
TRANSPORTATION SCIENCE
Vol. 38, No. 4, November 2004, pp. 515–530
issn 0041-1655 �eissn 1526-5447 �04 �3804 �0515

informs ®

doi 10.1287/trsc.1030.0049
©2004 INFORMS

A Two-Stage Hybrid Local Search for the Vehicle
Routing Problem with Time Windows

Russell Bent, Pascal Van Hentenryck
Brown University, Box 1910, Providence, Rhode Island 02912 {rbent@csbrown.edu, pvh@csbrown.edu}

The vehicle routing problem with time windows is a hard combinatorial optimization problem that has
received considerable attention in the last decades. This paper proposes a two-stage hybrid algorithm for

this transportation problem. The algorithm first minimizes the number of vehicles, using simulated annealing. It
then minimizes travel cost by using a large neighborhood search that may relocate a large number of customers.
Experimental results demonstrate the effectiveness of the algorithm, which has improved 10 (17%) of the 56
best published solutions to the Solomon benchmarks, while matching or improving the best solutions in 46
problems (82%). More important perhaps, the algorithm is shown to be very robust. With a fixed configuration
of its parameters, it returns either the best published solutions (or improvements thereof) or solutions very close
in quality on all Solomon benchmarks. Very preliminary results on the extended Solomon benchmarks are also
given.

Key words : vehicle routing; large neighborhood search; simulated annealing
History : Received: September 2001; revision received: June 2002; accepted: August 2002.

Introduction
Vehicle routing problems are important components
of many distribution and transportation systems,
including such examples as bank deliveries, postal
deliveries, school bus routing, and security patrol
services. They have received considerable attention
in the past decades. This paper considers the vehi-
cle routing problem with time windows (VRPTW).
Given a number of customers with known demands
and a fleet of identical vehicles with known capaci-
ties, the problem consists of finding a set of routes
originating and terminating at a central depot and
servicing all the customers exactly once. The routes
cannot violate the capacity constraints on the vehi-
cles and, in addition, must meet the time windows
of the customers, which specify the earliest and lat-
est times for the start of service at a customer site.
A standard objective of the VRPTW problem consists
of minimizing the number of routes or vehicles (pri-
mary criterion) and the total travel cost (secondary
criterion). Other objective functions have been consid-
ered in various papers; for example, optimality results
often focus only on the second criterion. The VRPTW
problem is NP-complete (Lenstra and Rinnooy Kan
1981), and instances involving 100 customers or more
are very hard to solve optimally. Indeed, very few
of the Solomon benchmarks (Solomon 1987) involv-
ing 100 customers have been solved optimally (see
Fisher et al. 1997 and Kohl et al. 1999 for some recent
results). As a consequence, local search techniques are
often used to find good solutions in reasonable time.

Early work in local search on the VRPTW often
utilized simple heuristics or metaheuristics, and an
excellent summary can be found in Gendreau et al.
(1997). In recent years, the focus of local search has
shifted to more complicated metaheuristics to increase
the power of the earlier techniques. These include
simulated annealing (Chiang and Russell 1996), tabu
search (Chiang and Russell 1997, Cordeau et al.
2001, DeBacker et al. 2000, Rochat and Taillard 1995,
Taillard et al. 1997), genetic/evolutionary algorithms
(Gehring and Homberger 2001, Homberger and
Gehring 1999, Potvin and Begio 1996), large neigh-
borhood search (Shaw 1998), ant colony search (Gam-
bardella et al. 1999), and variable neighbor search
(Rousseau et al. 2002). Of particular interest are
Homberger and Gehring (1999) and Shaw (1998),
which include some techniques that are used and
expanded in this paper. Research on the VRPTW is
ongoing, and concurrent work in local search includes
Berger et al. (2001), Bräysy (2001a, c), and Czech and
Czarnas (2002). Some of this work focuses on find-
ing solutions quickly using sophisticated heuristics,
while other studies continue the work on metaheuris-
tics. Concurrent work will be discussed in more detail
shortly.

A New Algorithm. This paper presents a two-stage
hybrid algorithm for the VRPTW. The overall structure
of the algorithm is motivated by the recognition that mini-
mizing the objective function directly may not be the most
effective way to decrease the number of routes. Indeed,

515

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
516 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

the objective function often drives the search toward
solutions with low travel cost, which may make it dif-
ficult to reach solutions with fewer routes but higher
travel cost. To overcome this limitation, our algorithm
divides the search in two steps:
(1) the minimization of the number of routes and
(2) the minimization of travel cost.

This two-step approach makes it possible to design
algorithms tailored to each suboptimization. The only
prior two-stage algorithm of which we are aware is
found in Gehring and Homberger (1999, 2001) and
Homberger and Gehring (1999). Our algorithm uses
two distinct local search procedures to exploit the
specificities of each subproblem. Indeed, the first step
of our algorithm uses simulated annealing to mini-
mize the number of routes. One critical aspect of our
simulated annealing algorithm is its lexicographic evalua-
tion function, which minimizes the number of routes (pri-
mary criterion), maximizes the sum of the squares of the
route sizes (secondary criterion), and minimizes minimal
delay (Homberger and Gehring 1999) of the routing plan
(third criterion). The second criterion was also success-
fully used in other applications, e.g., graph coloring
(Johnson et al. 1991). The second step of our algorithm
uses a large neighborhood search (LNS) (Shaw 1998)
to minimize total travel cost. It is motivated by our belief
that LNS is particularly effective in minimizing total travel
cost when given a solution that minimizes the number
of routes. Note also that our implementation of LNS
makes it very close to variable neighborhood search
(Hansen and Mladenovic 1998).
Experimental results demonstrate the effectiveness

of the algorithm. On the standard Solomon bench-
marks, the algorithm improved the best published
solutions in 10 of the 56 problems (17%) and matches
or improves the best published results in 46 prob-
lems (82%). More important perhaps, the experimen-
tal results highlight the robustness of the algorithm.
With a standard configuration of its parameters, the
algorithm consistently returns either the best pub-
lished solutions (or improvements thereof) or solu-
tions that are very close in quality.

Recent Results. Since the submission of this paper,
several very interesting algorithms have been devel-
oped independently and concurrently. These algo-
rithms share some of our main motivations. In
particular, they are often organized in several phases
and separate the minimization of the number of vehi-
cles and the minimization of travel times. In partic-
ular, Bräysy (2001a) proposes a fast algorithm that
uses sophisticated insertion and merging heuristics
to find an initial solution, an ejection chain heuris-
tic to reduce the number of vehicles, and the Or-opt
neighborhood (Or 1976) to minimize travel distance.
The resulting algorithm almost always produces the
same number of vehicles as ours. Its travel times are,

in general, much higher than ours, but the overall
algorithm is a very interesting approach to finding
high-quality solutions quickly (e.g., under two min-
utes). Bräysy (2003) proposes a sophisticated four -
stage algorithm that extends the previous approach
with variable and large neighborhood search. The
algorithm focuses on producing high-quality solu-
tions, but its results seem to be weaker than ours
on the Solomon benchmarks. Nonetheless, this algo-
rithm is very effective in minimizing the total number
of vehicles. Berger et al. (2001) propose an algorithm
that runs two different genetic algorithms in paral-
lel. The first algorithm tries to decrease the number
of vehicles by minimizing constraint violations, while
the second algorithm minimizes travel distances for
a given number of vehicles. Of particular interest
is the fact that some of the genetic operators use a
version of LNS. The algorithm produces the same
number of vehicles as our algorithm, on average,
and ties three of the new solutions we found. In
general, this algorithm and ours, which uses a sim-
ilar experimental setting (i.e., 30-minute runs), are
close in quality. Nonetheless, our algorithm improves
six additional Solomon benchmarks (which have not
been improved since), and hence it seems superior in
quality. Finally, Gehring and Homberger (2001) gen-
eralize their earlier papers (Gehring and Homberger
1999, Homberger and Gehring 1999) by combining
an evolutionary strategy (to minimize the number of
vehicles) with a tabu search (to minimize travel dis-
tance). Our average number of vehicles is much better
for each class of the Solomon benchmarks.
In summary, several authors seem to have con-

verged to similar ideas in the last 18 months: (1) mul-
tistage approaches to separate the minimization of
vehicles and the minimization of travel time and
(2) the use of large neighborhood search. Our algo-
rithm focuses on producing high-quality and robust
solutions under reasonable CPU time constraints.
It has produced many new best solutions to the
Solomon benchmarks and has matched many of the
existing ones (including those produced by algo-
rithms developed independently and concurrently).
Many (six) of our new solutions were not matched by
these independent algorithms. Because of the high-
quality of its solutions, its robustness, and its overall
simplicity, we believe that our algorithm is an impor-
tant addition to the set of tools with which to address
the VRPTW.

