returns under the limitation of daily opera- 

ting capacities (Nie et al., 2006). From a long-term planning 

point of view, in the next fifteen years (with three five-year 

stages), waste-generation rates in the city will be increased 

continuously. This will lead to the fact that, the facilities 

might have insufficient capacities to meet the city’s waste dis- 

posal demand in the future. Therefore, how to generate an 

integrated waste management scheme, which consists of the 

waste allocation pattern and the capacity-expansion plan, is 

highly concerned by decision makers. 

 

 
Figure 1. The study system. 
 

According to the practical investigation, in this study, the 
waste-generation rates are assumed to be of random natures. 
Over the three periods, the low waste-generation rates at a 
probability of 0.2 are 250, 310 and 375 t/d, respectively. The 
medium values at a probability of 0.6 are 300, 370 and 435, 
respectively. The high rates at a probability of 0.2 are 350, 
430 and 495 t/d, respectively (Li et al., 2008). Because of the 
increase of waste-generation rates, the capacity-expansion 
plans for the facilities would be considered. The related para-  
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Table 1. Capacity-expansion Options and Capital Costs for 
Different Facilities 

Treatment/disposal 
facility 

Expansion 
Option (u) 

Time period 

k = 1 k = 2 k = 3 

Landfill 

Expansion 
capacity 

(10
6 
t) 

u = 1 0.35 0.35 0.35 

u = 2 0.50 0.50 0.50 

u = 3 0.65 0.65 0.65 

Capital cost  

(10
6
 $)  

u = 1 3.60 3.10 2.60 

u = 2 4.10 3.70 3.10 

u = 3 4.60 4.20 3.60 

Incinerator 

Expansion 
capacity 

(t/d) 

u = 1 25 25 25 

u = 2 40 40 40 

u = 3 55 55 55 

Capital cost  

(10
6
 $)  

u = 1 2.5 2.2 1.9 

u = 2 3.0 2.7 2.4 

u = 3 3.4 3.1 2.8 

Composting plant 

Expansion 
capacity 

(t/d) 

u = 1 15 15 15 

u = 2 30 30 30 

u = 3 45 45 45 

Capital cost  

(10
6
 $)  

u = 1 1.7 1.4 1.1 

u = 2 2.2 1.9 1.6 

u = 3 2.6 2.3 2.0 

* The related data are referred to Li et al. (2008). 

 

meters associated with the expansion options are listed in the 

Table 1. Other economic parameters, such as the regular costs 

for waste collection, transportation and treatment, are estima- 

ted based on practical investigations in the research areas and 

facilities. The penalty costs for excess waste flows are ex- 

pressed in terms of raised collection, transportation, and 

operation costs, significantly higher than the regular ones (Li 

et al., 2008). Tables 2 and 3 provide transportation costs for 

allowable and excess waste flows, operating costs of facilities, 

penalty costs for surplus waste flows, and revenues.  

Among various facilities, the landfill has a stable cumu- 

lative capacity and will be presented as a fixed value. As for 

other facilities (e.g. incinerator and composting plant), the 

random arrival and service times of waste delivery vehicles 

could result in waste buildup, leading to a risk of contingent 

insufficiency in the receiving facility (Nie et al., 2006). The 

introduction of the safety coefficient would be used to tackle 

this problem. Usually, this coefficient is estimated empiri- 

cally and is thus of fuzzy nature. The design safety coeffi- 

cients for incinerators and composting plants are assumed to 

be (1.45, 1.6, 1.8) and (1.35, 1.5, 1.7), respectively. In 

addition, the capacities of the incinerator and composting 

plant could be influenced by many factors such as the service 

time of facilities, property of receiving wastes, and operation 

manner of workers. These parameters are difficult to be 

accurately defined and, in most cases, their values are subject 

to human judgment. Fuzzy set theory is capable of handling 

the vague feature of such problems. Potential techniques to 

identify the fuzzy possibility distribution information may 

Table 2. Regular Costs for the Allowable Waste Flows 

Regular costs 
Planning period 

k = 1 k = 2 k = 3 

Transportation cost for allowable waste ($/t) 

To landfill 16 17.6 19.4 

To incinerator 12 13.2 14.6 

To composting plant 15.1 16.6 18.2 

Operational cost for allowable waste ($/t) 

Landfill 37.5 50 65 

Incinerator 62.5 75 85 

Composting plant 67.5 80 87.5 

Transportation cost for allowable residue ($/t) 

To incinerator 5.9 6.5 7.2 

To composting plant 11.0 12.1 13.2 

Revenue generated by allowable waste ($/t) 

Incinerator 15 20 25 

Composting plant 20 25 30 

* The related data are referred to Li et al. (2008). 

 
Table 3. Penalty Costs for the Excess Waste Flows 

Penalty costs 
Planning period 

k = 1 k = 2 k = 3 

Transportation cost for excess waste ($/t) 

To landfill 24 26.4 29 

To incinerator 19 20.8 22.8 

To composting plant 22.6 24.8 27.2 

Operational cost for excess waste ($/t) 

Landfill 52.5 75 97.5 

Incinerator 90 107.5 122.5 

Composting plant 127.5 137.5 147.5 

Transportation cost for excess waste residue ($/t) 

To incinerator 8.8 9.8 10.7 

To composting plant 16.4 17.9 19.7 

Revenue generated by excess waste ($/t) 

Incinerator 15 20 25 

Composting plant 20 25 30 

* The related data are referred to Li et al. (2008). 

 

include expert consultation, public survey, and stakeholders 

meeting. For simplicity in demonstrating the proposed method, 

the triangular fuzzy sets are used to describe the related 

parameters. Therefore, the existing capacities of the facilities 

are expressed in terms of triangular fuzzy numbers over the 

three periods. The capacities of the incinerator are (85, 90, 97), 

(98, 103, 110) and (110, 115, 122) t/d, respectively. For the 

composting plant, they are (62, 65, 70), (75, 78, 83) and (87, 

90, 95) t/d, respectively. 

 

4.2. Formulation of a TDFCCMP model  

The MIP would be incorporated into a general TDFCCP 

framework for handling capacity-expansion issues, such that a 

TDFCCMP model for the MSW management can be for- 

mulated as follows (Li et al., 2008). 

Objective function: 
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(1) Constraints of treatment/disposal capacities: 
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(2) Waste disposal demand constraints:  

1
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I

ijk ijkh jkh

i
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    (7d) 

(3) Non-negativity and technical constraints: 

max 0, , , , ,ijk ijk ijkhX X M i j k h      (7e) 

(4) Constraints of capacity-expansion options: 

0 1mkY  , 0 1imkZ  , , 2,3, ..., .m k and i u     (7f) 

1 1

1
M K

mk

m k

Y
 

 ,
1

1
M

imk

m

Z


 , 2,3, ..., .k and i u     (7g) 

mkY and
imkZ are integers;  

 
where f is the net system cost ($); k (k = 1, 2, …, K) is the 
index of time periods where K is the number of time periods;  

Figure 2. Framework of the TDFCCMP model. 
 
k’ is an intermediate index satisfying 1 ≤ k’ ≤ k; Lk is length of 
time period k (d); i is type of waste management facility, 
where i = 1 for landfill, and i = 2, 3, ..., I for other waste 
treatment facilities; j is name of district, j = 1, 2, …, J; h 
denotes level of waste-generation rate in district j, and h = 1, 
2, ..., H; DPik and OPik are operating cost of facility i for 
allowable and excess waste flow during period k ($/t); DRijk 
and TRijk are transportation cost for allowable and excess 

waste flow from district j to facility i during period k ($/t); 
DTik and FTik are transportation cost of allowable and excess 
waste residue from waste treatment facility i to the landfill 
during period k ($/t); FEi is residue flow rate from facility i to 
the landfill; FLCk and FTCimk are capital cost of facilties 

expansion in period k ($); LC is existing landfill capacity (t); 
ΔLCmk is the amounts of landfill capacity expansion with 
option m in period k (t); Mijkh is amount by which the allow- 
able waste flow level (Xijk) is exceeded when the waste- 
generation rate is wjkh; pjh is probability of random variable; 
wjkh is amount of waste generated in district j with waste- 
generation rate h in period k; REik and RMik are revenue from 
facility i during period k ($/t);