Structure of the Paper. The rest of this paper is
organized as follows. Section 1 describes the prob-
lem formulation and specifies the notations used in
the paper. Section 2 gives an overview of the overall
algorithm. Section 3 presents the simulated annealing
algorithm for minimizing routes, while §4 describes

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
Transportation Science 38(4), pp. 515–530, © 2004 INFORMS 517

the LNS algorithm for minimizing travel costs. Sec-
tion 5 presents the experimental results. Section 6 dis-
cusses related work, and §7 concludes the paper. The
appendix contains the improvements over the best
solutions found during the course of this research, as
well as preliminary results on the extended Solomon
benchmarks.

1. Problem Formulation
and Definitions

This section defines the VRPTW and the various con-
cepts used in this paper.

Customers. The problem is defined in terms of
N customers who are represented by the numbers
1� � � � �N and a depot represented by the number zero.
The set �0�1� � � � �N � thus represents all the sites con-
sidered in the problem. We also use Customers to
represent the set of customers and Sites to represent
the set of sites (the distinction between customers
and sites simplifies the formalization of the problem
and of the algorithm). The travel cost between sites i
and j is denoted by cij . Travel costs satisfy the trian-
gular inequality

cij + cjk ≥ cik�

The normalized travel cost c′ij between sites i and j is
defined as

c′ij =
cij

maxi� j∈Sites cij

�

Every customer i has a demand qi ≥ 0 and a service time
si ≥ 0.
Vehicles. The VRPTW problem is defined in terms

of m identical vehicles. Each vehicle has a capacity Q.

Routes. A vehicle route, or route for short, starts
from the depot, visits a number of customers at most
once, and returns to the depot. In other words, a
route is a sequence �0�v1� � � � � vn�0� or �v1� � � � � vn� for
short, where all vi are different. The customers of a
route r = �v1� � � � � vn�, denoted by cust�r�, is the set
�v1� � � � � vn�. The size of a route, denoted by �r �, is the
number of customers �cust�r��. The demand of a route,
denoted by q�r�, is the sum of the demands of its
customers; i.e.,

q�r�= ∑
c∈ cust�r�

qc�

A route satisfies its capacity constraint if

q�r�≤Q�

The travel cost of a route r = �v1� � � � � vn�, denoted by
t�r�, is the cost of visiting all of its customers, i.e.,

t�r�= c0v1 + cv1v2
+ · · ·+ cvn−1vn

+ cvn0

if the route is not empty (n≥ 1) and is 0 otherwise.

Routing Plan. A routing plan is a set of routes
�r1� � � � � rm� (m ≤ M) visiting every customer exactly
once; i.e.,{⋃m

i=1 cust�ri�=Customers
cust�ri�∩ cust�rj �= �1≤ i < j ≤m��

Observe that a routing plan assigns a unique succes-
sor and predecessor to every customer. These suc-
cessors and predecessors are sites. The successor and
predecessor of customer i in routing plan � are
denoted by succ�i��� and pred�i���. For simplicity,
our definitions often assume an underlying routing
plan � , and we use i+ and i− to denote the successor
and predecessor of i in � .

Time Windows. The customers and the depot have
time windows. The time window of a site i is spec-
ified by an interval �ei� li�, where ei and li represent
the earliest and latest arrival times, respectively. Vehi-
cles must arrive at a site before the end of the time
window li. They may arrive early, but they have to
wait until time ei to be serviced. Observe that e0 rep-
resents the time when all vehicles in the routing plan
leave the depot and that l0 represents the time when
they must all return to the depot. The departure time
of customer i, denoted by �i, is defined recursively as{

�0 = 0
�i =max��i− + ci−i� ei�+ si �i ∈Customers��

The earliest service time of customer i, denoted by ai,
is defined as

ai =max��i− + ci−i� ei� �i ∈Customers��

The earliest arrival time of a route r = �v1� � � � � vn�,
denoted by a�r�, is given by �vn

+ cvn0 if the route is
not empty and is e0 otherwise. A routing plan satisfies
the time window constraint for customer i if ai ≤ li.
A routing plan � satisfies the time window constraint
for the depot if ∀r ∈ � a�r�≤ l0. The latest arrival time
for customer i that does not violate the time window
constraints of i and the customers served after i on its
route, denoted by zi, is defined recursively as{

z0 = l0
zi =min�zi+ − cii+ − si� li� �i ∈Customers��

The VRPTW. A solution to the VRPTW is a rout-
ing plan � = �r1� � � � � rm� satisfying the capacity con-
straints and the time window constraints; i.e.,

q�rj �≤Q �1≤ j ≤m�

a�rj �≤ l0 �1≤ j ≤m�

ai ≤ li �i ∈Customers��

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
518 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

The size of a routing plan � , denoted by �� �, is the
number of nonempty routes in � ; i.e.,

�r ∈ � � cust�r� �= ��

The VRPTW problem consists of finding a solution �
which minimizes the number of vehicles and, in case
of ties, the total travel cost, i.e., a solution � mini-
mizing the objective function specified by the lexico-
graphic order

f ���=
〈
�� ��∑

r∈�

t�r�
〉
�

2. Overview of the Algorithm
As mentioned in the introduction, our algorithm is
motivated by the recognition that minimizing the
objective function

〈
�� ��∑

r∈�

t�r�
〉

is not always the most effective way to approach the
problem. Indeed, the objective function often drives
the search toward solutions with low travel costs. The
reduction in the number of routes occurs more as a
side effect of the travel-cost minimization than as a
primary feature of the search. In addition, focusing on
travel cost may make it extremely difficult to reach
solutions with fewer routes because it may require
considerable degradation of the travel-cost compo-
nent of the objective function. The situation is further
exacerbated by the discovery of more effective algo-
rithms for minimizing travel cost.
To overcome this limitation, our algorithm sepa-

rates the optimization into two stages: the minimiza-
tion of the number of routes and the minimization
of travel costs. Each of these two stages is opti-
mized by an algorithm exploiting the underlying
structure of the subproblem. The overall algorithm
is depicted in Figure 1. The next two sections dis-
cuss each suboptimization in detail. Observe also that
Gehring and Homberger (1999) and Homberger and
Gehring (1999) were the only papers in which a two-
stage algorithm was proposed when this research was
initiated.

Function VRPTWoptimize

1. σ := RouteMinimize()
2. return TravelCostMinimize(σ);

Figure 1 The Two-Stage Hybrid Algorithm for Minimizing Routes and
Travel Costs

3. Minimizing the Number
of Routes

As mentioned, the first stage of our algorithm consists
of minimizing the number of routes or, equivalently,
the number of vehicles used in the routing plan.
It uses a simulated annealing algorithm (Kirkpatrick
et al. 1983) with a number of interesting features that
are now reviewed. Our use of simulated annealing
was motivated by its success in problems such as
graph coloring (Johnson et al. 1991), where the goal is
to minimize the size of a set (e.g., the number of col-
ors), and the overall simplicity of its implementation.

3.1. The Neighborhood
The neighborhood of our simulated annealing algo-
rithm is based on the traditional move operators
described, for instance, in De Backer et al. (2000) and
Kindervater and Savelsbergh (1997): two-exchange,
Or-exchange, relocation, crossover, and exchange. We
describe these moves informally for completeness. See
Kindervater and Savelsbergh (1997) for a comprehen-
sive overview as well as incremental data structures
and algorithms to compute them efficiently.

Two-Exchange. For two customers i and j on the
same route where i is visited before j , remove arcs
�i� i+�, �j� j+�; add arcs �i� j�, �i+� j+�; and reverse the
orientation of the arcs between i+ and j .

Or-Exchange. Remove a sequence of one, two,
or three customers from a route, and reinsert the
sequence elsewhere on the same or on a different
route.

Relocation. For customers i and j , place i after j ;
i.e., remove arcs �i−� i�, �i� i+�, �j� j+�, and add arcs
�i−� i+�, �j� i�, �i� j+�.

Exchange. Exchange the positions of customers i
and j ; i.e., remove �i−� i�, �i� i+�, �j−� j�, �j� j+�, and
add �i−� j�, �j� i+�, �j−� i�, �i� j+�.

Crossover. Exchange the successors of customers
i and j ; i.e., remove �i� i+�, �j� j+�, and add �i� j+�,
�j� i+�.
Given a solution � , � ��� denotes the neighborhood

of � , i.e., the set of solutions that can be reached from �
by using one of these move operators. We also denote
by operators the set of move operators �two-exchange,
Or-exchange, relocation, exchange, crossover�.

A Random Subneighborhood. One of the interest-
ing features of our simulated annealing algorithm is
how it explores the neighborhood. Indeed, each iter-
ation of the algorithm focuses on a (random) sub-
neighborhood of � obtained by randomly choosing a
move operator o from operators and a customer c from
Customers, and by constructing all the moves using
operator o and customer c. The subneighborhood will

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
Transportation Science 38(4), pp. 515–530, © 2004 INFORMS 519

be explored exhaustively to find whether it contains
a solution improving the best available routing plan
and to choose the next move. We denote by � �o� c���
the subset of � ��� that can be reached by using move
operator o and customer c.

3.2. The Evaluation Function
The evaluation function is another fundamental
aspect of our simulated annealing algorithm. As men-
tioned earlier, the objective function〈

�� ��∑
r∈�

t�r�
〉

is not always appropriate, because it may lead the
search to solutions with a small travel cost and make
it impossible to remove routes. To overcome this lim-
itation, our simulated algorithm uses a more complex
lexicographic ordering

e���=
〈
�� ��−∑

r∈�

�r �2�mdl���
〉

especially tailored to minimize the number of routes.
The first component is, of course, the number of
routes. The second component maximizes∑

r∈�

�r �2�

which means that it favors solutions containing routes
with many customers and routes with few customers
over solutions where customers are distributed more
evenly among the routes. The intuition is to guide the
algorithm into removing customers from some small
routes and adding them to larger routes. Components
of this type are used in many algorithms, a typical
example being graph coloring (Johnson et al. 1991).
The third component minimizes the minimal delay
of the routing plan. This concept was introduced by
Homberger and Gehring (1999) in the context of evo-
lutionary algorithms. It favors solutions where cus-
tomers on the smallest route can be relocated on other
routes with no constraint violations or with time win-
dow violations that are as small as possible. Minimiz-
ing minimal delay thus favors solutions where cus-
tomers can be relocated more easily over solutions
where relocation is difficult. More precisely, the min-
imal delay is defined as follows.
Definition 1 (Minimal Delay). The minimal de-

lay of a solution � , denoted by mdl���, is defined as

mdl���=mdl�r��� where �r � =min
r ′∈�

�r ′��
mdl�r���= ∑

i∈cust�r�

mdl�i� r����

mdl�i� r���=

0 if � �relocation� i��� �=
� if ∀r ′ ∈ r r �= r ′ q�r ′�+ qi > Q�

minj∈Customers\cust�r�mdl�i� j� r���

otherwise.

mdl�i� j� r���=max��j + cji − li�0�

+max��i + cij+ − zj+�0��

In other words, the minimal delay of a solution � is
the minimal delay of the route with the smallest num-
ber of customers. The delay of a route is the summa-
tion of the delay of its customers. The minimal delay
of a customer i is zero if i can be relocated on another
route, � if i cannot be relocated without violating the
capacity constraints of the vehicle or the minimal time
window violations induced by relocating i after a cus-
tomer j on another route. The time window violation
is given by the summation of the violation of the time
window of i and the violation of the time window of
the successors of j .

3.3. The Simulated Annealing Algorithm
Figure 2 depicts the simulated annealing algorithm.
The algorithm consists of a number of local searches
(Lines 3–23), each of which starts from the best solu-
tion found so far and from the starting temperature.
Each local search performs a number of iterations
(Lines 6–21) and decreases the temperature (Line 22).
These two steps are repeated until the time limit is
exhausted or the temperature has reached its lower
bound. Lines 7–20 describe one iteration and are most
interesting. Lines 7–9 compute the subneighborhood

� �o� c���= ��1� � � � ��s�� where e��i�≤ e��j� �i < j�

for a random move operator and a random cus-
tomer. Lines 10–12 select the solution �1 minimizing
f in � �o� c��� if it improves the best solution found
so far. These lines introduce an aspiration criterion
(Glover 1989) in the simulated annealing algorithm.
Lines 14–19 are the core of the algorithm. Line 14
chooses a random element �r ∈ � �o� c���� and �r

is selected as the next routing plan if it does not
degrade the current solution (Line 16), or with the tra-
ditional probability of simulated annealing otherwise
(Line 18). Observe also Line 14

14� r = �random ��0�1��$×s�%
which biases the search toward “good” moves in
� �o� c��� when $ > 1.

4. Minimizing the Travel Cost
Our algorithm uses an LNS to minimize travel cost.
LNS was proposed in (Shaw 1998) for vehicle rout-
ing problems. It was shown to be particularly effec-
tive on the Class 1 problems from the Solomon
benchmarks, producing several improvements over
the then-best published solutions. However, the algo-
rithm performs poorly on the Class 2 benchmarks,
where it could not reduce the number of routes satis-
factorily (Shaw 1998). (Our own experimental results,

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
520 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

Function RouteMinimize

1. σb := getInitialSolution();
2. while (time < timeLimit) {
3. σ := σb;
4. t := startingTemperature;
5. while (time < timeLimit & t > temperatureLimit) {
6. for(i := 1; i ≤ maxIterations; i++) {
7. o := random(Operators);
8. c := random(Customers);
9. 〈σ1, . . . , σs〉 := N(o,c,σ) where e(σi) ≤ e(σj) (i < j);
10. if e(σ1) < e(σb) then {
11. σb := σ1;
12. σ := σ1;
13. } else {
14. r := �random([0, 1])β × s	;
15. ∆ := e(σ) − e(σr);
16. if ∆ ≥ 0 then
17. σ := σr;
18. else if random([0, 1]) ≤ e∆/t then
19. σ := σr;
20. }
21. }
22. t := α × t;
23. }
24. }
25. return σb;

Figure 2 The Simulated Annealing Algorithm to Minimize the Number of Routes

in fact, confirm the findings in Shaw 1998.) By sep-
arating the overall optimization in two stages, our
algorithm directly addresses this LNS weakness and
exploits its strength in minimizing travel cost. The
rest of this section describes the LNS algorithm in
detail. In general, the algorithm follows the heuristics
and strategies described in Shaw (1998), although it
departs on a number of issues that seem important
experimentally.

4.1. The Neighborhood and the
Evaluation Function

Given a solution � , the neighborhood of the LNS
algorithm, denoted by �R���, is the set of solutions
that can be reached from � by relocating at most
p customers (where p is a parameter of the imple-
mentation). Because the LNS algorithm also uses
subneighborhoods and explores the neighborhood in
specific order, we use additional notations. In par-
ticular, �R���S� denotes the set of solutions that
can be reached from � by relocating the customers
in S. Also, given a partial solution � with customers,
Customers\S, �I ���S� denotes the solutions that can
be obtained by inserting the customers S in � . Finally,
the LNS algorithm uses the original objective function〈

�� ��∑
r∈�

t�r�
〉

as an evaluation function. Observe that the evaluation
function still involves the number of routes. This is
important because in some cases, minimizing travel
costs makes it possible to decrease the number of
routes.

4.2. The Algorithm
At a high level, the LNS algorithm can be seen as a
local search where each iteration selects a neighbor
�c in �R��b� and accepts the move if f ��c� < f ��b�. It
can be formalized as follows:

for(i = 1% i ≤maxIterations% i++� �
select �c ∈�R��b�;
if f ��c� < f ��b� then

�b = �c;
}

In practice, it is important to refine and extend
the above algorithm in three ways. The first mod-
ification consists of exploring the neighborhood by
increasing the number of allowed relocations. The sec-
ond change generalizes the algorithm to a sequence
of local searches. The third modification consists
of exploring the subneighborhood �R��b� S� more
exhaustively to find its best solution. The overall algo-
rithm is depicted in Figure 3. Observe Line 2, which
adds another loop; Line 4, which selects a set of

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
Transportation Science 38(4), pp. 515–530, © 2004 INFORMS 521

Function TravelCostMinimize(σb)

1. for(l := 1;l ≤ maxSearches; l++)
2. for(n := 1;n ≤ p; n++)
3. for(i := 1;i ≤ maxIterations; i++) {
4. S := SelectCustomers(σb, n);
5. select σc ∈ NR(σb, S) such that f(σc) = minσ∈NR(σb ,S)f(σ);
6. if f(σc) < f(σb) then {
7. σb := σc;
8. i := 1;
9. }

Figure 3 The LNS Algorithm to Minimize Travel Cost

customers S of size n; Line 5, which selects a best
neighbor in �R��b� S�; and Line 8, which reinitializes
the number of allowed iterations. In fact, the algo-
rithm is now very close to variable neighborhood
search (Hansen and Mladenovic 1998). It remains to
describe how to select customers and how to imple-
ment Line 5 in the above algorithm.

4.3. Selecting Customers to Relocate
The LNS algorithm uses the same strategy as in
Shaw (1998) to select the customers to relocate.
The implementation is depicted in Figure 4. It first
selects a customer randomly (Line 1) and iterates
Lines 3–6 to remove the n − 1 remaining customers.
Each such iteration selects a customer from S (the
already selected customers) and ranks the remain-
ing customers according to a relatedness criterion
(Lines 3–4). The new customer to insert is selected in
Line 5 and, once again, the algorithm biases the selec-
tion toward related neighbors. The relatedness mea-
sure is defined as in Shaw (1998):

relateness�i� j�= 1
c′ij + vij

�

where vij = 1 if customers i and j are on different
routes, and is 0 otherwise.