~

iTC is existing capacity of 
facility i (t/d); ΔTCimk is level of capacity expansion option m 
for facility i at the start of period k (t/d); Xijk and Xijkmax are 
allowable and maximum allowable waste flow from district j 
to facility i during period k (t/d); Ymk and Zimk are binary 
decision variable for facilities expansion with option m at the 
start of period k; is design safety factor assuring the waste 
flows can be treated during period k.  

Figure 2 shows the general framework of the TDF- 
CCMP model. As an integration of TSP, DFCCP and MIP, the 
advantages of these techniques are combined together in 
TDFCCMP. For example, the probability distributions and 
policy implications were handled by the TSP; the uncertain- 
ties of fuzzy nature and constraints violation at various con- 
fidence levels were reflected due to the existence of the 
DFCCP; the capacity-expansion planning was described by 
the MIP. The detailed procedures of solving TDFCCMP mo- 
del are summarized as follows: 

Step 1: Identify all uncertain variables and acquire the 

related uncertain information in a MSW management sys- 

tem; 

Step 2: Formulate a TDFCCMP model; 

Step 3: Convert the fuzzy chance-constraints to their re-  
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Figure 3. Total waste flows to the landfill under two 
reliability scenarios. 
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Figure 4. Total waste flows to the incinerator under two 
reliability scenarios. 
 

0

20

40

60

80

100

Figure 5. Total waste flows to the composting plant under 
two reliability scenarios. 
 
spective crisp equivalents at various confidence-levels un- der 

two reliability scenarios; 

Step 4: Solve the two sub models, and obtain fopt, Xijk,opt 

and Mijkh,opt; 

Step 5: Calculate and obtain the final solutions ,ij kh optA  

, , , , , , .ijk opt ijkh optX M i j k h      

 

5. Result Analysis  

Figures 3 to 5 show the obtained solutions of continu- 

ous decision variables through TDFCCMP model at various 

confidence levels with the two reliability scenarios. Table 4 

shows the solutions of continuous decision variables at spe- 

cific confidence levels. It is demonstrated that TDFCCMP 

owns characteristics of the DFCCP, MIP and TSP approaches. 

From Figures 3 to 5, it is demonstrated that the tem- 

poral and spatial variations of waste-generation rates may 

result in varied waste allocation patterns. Generally, the trea- 

ted amounts of the facilities over the three periods would 

increase. For example, at a confidence level of 0.3 with the 

minimum reliability, over the three periods, the waste flows 

allocated to the incinerator under low waste-generation rates 

were 70, 85 and 185 t/d, respectively. Under the high waste- 

generation rate, the treated amounts of the landfill facility 

were 190, 220 and 244.43 t/d, respectively. This is because the 

waste-generation rate will increase during the three periods; 

meanwhile, the waste-generation rates will increase at the 

three probabilistic levels. This also indicates that the waste- 

generation rate is a main factor in the MSW management 

system and poses considerable influence on generating the 

management alternatives.  

Table 4 also indicated that the allocated amounts among 

the three facilities have considerable differences. In aspect of 

excess waste, the allocated amounts to the landfill were the 

highest, that to the incinerator ranks in the middle, and that to 

the composting plant is the lowest. For example, at a confi- 

dence level of 0.5 with the maximum reliability, over the three 

periods, the excess waste flows to the landfill under high 

waste-generation rate were 95, 110 and 130 t/d, respectively. 