4.4. The Exploration Algorithm
Our LNS algorithm uses a branch-and-bound algo-
rithm to explore the selected subneighborhood. The

Function SelectCustomers(σ,n)

1. S := { random(Customers) };
2. for(i := 2;i ≤ n; i++) {
3. c := random(S);
4. 〈c0, . . . , cN−i〉 := Customers \ S such that relateness(c, ci) ≤ relateness(c, cj) (i ≤ j);
5. r := := �random([0, 1])β × |Customers \ S|
;
6. S := S ∪ {cr};
7. }

Figure 4 Selecting Customers in the LNS Algorithm

algorithm is depicted in Figure 5. If the set of
customers to insert is empty, the algorithm checks
whether the current solution improves the best solu-
tion found so far. Otherwise, it selects the customer
whose best insertion degrades the objective function
the most (this heuristic is also used in Shaw 1998).
The algorithm then explores all the partial solutions
obtained by inserting c by increasing order of their
travel costs. Also, observe that only the partial solu-
tions whose lower bounds are better than the best
solution found so far are explored by the algorithm.
The lower bound satisfies the inequality

Bound���S�≤ min
� ′∈�I ���S�

f �� ′��

It remains to discuss the lower bound and how to
keep the computation times reasonable.

Bounding. The bounding function used in our LNS
algorithm is novel and returns the cost of a minimum
spanning k-tree (Fisher et al. 1997) on the insertion
graph with the depot as distinguished vertex, general-
izing the well-known one-tree bound of the traveling
salesman problem. The insertion graph vertices are
the customers. Given a solution � over customers C =⋃

r∈� cust�r� and a set S of vertices to insert, the inser-
tion graph edges come from three different sets:
(1) the edges already in � ,
(2) all the edges between customers in S, and
(3) all the feasible edges connecting a customer

from C and a customer from S.

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
522 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

Function DFSexplore(σc,S,σb)

if S = ∅ then {
if f(σc) < f(σb) then σb := σc;

} else {
c := arg-maxc∈S minσ∈NI(σ,{c}) f(σ);
Sc := S \ {c};
〈σ0, . . . , σk〉 := NI(σ, {c}) where f(σi) ≤ f(σj) (i ≤ j);
for(i := 1; i ≤ k; i++)

Bound(σi, Sc) < f(σb) then
DFSexplore(σi, Sc, σb);

}

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.

if

Figure 5 The Branch-and-Bound Algorithm for the Neighborhood Exploration

More precisely, the insertion graph is defined as
follows.
Definition 2 (Insertion Graph). Let � be a par-

tial solution over customers C and S be the set of
customers to insert �Customers= C ∪ S�. The insertion
graph is the graph G �Customers�E�, where

E = E� ∪ES ∪Ec%

E� = ��i� i+� � i ∈C�%

ES = ��i� j� � i� j ∈ S�%

Ec =
{
�pred�j�� ′�� j� � j ∈ S & pred�j�� ′� ∈C
& � ′ ∈�I ��� �j��

}
∪ {

�j� succ�j�� ′�� � j ∈ S & succ�j�� ′� ∈C
& � ′ ∈�I ��� �j��

}
�

Incomplete Search. For a large number of cus-
tomers, finding the best reinsertion may be too time
consuming. Our algorithm uses limited discrepancy
search to explore only a small part of the search
tree. Limited Discrepancy Search (LDS) (Harvey and
Ginsberg 1995) is a search strategy relying on a good
heuristic for the problem at hand. Its basic idea is to
explore the search tree in waves, and each successive
wave allows the heuristic to make more mistakes.
Wave 0 simply follows the heuristic. Wave 1 explores
the solutions that can be reached by assuming that
the heuristic made one mistake. More generally, wave
i explores the solutions that can be reached by assum-
ing that the heuristic makes i mistakes.
Figure 6 illustrates these waves graphically on a

binary tree. The figure describes the successive waves

Wave 0 Wave 1 Wave 2 Wave 3

Figure 6 The Successive Waves of LDS

used in exploring the tree. The nodes visited in a
given wave are colored black and those visited in
a previous waves are colored grey. By exploring
the search tree according to the heuristic, LDS may
reach good solutions (and thus an optimal solution)
much faster than depth-first and best-first search for
some applications. Its strength is its ability to explore
diverse parts of the search tree containing good solu-
tions that are only reached much later by depth-first
search. Our implementation uses one phase of limited
discrepancy search that allows up to d discrepancies.
Figure 7 depicts the algorithm. Observe that in the
LNS algorithm, the tree is not binary and the heuris-
tic selects the insertion points by increasing lower
bounds.

5. Experimental Results
This section describes experimental results on our
algorithm. The algorithm was implemented in C++
and the entire code is less than 4,500 lines. The core
of the algorithm is about 2,000 lines. They include
about 350 lines for the simulated annealing algo-
rithm, 300 lines for the LNS algorithm, and about
1,300 lines for the data structures. All results are given
on a Sun Ultra 10, 440 MHZ, 256 MB RAM using
a Sun C++ compiler. All numbers used were dou-
ble precision floating points. Our experimental results
use the standard Solomon benchmarks available
at http://w.cba.neu.edu/∼msolomon/problems.htm.
See Solomon (1987) for their descriptions.
The rest of this section is organized as follows. Sec-

tion 5.1 compares our best solutions with the best

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
Transportation Science 38(4), pp. 515–530, © 2004 INFORMS 523

Function LDSexplore(σc,S,σb,d)

1. if d ≥ 0 then {
2 if S = ∅ then {
3. if f(σc) < f(σb) then σb := σc;
4. } else {
5. c := arg-maxc∈S minσ∈NI (σ,{c}) f(σ);
6. Sc := S \ {c};
7. 〈σ0, . . . , σk〉 := NI(σ, {c}) where f(σi) ≤ f(σj) (i ≤ j);
8. for(i := 1; i ≤ k; i++) {
9. if Bound(σi, Sc) < f(σb) then {
10. LDSexplore(σi, Sc, σb,d);
11. d := d + 1;
12. }
13. }
14. }
15. }

Figure 7 The Branch-and-Bound Algorithm with a Limited Discrepancy Strategy

published solutions that use the objective function
described here. Section 5.2 reports the best results
for minimizing routes and compares them with other
approaches. Section 5.3 gives the robustness results.
The new solutions to the Solomon benchmarks and
results on the extended Solomon benchmarks are
reported on the authors’ website. In reporting the
results, we use the following abbreviations to denote
existing algorithms: B= (Bräysy 2003), BBB= (Berger
et al. 2001), CC= (Czech and Czarnas 2002), CLM=
(Cordeau et al. 2001), CR= (Chiang and Russell 1997),
DDS = (Desrochers et al. 1992), DFS = (De Backer
et al. 2001), GH = (Gehring and Homberger 1999),
GTA = (Gambardella et al. 1999), H = (Homberger
2000), HG = (Homberger and Gehring 1999), IKM =
(Ibaraki et al. 2001), IKP = (Ioannou et al. 2001),
PB= (Potvin and Begio 1996), RGP= (Rousseau et al.
2002), RT = (Rochat and Taillard 1995), S = (Shaw
1998), SSS = (Schrimpf et al. 2000), TBG = (Taillard
et al. 1997), TOS= (Thangiah et al. 1994).

5.1. Best Published Results
Tables 1 and 2 report our best results and compare
them to the best published results. The column data
gives the names of the benchmark; the column best
gives the best published solutions and their sources;
the column SA+LNS describes the best solution
found by our algorithm; and the last two columns
report the deviation from the best solutions, both in
absolute terms and in percentage. Finally, bold-faced
values indicate achievement of best published solu-
tions; italicized/starred results indicate an improve-
ment on the best published results of which we are
aware.
The results indicate that our algorithm improved 10

(17%) of the best published solutions to the Solomon

benchmarks, while matching or improving the best
solutions in 46 benchmarks (82%). The algorithm was
able to obtain the minimum number of vehicles pub-
lished on all instances. In addition, on all benchmarks
but two, the algorithm produced solutions that are
less than 1% from the best published solutions and,
in a couple of cases, it improved the best published
solutions by more than 2%. These results seem to indi-
cate the benefits of decomposing the optimization in two
stages, the effectiveness of simulated annealing to minimize
routes, and the benefits of LNS to minimize travel cost.

5.2. Minimizing Routes
Table 3 compares our algorithm to other metaheuris-
tics with respect to the number of routes. It gives the
average number of vehicles for the best solution in
each class of Solomon’s problems. The best results are
marked in bold. The results show that our algorithm,
together with HG, always produces the best results.
Observe that our algorithm and HG use fundamentally dif-
ferent local search techniques, and yet they both produce
the best results. Hence, these results seem to indicate the
benefits of using a separate stage to minimize the number
of our routes. Observe also that concurrent and inde-
pendent work (e.g., Berger et al. 2001; Bräysy 2001a, c)
has confirmed the value of separating the minimiza-
tion of the number of vehicles and the minimization
of travel distance by getting high-quality results as
well.

5.3. Robustness
Robustness is a fundamental and desirable property
of local search algorithms. An algorithm is robust if it
performs well on large classes of problems with the
same parameter configurations. This section studies
the robustness of our algorithm.

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
524 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

Table 1 Solomon Benchmarks: Comparison with Best Published Results, Class 1

Data Best SA+ LNS Compare

c101 828�94 10 RT 828�937 10 0 0%
c102 828�94 10 RT 828�937 10 0 0%
c103 828�06 10 RT 828�065 10 0 0%
c104 824�78 10 RT 824�777 10 0 0%
c105 828�94 10 PB 828�937 10 0 0%
c106 828�94 10 RT 828�937 10 0 0%
c107 828�94 10 RT 828�937 10 0 0%
c108 828�94 10 RT 828�937 10 0 0%
c109 828�94 10 PB 828�937 10 0 0%

r101 1�645�79 19 H 1�650�80 19 5�0 0.3%
r102 1�486�12 17 RT 1�486�12 17 0 0%
r103 1�292�68 13 S 1�292�68 13 0 0%
r104 1�007�31 9 S 1�007�31 9 0 0%
r105 1�377�11 14 RT 1�377�11 14 0 0%
r106 1�252�03 12 RT 1�252�03 12 0 0%
r107 1�104�66 10 S 1�104�66 10 0 0%
r108 963�99 9 S 960 �876 1 9 ∗ −3�1 −0�3%
r109 1�194�73 11 HG 1�194�73 11 0 0%
r110 1�118�84 10 H 1�118�84 10 0 0%
r111 1�096�72 10 RGP 1�096�73 10 0�01 0%
r112 982�14 9 GTA 991�245 9 9�1 0.9%

rc101 1�696�94 14 TBG 1�696�95 14 0�01 0%
rc102 1�554�75 12 TBG 1�554�75 12 0 0%
rc103 1�261�67 11 S 1�261�67 11 0 0%
rc104 1�135�48 10 S 1�135�48 10 0 0%
rc105 1�633�72 13 RGP 1�629 �441 13 ∗ −4�3 −0�3%
rc106 1�427�13 11 CLM 1�424�73 1 11∗ −2�4 −0�2%
rc107 1�230�48 11 S 1�230�48 11 0 0%
rc108 1�139�82 10 TBG 1�139�82 10 0 0%

1 BBB achieved this result in concurrent unpublished work.

Tables 4 and 5 depict the results for a specific con-
figuration of our algorithm. The results correspond
to five runs of our algorithm. For simulated anneal-
ing, the parameters are 2,000 for starting temperature,
0.95 for cooling factor ., 2,500 iterations per each tem-
perature, 0.01 minimum temperature, and 10 for the
simulated annealing determinism factor $. For LNS,
the parameters are 35 for the maximum customers
to remove p, 1,000 iterations without improvement
before removing one more customer, 15 for the deter-
minism factor $, and 4 discrepancies. The allowed
time is split one-third for SA and two-thirds for LNS.
Bold-faced numbers indicate matches with the best
published results. Italicized numbers indicate results
better than the best published solutions. Italicized
and starred numbers indicate results better than the
best published solutions and equal to the best results
we found. Where different numbers of vehicles were
discovered, the number of times each vehicle result
is obtained is indicated next to the average results.
There are a number of interesting observations to be
drawn from these results.

Best Results. The algorithm finds the best pub-
lished result (or an improvement thereof) in all 5

runs in 14 problems (25%) after 30 minutes and in 16
problems (29%) after 120 minutes. Furthermore, the
best published result (or an improvement thereof) is
achieved at least once in 23 problems (41%) after 30
minutes and in 30 problems after 120 minutes (54%).
In the 30-minute runs, the algorithm improves the
best published results in two cases with the standard
configuration and it is almost always within 5% of the
best published solutions. In the 120-minute runs, the
algorithm improves the best published results in four
cases with the standard configuration and is always
within 3.5% of the best published solutions except in
one case (5.6%). In general, giving more time to the
algorithm helps produce better solutions, although
this is not always true (because simulated annealing
gives extremely random starting solutions).

Average Results. The average results are harder to
compare systematically because all five runs do not
always produce the best number of routes. However,
it can be seen that they are never very far from the
best solutions. For the 30-minute runs, they are, in
general, within 2% of the best solutions on Class 1 and
within 6% on Class 2. For the 120-minute runs, they
are always within 2% and almost always within 1%

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
Transportation Science 38(4), pp. 515–530, © 2004 INFORMS 525

Table 2 Solomon Benchmarks: Comparison with Best Published Results, Class 2

Data Best SA+ LNS Compare

c201 591�56 3 PB 591�557 3 0 0%
c202 591�56 3 PB 591�557 3 0 0%
c203 591�17 3 RT 591�173 3 0 0%
c204 590�60 3 PB 590�599 3 0 0%
c205 588�88 3 PB 588�876 3 0 0%
c206 588�49 3 PB 588�493 3 0 0%
c207 588�29 3 RT 588�286 3 0 0%
c208 588�32 3 RT 588�324 3 0 0%

r201 1�252�37 4 HG 1�252�37 4 0 0%
r202 1�191�70 3 RGP 1�195�30 3 3�6 0.3%
r203 942�64 3 HG 941�408 3 ∗ −1�2 −0�1%
r204 848�91 2 SSS 825 �519 2 ∗ −23�4 −2�8%
r205 994�42 3 RGP 994�42 3 0 0%
r206 906�14 3 SSS 914�627 3 8�5 0.9%
r207 914�39 2 CR 893 �328 2 ∗ −21�1 −2�3%
r208 726�823 2 GTA 726�823 2 0 0%
r209 909�16 3 H 909�163 3 0 0%
r210 939�37 3 DFS 951�294 3 11�9 1.3%
r211 904�32 2 SSS 892 �713 2 ∗ −11�6 −1�3%

rc201 1�406�94 4 CLM 1�412�45 4 5�5 0.4%
rc202 1�377�0891 3 GTA 1�387�38 3 10�3 0.7%
rc203 1�051�822 3 SSS 1�064�14 3 12�3 1.2%
rc204 798�464 3 GTA 798�464 3 0 0%
rc205 1�302�42 4 HG 1�297 �65 4 ∗ −4�8 −0�4%
rc206 1�146�32 3 H 1�146�32 3 0 0%
rc207 1�062�05 3 CLM 1�061�14 3 ∗ −0�9 −0�1%
rc208 829�69 3 RGP 828 �1413 3 ∗ −1�5 −0�2%

1 CC achieved a result of 1,367.09 subsequent to this work.
2 CC achieved a result of 1,049.62 subsequent to this work.
3 IKM achieved this result in concurrent unpublished work.

on Class 1 and almost always within 5% on Class 2.
It is also interesting to compare the average results in
120 minutes and the best results in 30 minutes. These
results are, in fact, quite similar in quality, which is a
good indication of the robustness of the algorithm.

Route Minimization. Table 6 reports the average
number of vehicles required over five runs and com-
pares these results with other approaches where the
papers provided averages across independent runs of
their programs. The results are clustered by problem
classes. The best results are in bold. CPU time is given
in the column headers or underneath the results. Prior

Table 3 Solomon Benchmarks: Route Reduction Comparison

Data RT TBG CR CLM HG DFS GTA S GH SA+ LNS1

c1 10 10 10 10 10 10 10 10 10 10
c2 3 3 3 3 3 3 3 — 3 3
r1 12�25 12�17 12�17 12�08 11�92 12�5 12 12 12�41 11�92
r2 2�91 2�82 2�73 2�73 2�73 3 2�73 — 2�82 2�73
rc1 11�88 11�5 11�88 11�5 11�5 12 11�63 11�75 11�88 11�5
rc2 3�38 3�38 3�25 3�25 3�25 3�38 3�25 — 3�25 3�25

1 Concurrent work, Berger et al. (2001) and Bräysy (2003), were able achieve the same results. Bräysy (2003) was able
to achieve the same results on very short runs, except for r1, which was 12.0. However, the average travel distance of our
implementation, when compared against the implementations with the same number of vehicles, is better.