The excess amounts to the incinerator were 50.31, 71.18 and 

58.24 t/d, respectively. Those transferred to the composting 

plant were 0, 3.82 and 11.76 t/d, respectively. This is due to 

the fact that, to minimize total cost is the objective of TSP; 

meanwhile, the sum of regular and penalty costs of the landfill 

are lowest. This also demonstrates that TSP is able to take 

corrective actions after a random event have taken place, and 

thus facilitates the generation of the cost-effective manage- 

ment strategies. 

Figures 3 to 5 also indicated that the solutions of deci- 

sion variables significantly vary with confidence levels (from 

0.1 to 0.9). Generally, the waste flows allocated to the land- 

fill would increase. Conversely, the allocated amounts to the 

incinerator would decrease while it remains unchanged for the 

composting plant. For example, at the period 3, the total waste 

flows allocated to the landfill under the high waste generation 

rate would be 239.57, 242.03, 244.43, 246.79, 249.10, 251.36, 

253.59, 255.76 and 257.90 t/d, respectively. Correspondingly, 

the allocated amounts to the incinerator would be 195.43, 

192.97, 190.57, 185.90, 183.64, 181.41, 179.24 and 177.10 t/d, 

respectively. The allocated amounts to the composting plant 

would be 60 t/d. The reason of the above facts is that, based 

on DFCCP, as the increase of the confidence levels, the capa- 

city constraints of the incinerator and composting plant would 

be strict, leading to the decrease of the disposal amounts by 

the incinerator. Meanwhile, the disposal amounts of the land- 

fill would increase in order to meet the total disposal re- 

quirement. As the increase of the confidence levels, the possi- 

bility of system-failure risk (i.e. risk of insufficiency in the 

receiving facilities) would be low; meanwhile, the total sys- 

tem cost may be higher. This situation also reflects the trade- 

off between the system economy and reliability. 

From Table 4, it is also indicated that, at the same con- 

fidence level, the allocated amounts to the landfill and com- 

posting plant at the maximum reliability are higher than that 

at the minimum reliability. The variation trend of the disposal  
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amounts by the incinerator is opposite. For example, in period 

3, corresponding to confidence levels (0.2, 0.4, 0.6 and 0.8) 

with the maximum reliability, the waste flows allocated to 

landfill under medium waste-generation rates would be 

204.88, 209.52, 213.95 and 218.18 t/d, respecttively. The 

amounts under the minimum reliability would be 182.03, 

186.79, 191.36 and 195.76 t/d, respectively. Similarly, the 

amounts allocated to the composting plant under high waste- 

generation rate would be 64.88, 69.52, 73.95 and 78.18 t/d, 

respectively. The amounts under the minimum reliability are 

constants, being 60 t/d, respectively. As for the incinerator, at 

the maximum reliability, the amounts to the incinerator under 

high waste-generation rates would be 170.12, 165.48, 161.05 

and 156.82 t/d, respectively. The amounts at the minimum 

reliability are 192.97, 188.21, 183.64 and 179.24 t/d, respect- 

tively. To calculate the variation amounts of the incinerator 

and composting plants, the total allocated amounts to the 

incinerator and composting plant at the maximum reliability 

are lower than those at the minimum reliability. This is due to 

the fact that, the facility capacities under the maximum relia- 

bility would be lower than those under the minimum one, 

leading to the decrease of the total allocated amounts to the 

incinerator and composting plant; meanwhile, the amounts 

allocated to the landfill would increase. In addition, the total 

costs of the incinerator are lower than that of the composting 

plant, such that the excess waste would be allocated to inci- 

nerator firstly and then to composting plant. This also can be 

used to explain that the amounts transferred to the incinerator 

at the two reliability scenarios are higher than those to the 

composting plant.  

In addition, the variation in waste-flow allocated pa- 

tterns also results in the changes of capacity-expansion plans. 

For example, at a confidence level of 0.1 with the maximum 

reliability, the composting plant would be expanded during 

period 3, with an increment of 15 t/d, respectively. At a con- 

fidence level of 0.9, the composting plant would be expan- 

ded at the period 2, with each having an increment of 30 t/d, 

respectively. This is because as the increases of the confi- 

dence levels, the amounts allocated to the composting plant 

would increase. Figure 6 presents the variation of total costs at 

various confidence levels with the minimum and maxi- mum 

reliabilities. The system costs would increase as the increase 

of confidence levels; meanwhile, system costs under the 

minimum reliability would be lower than those under the 

maximum reliability. For example, at various confidence le- 

vels (from 0.1 to 0.9) under the minimum reliability, the sys- 

tem costs are 166.476, 166.499, 166.520, 166.542, 166.563, 

166.586, 166.611, 166.636 and 166.660 (×10
6
 $), respect- 

tively. Under the maximum reliability, the system costs are 

167.828, 167.871, 168.214, 168.273, 168.352, 168.448, 

168.541, 168.633 and 169.222 (×10
6
 $), respectively. This is 

due to the fact that, as the increases of the confidence level, 

the capacities of the facility would decrease. Moreover, the 

facility capacities also would decrease from the minimum to 

the maximum reliability. This implies that a low system cost 

could lead to a high system failure risk. The trade-off be- 

tween the total system cost and the reliability of satisfying 

model constraints needs to be analyzed in order to gain an 

in-depth insight into the characteristics of solid waste mana- 

gement systems. 

Table 4. Solutions of TDFCCMP Model  

Facilities 

(j)  

Probability 

(h)  

Period 

(k)  

α = 0.2 α = 0.4 α = 0.6 α = 0.8 

Min Max Min Max Min Max Min Max 

To landfill  

(t day
-1

) 

p = 1 k = 1 140 140 140 140 140 140.99 140 142.29 

 k = 2 175 175 175 175 175 175 175 175 

 k = 3 130 144.88 130 149.52 131.36 153.95 135.76 158.18 

p = 2 k = 1 190 190 190 190 190 190 190 190 

 k = 2 220 220 220 220 220 220 220 220 

 k = 3 182.03 204.88 186.79 209.52 191.36 213.95 195.76 218.18 

p = 3 k = 3 242.03 260 246.79 260 251.36 260 255.76 260 

To incinerator  

(t day
-1

) 

p = 1 k = 1 70 70 70 70 70 70 70 70 

 k = 2 85 85 85 85 85 85 85 85 

 k = 3 185 170.12 185 165.48 183.64 161.05 179.24 156.82 

p = 2 k = 2 100 100 100 100 100 100 100 100 

 k = 3 192.97 170.12 188.21 165.48 183.64 161.05 179.24 156.82 

 k = 1 120 120 120 120 120 120.99 120 122.29 

p = 3 k = 2 160 160 160 158.33 160 154.07 160 150 

 k = 3 192.97 170.12 188.21 165.48 183.64 161.05 179.24 156.82 

To 
composting 
plant (t day

-1
) 

p = 1 k = 1 40 40 40 40 40 40 40 40 

 k = 2 50 50 50 50 50 50 50 50 

 k = 3 60 60 60 60 60 60 60 60 

p = 3 k = 1 40 40 40 40 40 39.01 40 38.35 

 k = 2 50 50 50 51.67 50 55.93 50 60 

 k = 3 60 64.88 60 69.52 60 73.95 60 78.18 

* The treated amounts by the landfill with the high generation rates during the periods 1 and 2 are same with those with the 
medium ones. The allocated amounts to the composting plant with medium rates are same as those with low generation rates.  
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Figure 6. Comparison of system cost between TDFCCMP 
and TSFCCMP 
 

The above results demonstrated that the TDFCCMP has 

advantages of TSP, DFCCP and MIP models, and is capable 

of handling MSW management problems under multiple un- 

certainties. In detail, TDFCCMP could: (i) address uncertain- 

ties as probability, possibility distribution and 0-1 integer va- 

riables; (ii) examine the pre-regulated waste-generation ma- 

nagement policies associated with economic implications; (iii) 

incorporate various confidence levels and two reliability sce- 

narios of constraints satisfaction into the framework; (iv) pro- 

vide supports for decision makers to identify cost-effective 

solid waste management strategies with both costs and risk 

information being considered under complex uncertainties.  