results are given in the first five columns. Concur-
rent and independent results are given in the next
two columns. Note that comparing times is mis-
leading, as some prior or concurrent results were
achieved on less powerful machines. The final column
gives the best-possible value for each class, i.e., the
average number of vehicles for the class if the best
published number of vehicles is achieved for each
benchmark.
Note that after 30 minutes our algorithm beats the

average number of vehicles of any prior results using
this metric. On the nontrivial r2 class, our algorithm
achieves the best-possible value inferred from the

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
526 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

Table 4 Solomon Benchmarks Class 1: Robustness Results

30 CPU minutes 120 CPU minutes

Data Veh Best Cmp (%) Avg Cmp (%) Worst Best Cmp (%) Avg Cmp (%) Worst

c101 10 828�937 0�0 828�937 0�0 828�937 828�937 0�0 828�937 0�0 828�937
c102 10 828�937 0�0 828�937 0�0 828�937 828�937 0�0 828�937 0�0 828�937
c103 10 828�065 0�0 828�065 0�0 828�065 828�065 0�0 828�065 0�0 828�065
c104 10 824�777 0�0 824�777 0�0 824�777 824�777 0�0 824�777 0�0 824�777
c105 10 828�937 0�0 828�937 0�0 828�937 828�937 0�0 828�937 0�0 828�937
c106 10 828�937 0�0 828�937 0�0 828�937 828�937 0�0 828�937 0�0 828�937
c107 10 822�937 0�0 828�937 0�0 828�937 828�937 0�0 828�937 0�0 828�937
c108 10 828�937 0�0 828�937 0�0 828�937 828�937 0�0 828�937 0�0 828�937
c109 10 828�937 0�0 828�937 0�0 828�937 828�937 0�0 828�937 0�0 828�937

r101 19 1�650�8 0�3 1�650�8 0�3 1�650�8 1�650�8 0�3 1�650�8 0�3 1�650�8
r102 17 1�486�12 0�0 1�486�12 0�0 1�486�12 1�486�12 0�0 1�486�12 0�0 1�486�12
r103 13 1�292�68 0�0 1�296�17 0�3 1�297�62

14 1�213�62 1�214�48 1�217�92
r104 9 1�017�52 1�0 1�017�52 1 1�0

10 981�232 984�13 989�803 987�38 4 989�056
r105 14 1�387�14 0�7 1�401�83 1�8 1�426�17 1�377�11 0�0 1�380�85 0�3 1�387�14
r106 12 1�257�96 0�4 1�270�19 1�5 1�292�16 1�257�96 0�5 1�258�31 0�5 1�259�71
r107 10 1�114�78 0�9 1�119�28 4 1�3 1�104�66 0�0 1�111�39 0�6 1�114�29

11 1�072�12 1 1�072�12
r108 9 966�86 0�3 979�75 4 1�6 966�118 0�2 968�04 0�4 973�424

10 961�359 1 961�359
r109 11 1�197�42 0�2 1�219�9 4 2�1 1�197�42 0�2 1�218�54 4 2�0

12 1�166�24 1 1�166�24 1�153�89 1 1�153�89
r110 10 1�126�63 0�7 1�130�76 4 1�1 1�119�14 0�0 1�125�66 0�6 1�127�94

11 1�114�28 1 1�114�28
r111 10 1�096�74 0�0 1�107�78 4 1�0 1�096�73 0�0 1�097�49 0�0 1�100�55

11 1�063�3 1 1�063�3
r112 9 992�754 1�1 1�001�54 3

10 966�793 971�79 986�753 967�95 2 968�94

rc101 14 1�697�43 0�1 1�697�43 1 0�1 1�296�95 0�0 1�697�21 4 0�0
15 1�624�51 4 1�627�29 1�623�58 1 1�623�58

rc102 12 1�554�75 0�0 1�554�75 0�0 1�554�75 1�554�75 0�0 1�554�75 4 0�0
13 1�477�54 1 1�477�54

rc103 11 1�261�67 0�0 1�267�47 0�5 1�278�55 1�261�67 0�0 1�267�17 0�4 1�270�72
rc104 10 1�135�48 0�0 1�144�97 0�8 1�156�05 1�135�48 0�0 1�141�15 0�5 1�159�43
rc105 13 1�635�9 0�1 1�638�24 2 0�3 1�629 �44 ∗ −0�3 1�636�86 3 0�2

14 1�553�03 3 1�563�76 1�541�23 2 1�542�27
rc106 11 1�424�73 ∗ −0�2 1�435�82 4 0�6

12 1�376�26 1�378�52 1�387�57 1�376�25 1 1�376�25
rc107 11 1�230�95 0�0 1�231�85 0�1 1�232�26 1�230�95 0�0 1�231�84 0�1 1�232�26
rc108 10 1�139�82 0�0 1�162�00 1�9 1�193�45 1�139�82 0�0 1�156�04 1�4 1�187�76

published results. Once again, the results indicate the
robustness of our algorithm.
Finally, observe that the algorithms developed inde-

pendently achieve excellent robustness results as well.
In general, algorithm BBB produces slightly better
results than ours. Algorithm B is excellent for route
minimization. As mentioned, its main weakness is in
minimizing travel distance, but it is an excellent can-
didate for quickly producing high-quality solutions.

Summary. Overall, the algorithm appears to be
very robust, performing well on all instances of
the benchmarks. The algorithm is robust, both with
respect to route minimization and travel cost min-
imization, on these benchmarks. This is one of the
strengths of the algorithm, together with its ability to
produce excellent solutions on all benchmarks.

6. Discussion and Related Work
Prior Work. This paper presented a two-stage

hybrid local search algorithm for the vehicle rout-
ing problem with time windows. When this research
was started, Gehring and Homberger (1999) and
Homberger and Gehring (1999) were the only other
papers presenting a two-stage algorithm for vehicle
routing. The algorithm in Homberger and Gehring
(1999) is not hybrid, however, and uses the same
evolutionary metaheuristic with two evaluation func-
tions. Their evolutionary metaheuristic uses the uni-
form order-based crossover of Davis (1991), and their
mutation operators are Or-opt from Or (1976) (gener-
alized so that sequences of customers can be moved to
other vehicles), /-interchange from Osman (1993), and

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
Transportation Science 38(4), pp. 515–530, © 2004 INFORMS 527

Table 5 Solomon Benchmarks Class 2: Robustness Results

30 CPU minutes 120 CPU minutes

Data Veh Best Cmp (%) Avg Cmp (%) Worst Best Cmp (%) Avg Cmp (%) Worst

c201 3 591�557 0�0 591�557 0�0 591�557 591�557 0�0 591�557 0�0 591�557
c202 3 591�557 0�0 614�04 3�8 703�993 591�557 0�0 591�557 0�0 591�557
c203 3 591�173 0�0 656�844 11�1 753�137 591�173 0�0 607�11 2�7 670�834
c204 3 590�599 0�0 619�72 4�9 672�158 590�599 0�0 590�599 0�0 590�599
c205 3 588�876 0�0 588�876 0�0 588�876 588�876 0�0 588�876 0�0 588�876
c206 3 588�493 0�0 607�99 3�2 685�964 588�493 0�0 588�493 0�0 588�493
c207 3 588�286 0�0 607�78 3�3 685�758 588�286 0�0 588�286 0�0 588�286
c208 3 588�324 0�0 588�324 0�0 588�324 588�324 0�0 588�324 0�0 588�324

r201 4 1�287�67 2�8 1�300�26 3�8 1�317�98 1�254�72 0�2 1�271�48 1�5 1�284�68
r202 3 1�237�04 3�8 1�261�89 2 5�9 1�199�17 0�6 1�228�12 3�1 1�245�4

4 1�135�3 3 1�166�0
r203 3 967�822 2�7 985�32 4�5 1�026�83 963�66 2�2 972�94 3�2 995�084
r204 2 833 �883 −1�7 860�03 3 1�3 838 �06 −1�3 857�11 1�0 871�655

3 793�73 2 798�701
r205 3 1�036�83 4�3 1�050�06 5�6 1�061�8 1�008�55 1�4 1�041�31 4�7 1�070�27
r206 3 956�289 5�5 981�85 8�4 1�018�26 927�724 2�4 955�70 5�5 977�019
r207 2 901�091 −1�5 923�73 4 1�0 893 �328 ∗ −2�3 908 �51 −0�6 920�876

3 866�577 1 866�577
r208 2 737�369 1�5 758�773 4�4 773�315 726�823 0�0 749�17 3�1 773�681
r209 3 943�709 3�8 955�90 5�1 980�098 941�318 3�5 955�30 5�1 970�167
r210 3 967�996 3�0 982�66 4�6 1�006�61 968�661 3�1 975�75 3�9 979�958
r211 2 913�752 1�0 934�30 4 3�3 908�062 0�0 923�53 2�1 943�14