6. Discussion 

In order to demonstrate the advantages of TDFCCMP, a 

two-stage single-sided fuzzy version of the chance-con- 

strained programming (TSFCCMP) model is also applied to 

resolve the same MSW management problem. TDFCCMP can 

be converted into TSFCCMP by ignoring the influence of 

safety coefficients. Figure 6 also shows the varying trend of 

the system costs from TSFCCMP model. The system costs 

would increase as the increase of confidence levels, being 

165.568, 165.575, 165.581, 165.587, 165.594, 165.600, 

165.606, 165.613 and 165.619 (×10
6
 $), respectively. Ob- 

viously, the system costs from TSFCCMP are lower than 

those from TDFCCMP. This is due to the fact that the safety 

coefficients in TDFCCMP would lead to strict limitations in 

the capacities of the incinerator and composting plant. In such 

a condition, the system failure risk would be reduced. The 

comparison results demonstrated that: (i) TSFCCMP is inca- 

pable of handling fuzzy uncertainties associated with the left- 

hand side parameters and examining reliability scenarios, 

leading to the oversimplification in dealing with uncertain- 

ties and restrictions of the decision-making; (ii) TSFCCMP 

ignored risk of insufficiency and might result in the high envi- 

ronmental pollution risk. 

TDFCCMP also has much space for improvement. Fir- 

stly, TDFCCMP could hardly tackle the uncertainties of cost 

coefficients in the objective function. This could be solved 

through incorporating other uncertain-optimization methods, 

such as interval linear programming (ILP). Secondly, the 

general environmental planning involves many issues related 

to socio-economic development, environmental protection, 

and resources conservation. Therefore, the single objective 

function may not be sufficient to reflect the characteristics of 

the studied system and examine the balance among various 

system components. How to incurporate multi-objective pro- 

gramming (MOP) techniques into the model framework is 

important and deserves an in-depth study. 

7. Conclusions  

A two-stage double-sided fuzzy chance-constrained mix- 

ed-integer programming (TDFCCMP) model was developed 

in this study for supporting municipal solid waste manage- 

ment under multiple uncertainties. The model integrated the 

DFCCP, MIP and TSP models into a general framework and 

could be used to deal with uncertainties expressed as not only 

possibilistic distributions associated with both left-and right- 

hand-side components of constraints but also probabilistic 

distributions associated with the right-hand side components 

of constraints. The binary 0-1 integer variables were used to 

reflect the capacity expansion issues.  

A long-term waste management case was used to de- 

monstrate the applicability of the proposed method. The study 

results indicated that TDFCCMP allowed violation of system 

constraints at specified confidence-levels with two reliability 

scenarios. This could lead to model solutions with low system 

costs under acceptable risk magnitudes. Moreover, it could 

facilitate analyses of the policy scenarios that were associated 

with economic penalties when the predefined waste-flow allo- 

cation policies were violated. The generated solutions could 

help decision makers establish various waste-flow allocation 

patterns and capacity-expansion plans under complex uncer- 

tainties, and gain in-depth insights into the trade-offs between 

system economy and reliability.  

Although this study was the first attempt in applying 

TDFCCMP to solid waste management problems, the results 

demonstrated that it is also applicable to many other envi- 

ronmental problems where complex uncertainties exist. In 

addition, many other uncertainty analysis methods, such as 

fuzzy robust programming (FRP) and interval linear program- 

ming (ILP), have potentials to be further integrated into a 

TDFCCMP framework for dealing with more complicated 

problems. 
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