3 809�538 1 809�538

rc201 4 1�466�02 4�2 1�481�45 5�1 1�519�08 1�426 1�4 1�438�44 2�2 1�459�07
rc202 3 1�387�38 0�7 1�424�73 2 3�5 1�387�38 0�7 1�411�00 4 2�5

4 1�238�38 3 1�301�23 1�162�8 1 1�162�8
rc203 3 1�097�31 4�3 1�109�04 5�4 1�125�8 1�068�08 1�5 1�078�96 2�6 1�099�70
rc204 3 841�282 5�4 850�46 6�4 865�928 818�208 2�5 833�82 4�4 851�993
rc205 4 1�322�64 1�6 1�353�91 4�0 1�395�88 1�312�9 0�8 1�325�77 1�8 1�347�59
rc206 3 1�187�28 3�6 1�217�93 6�2 1�239�49 1�170�52 2�1 1�215�85 6�1 1�242�71
rc207 3 1�093�75 2�9 1�111�6 4�7 1�130�36 1�070�85 0�8 1�096�06 3�2 1�115�05
rc208 3 875�605 5�5 900�61 8�5 914�755 875�977 5�6 900�85 8�6 942�997

2-opt∗ from Potvin and Rousseau (1995). Their eval-
uation function to minimize routes is a lexicographic
function with three components. Their second com-
ponent is the size of the smallest route, while ours is
the sum of the squares of the route sizes. Their third
component is the minimal delay of the routing plan.

Table 6 Solomon Benchmarks: Robustness of the Route Minimization

SA+ LNS
GTA BBB Best

Data RT TBG 1,800 S 3,600 1,800 B 1,800 3,600 5,400 7,200 possible

c1 10 10 10 — 10 10 10 10 10 10 10
540 2�929 —

c2 3 3 3 — 3 3 3 3 3 3 3
1�200 3�275 —

r1 12�58 12�33 12�38 12.33 12�17 11�92 12�25 12�2 12�07 12�03 11�92
1�300 13�774 17�286

r2 3�09 3�00 3�00 — 2�73 2�73 2�85 2�76 2�75 2�73 2�73
4�900 3�372 15�558

rc1 12�38 11�9 11�92 11.95 11�88 11�50 11�8 11�7 11�65 11�63 11�5
2�600 11�264 12�876

rc2 3�62 3�38 3�33 — 3�25 3�25 3�3 3�35 3�33 3�28 3�25
1�300 1�933 7�788

Interestingly, Homberger and Gehring’s paper (1999)
is hybrid and combines an evolutionary strategy (to
minimize the number of vehicles) with a tabu search
(to minimize travel distance). As discussed earlier,
our average number of vehicles is much better for
each class of the Solomon benchmarks. Their motiva-

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
528 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

tion for using two-stage algorithms is similar to ours:
The recognition that minimizing travel costs may not
always be most effective for minimizing the number
of routes. One of the contributions of this paper is to pro-
vide evidence of the benefits of a two-stage approach for
vehicle routing with time windows. Indeed, the fundamen-
tally different nature of these two two-stage algorithms,
together with their effectiveness, seem to indicate that the
two-stage approach has benefits across metaheuristics.
The first stage of our algorithm uses a novel sim-

ulated annealing algorithm. The algorithm uses tra-
ditional moves operators described in De Backer
et al. (2000) and Kindervater and Savelsbergh (1997):
2-exchange, Or-exchange, relocation, crossover, and
exchange. A critical aspect of the simulated anneal-
ing is the lexicographic evaluation function. Its sec-
ond component, maximizing the sum of the squares
of route sizes, was inspired by some graph-coloring
algorithms (Johnson et al. 1991). Its third com-
ponent is the minimal delay of Homberger and
Gehring (1999). Our simulated annealing algorithm
also includes some greedy components typical of tabu
search (Glover 1989), including an aspiration criterion
and a bias toward good solutions in the random pro-
cess. These greedy aspects were shown to be bene-
ficial experimentally. Of course, simulated annealing
was used for solving vehicle routing problems in the
past. In particular, Chiang and Russell (1996) describe
a simulated annealing where the neighborhood is
defined by the /-interchange mechanism of Osman
(1993) and the k-node interchange mechanism of
Christofides and Beasley (1984). The algorithm in
Chiang and Russell (1996) makes use of a tabu list
within the simulated annealing process and uses a
weighted objective function incorporating total time
along with number of vehicles and travel cost. Prob-
ably the main contribution here is the novel evaluation
function and the additional evidence that minimal delay is
a fundamental concept in minimizing the number routes.
The second stage of our algorithm uses the LNS

technique pioneered by Shaw (1998). In that paper,
LNS was shown to be very effective on Class 1
of the Solomon benchmarks. No results were given
on Class 2, as LNS could not reduce the number
of routes satisfactorily (Shaw 1998, p. 426) because
the Class 2 benchmarks have a high number of
customers per route. This fact was also confirmed
by our own experimental results. Our implemen-
tation adds a restarting strategy, making our algo-
rithm essentially similar to a variable neighborhood
search (Hansen and Mladenovic 1998). It also adds a
more precise lower bound based on minimal span-
ning k-trees. Both of these components were shown
to have benefits experimentally, especially as far as
robustness is concerned. Of course, there is clearly
much room left for improvements in implementations

of LNS. Probably the main contribution here is to show
that LNS is particularly effective for minimizing travel cost
across all Solomon benchmarks when given routing plans
minimizing the number of routes.
There are, of course, many other algorithms for

vehicle routing. See, for instance, Gendreau et al.
(1997) for a good overview of techniques for solving
vehicle routing problems using local search, Chiang
and Russell (1997) and Rochat and Taillard (1995)
for tabu search algorithms, Gambardella et al. (1999)
for an ant colony metaheuristic, De Backer et al.
(2000) for guided local search on top of tabu search,
and Taillard et al. (1997) for the problem with soft
time windows.

Concurrent and Independent Work. As mentioned
in the introduction, many researchers seem to have
converged to related approaches in the last 18 months.
Most of the new algorithms are hybrid and use sev-
eral phases, separate the minimization of vehicles
and the minimization of travel times, and include
some notion of large neighborhood search. In partic-
ular, Bräysy (2001a) proposes a fast algorithm that
uses sophisticated insertion and merging heuristics
to find an initial solution, an ejection chain heuris-
tic to reduce the number of vehicles, and the Or-opt
neighborhood (Or 1976) to minimize travel distance.
The resulting algorithm almost always produces the
same number of vehicles as ours, but its travel times
are higher than ours. This algorithm seems to be
a very interesting approach to finding high-quality
solutions quickly (e.g., under two minutes). Bräysy
(2003) proposes a sophisticated four-stage algorithm
that extends the previous approach with variable and
large neighborhood search. The algorithm focuses on
producing high-quality solutions, but its results seem
to be weaker than ours on the Solomon benchmarks.
Nonetheless, this algorithm is very effective in min-
imizing the total number of vehicles. Berger et al.
(2001) propose an algorithm that runs two different
genetic algorithms in parallel. The first algorithm tries
to decrease the number of vehicles by minimizing
constraint violations, while the second algorithm min-
imizes travel distances for a given number of vehi-
cles. Of particular interest is the fact that some genetic
operators use a version of LNS. The algorithm pro-
duces the same number of vehicles as our algorithm
on average and ties three of the new solutions we
found. In general, this algorithm and ours, which
uses a similar experimental setting (i.e., 30-minute
runs), are very close in quality. Nonetheless, our algo-
rithm improves six additional Solomon benchmarks
and hence seems superior in quality.
These results, in fact, provide further evidence of

the main theses of this paper: the benefits of opti-
mizing the number of vehicles and travel time inde-
pendently, the value of hybrid approach, and the
potential of large neighborhood search.

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
Transportation Science 38(4), pp. 515–530, © 2004 INFORMS 529

It seems fair to conclude that at this point there is
no single algorithm for the VRPTW that is appropri-
ate for all purposes. Our algorithm focuses on pro-
ducing very high-quality solutions under reasonable
time constraints. It was instrumental in improving 10
Solomon benchmarks (only 4 of which were tied by
independent and concurrent work) and is extremely
robust. These computational results, together with its
overall conceptual simplicity, make it a significant
contribution to the set of tools for approaching the
VRPTW.

7. Conclusion
This paper proposed a two-stage hybrid algorithm
for multiple vehicle routing with capacity and time
window constraints. The algorithm first minimizes
the number of vehicles using a simulated anneal-
ing algorithm. It then minimizes travel cost by using
a large neighborhood search that possibly relocates
a large number of customers. Experimental results
demonstrate the effectiveness of the algorithm, which
has improved 10 (27%) of the 56 best published solu-
tions to the Solomon benchmarks, while matching or
improving the best solutions in 46 benchmarks (82%).
More important perhaps, the algorithm, with a fixed
configuration of its parameters, is shown to be very
robust, returning either the best published solutions
(or improvements thereof) or solutions very close in
quality on all Solomon benchmarks. It is also concep-
tually simple to understand and to implement. These
results seem to indicate the benefits of using a two-
stage approach, of using simulated annealing to min-
imize the number of routes, and of using LNS for
minimizing travel costs.
It is also important to mention that concurrent and

independent work (e.g., Berger et al. 2001; Bräysy
2001a, b; 2003) have confirmed the main theses of
this paper: the benefits of optimizing the number of
vehicles and travel time independently, the value of
hybrid approach, and the potential of large neighbor-
hood search. This new generation of algorithms has,
we believe, significantly enhanced our understanding
of the local search approaches to the VRPTW.

Acknowledgments
The first author is supported by a National Defense Sci-
ence and Engineering Graduate (NDSEG) fellowship from
the American Society of Engineering Education (ASEE).
The second author is partly supported by National Science
Foundation ITR Award DMI-0121495.

References
Berger, J., M. Barkaoui, O. Bräysy. 2001. A parallel hybrid genetic

algorithm for the vehicle routing problem with time windows.
Working paper, Defense Research Establishment Valcartier, Val
Belair, Canada.

Bräysy, O. 2001a. Five local search algorithms for the vehicle rout-
ing problem with time windows. Working paper, SINTEF
Applied Mathematics, Department of Optimization, Norway.

Bräysy, O. 2001b. Local search and variable neighborhood search
algorithms for the VRPTW. Acta Wasaensia 87, Mathematics
8, Operational Research, Universitas Wasaensis, Vaasa, Oslo,
Finland.

Bräysy, O. 2003. A reactive variable neighborhood search for the
vehicle-routing problem with time windows. INFORMS J. Com-
put. 15(4) 347–368.

Chiang, W., R. Russell. 1996. Simulated annealing metaheuristics
for the vehicle routing problem with time windows. Ann. Oper.
Res. 63 3–27.

Chiang, W., R. Russell. 1997. A reactive tabu search metaheuristic
for the vehicle routing problem with time windows. INFORMS
J. Comput. 9 417–430.

Christofides, N., J. Beasley. 1984. The period routing problem.
Networks 14 237–246.

Cordeau, J., G. Laporte, A. Mercier. 2001. A unified tabu search
heuristic for vehicle routing problems with time windows.
J. Oper. Res. Soc. 52 928–936.

Czech, Z., P. Czarnas. 2002. A parallel simulated annealing
for the vehicle routing problem with time windows. Proc.
10th Euromicro Workshop Parallel, Distributed Network-based
Processing, Canary Islands, Spain, 376–383.

Davis, L. 1991. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York.

De Backer, B., V. Furnon, P. Shaw, P. Kilby, P. Prosser. 2000. Solving
vehicle routing problems using constraint programming and
metaheuristics. J. Heuristics 6 501–523.

Desrochers, M., J. Desrosiers, M. Solomon. 1992. A new optimiza-
tion algorithm for the vehicle routing problem with time win-
dows. Oper. Res. 40 342–354.

Fisher, M., K. Joernsten, O. Madsen. 1997. Vehicle routing with
time windows: Two optimization algorithms. Oper. Res. 45(3)
488–492.

Gambardella, L., E. Taillard, G. Agazzi. 1999. MACS-VRPTW: A
multiple ant colony system for vehicle routing problems with
time windows. D. Corne, M. Dorigo, F. Glover, eds. New Ideas
in Optimization. McGraw-Hill, London, U.K., 63–76.

Gehring, H., J. Homberger. 1999. A parallel hybrid evolution-
ary metaheuristic for the vehicle routing problem with time
windows. Proc. EUROGEN99—Short Course on Evolutionary
Algorithms Engrg. Comput. Sci., Reports of the Department of
Mathematical Information Technology Series A, Collections,
A2/1999, University of Jyvaskyla, Jyväskylä, Finland, 57–64.

Gehring, H., J. Homberger. 2001. A parallel two-phase metaheuris-
tic for routing problems with time windows. Asia-Pacific J. Oper.
Res. 18 35–47.

Gendreau, M., G. Laporte, J. Potvin. 1997. Vehicle routing: Modern
heuristics. E. Aarts, J. Lenstra, eds. Local Search in Combinatorial
Optimization, Ch. 9. John Wiley & Sons Ltd., New York, 311–336.

Glover, F. 1989. Tabu search. ORSA J. Comput. 1 190–206.
Hansen, P., N. Mladenovic. 1998. An introduction to variable

neighborhood search. S. Voss, S. Martello, I. H. Osman,
C. Roucairol, eds. Meta-heuristics, Advances and Trends in Local
Search Paradigms for Optimization. Kluwer Academic Publishers,
New York, 433–458.

Harvey, W., M. Ginsberg. 1995. Limited discrepancy search.
Proc. 14th Internat. Joint Conf. Artificial Intelligence, Montreal,
Canada.

Homberger, J., H. Gehring. 1999. Two evolutionary metaheuristics
for the vehicle routing problem with time windows. INFOR 37
297–318.

Homberger, W. 2000. Verteilt-Parallele Metaheuristiken zur Tourenpla-
nung. Gaber, Wiesbaden, Germany.

Bent and Van Hentenryck: A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows
530 Transportation Science 38(4), pp. 515–530, © 2004 INFORMS

Ibaraki, T., M. Kubo, T. Masuda, T. Uno, M. Yagiura. 2001. Effective
local search algorithms for the vehicle routing problem with
general time windows. Proc. 4th Metaheuristics Internat. Conf.,
Porto, Portugal.

Ioannou, G., M. Kritikos, G. Prastacos. 2001. A greedy look-ahead
heuristic for the vehicle routing problem with time windows.
J. Oper. Res. Soc. 52 523–537.

Johnson, D., C. Aragon, L. McGeoch, C. Schevon. 1991. Opti-
mization by simulated annealing: An experimental evaluation;
Part II, graph coloring and number partitioning. Oper. Res.
39(3) 378–406.

Kindervater, G., M. Savelsbergh. 1997. Vehicle routing: Handling
edge exchanges. E. Aarts, J. Lenstra, eds. Local Search in Com-
binatorial Optimization, Ch. 10. John Wiley & Sons Ltd., New
York, 337–360.

Kirkpatrick, S., C. Gelatt, M. Vecchi. 1983. Optimization by simu-
lated annealing. Science 220 671–680.

Kohl, N., J. Desrosiers, O. Madsen, M. Solomon, F. Soumis. 1999.
2-path cuts for the vehicle routing problem with time win-
dows. Transportation Sci. 33 101–116.

Lenstra, J., A. H. G. Rinnooy Kan. 1981. Complexity of vehicle rout-
ing and scheduling problems. Networks 11 221–227.

Or, I. 1976. Traveling salesman-type combinatorial problems and
their relation to the logistics of blood banking. Ph.D. thesis,
Department of Industrial Engineering and Management Sci-
ence, Northwestern University, Evanston, IL.

Osman, I. 1993. Metastrategy simulated annealing and tabu search
algorithms for the vehicle routing problem. Ann. Oper. Res.
40(1) 421–452.

Potvin, J., S. Begio. 1996. The vehicle routing problem with
time windows—Part II: Genetic search. INFORMS J. Comput.
8 165–172.

Potvin, J., J. Rousseau. 1995. An exchange heuristic for routing
problems with time windows. J. Oper. Res. Soc. 46 1433–1446.

Rochat, Y., E. Taillard. 1995. Probabilistic diversification and intensi-
fication in local search for vehicle routing. J. Heuristics 1
147–167.

Rousseau, L., M. Gendreau, G. Pesant. 2002. Using constraint-based
operators to solve the vehicle routing problem with time win-
dows. J. Heuristics 8 43–58.

Schrimpf, G., J. Schneider, H. Stamm-Wilbrandt, G. Dueck. 2000.
Record breaking optimization results using the ruin and recre-
ate principle. J. Comput. Phys. 159 139–171.

Shaw, P. 1998. Using constraint programming and local search
methods to solve vehicle routing problems. Proc. Principles
Practice Constraint Programming, Pisa, Italy, 417–431.

Solomon, M. 1987. Algorithms for the vehicle routing and schedul-
ing problems with time window constraints. Oper. Res. 35(2)
254–265.

Taillard, E., P. Badeau, M. Gendreau, F. Geurtin, J. Potvin. 1997.
A tabu search heuristic for the vehicle routing problem with
soft time windows. Transportation Sci. 31 170–186.

Thangiah, S., I. Osman, T. Sun. 1994. Hybrid genetic algorithms,
simulated annealing and tabu search methods for vehicle rout-
ing problems with time windows. Technical Report UKC/
OR94/4, Institute of Mathematics & Statistics, University of
Kent, Canterbury, U.K.

