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Abstract: This paper considers k-monotone estimation and the related
asymptotic performance analysis over a suitable Hölder class for general k.
A novel two stage k-monotone B-spline estimator is proposed: in the first
stage, an unconstrained estimator with optimal asymptotic performance is
considered; in the second stage, a k-monotone B-spline estimator is con-
structed (roughly) by projecting the unconstrained estimator onto a cone
of k-monotone splines. To study the asymptotic performance of the second
stage estimator under the sup-norm and other risks, a critical uniform Lip-
schitz property for the k-monotone B-spline estimator is established under
the �∞-norm. This property uniformly bounds the Lipschitz constants as-
sociated with the mapping from a (weighted) first stage input vector to the
B-spline coefficients of the second stage k-monotone estimator, independent
of the sample size and the number of knots. This result is then exploited
to analyze the second stage estimator performance and develop conver-
gence rates under the sup-norm, pointwise, and Lp-norm (with p ∈ [1,∞))
risks. By employing recent results in k-monotone estimation minimax lower
bound theory, we show that these convergence rates are optimal.
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1. Introduction

For fixed k ∈ N, a real-valued univariate function is said to be k-monotone if its
(k − 1)-th derivative is increasing. Examples of k-monotone functions include
monotone functions (with k = 1) and convex functions (with k = 2). The
study of k-monotone regression concerns the nonparametric estimation of an
underlying k-monotone function such that a constructed estimator preserves the
k-monotone shape. Belonging to the general framework of shape constrained
estimation in nonparametric statistics, this problem has garnered substantial
attention in statistics and approximation theory, due to the vast number of
applications; see [10, 25, 32, 35, 36] and references therein. The surging interest
in shape constrained estimation is driven by the observation that incorporating
shape constraints into estimator construction often improves estimator accuracy
and efficiency [31].

1.1. Literature review and motivation

Current literature on k-monotone regression focuses mostly on monotone re-
gression (when k = 1) [5, 7, 29, 37, 40] and convex regression (when k = 2)
[6, 11, 17, 18, 24, 38, 41]. For k > 2, asymptotic results on regression esti-
mation of (k − 1) times differentiable functions are limited to unconstrained
estimators [26, 39] and least-squares estimators [25]. Statistical analysis results
on k-monotone estimation are restricted to [1, 2, 13, 14, 15, 25], in which k-
monotone density estimation (both continuous and discrete), rather than k-
monotone regression is discussed. A continuous k-monotone density is defined
on the positive orthant (0,∞) and governed by a related but different notion of
k-monotonicity. It is shown in [2] that a continuous density is k-monotone in the
sense of [1, 2, 13, 14] if and only if its (k − 1)-th derivative is monotone (either
increasing or decreasing, depending on k), relating our k-monotone regression
problem to k-monotone density estimation.

Despite extensive research on monotone and convex regression, no asymptotic
performance analysis results are available on k-monotone regression estimators
when k > 2, especially under the sup-norm risk, even though the (shape pre-
serving) spline approximation of k-monotone functions for larger k has been
studied in approximation theory [19, 20, 21, 30] and numerous applications are
available. Such applications include insurance (with k = 3, 4) [12], qualitative
simulation (with k = 3) [22], and attitude control (with k = 3) [32]. Particu-
larly, a prudent utility function u(·), in the context of risk management [12],
has a nonnegative third derivative (and is thus, 3-monotone), whereas a tem-
perate utility function u(·) has a nonpositive fourth derivative (and thus, −u(·)
is 4-monotone). Additionally, when solving systems of qualitative differential
equations [22], nonnegative third order derivative constraints are used to reduce
spurious distinctions between qualitative behaviors. Finally, in the attitude con-
trol system treated in [32], the control force F is a nonlinear function of input
voltage V , and experimental studies show that F (3)(V ) ≥ 0.



1390 T. M. Lebair and J. Shen

Motivated by the higher-order k-monotone constraints arising in applica-
tions and the lack of statistical performance analysis, we consider a two stage k-
monotone B-spline regression estimator for arbitrary k ∈ N and study its asymp-
totic performance under the sup-norm, pointwise, and Lp-norm (with p ∈ [1,∞))
risks. B-splines are popular in approximation and estimation theory due to their
numerical advantages [8, 10]. One can easily impose k-monotone constraints
on B-spline coefficients, which can be efficiently computed via quadratic pro-
grams in polynomial time. Moreover, recent results show that when k = 1, 2,
k-monotone B-spline estimators outperform many other constrained estimators
[37, 38, 41]. For instance, it is known that the popular monotone and convex
least squares estimators lack smoothness and cannot achieve uniform conver-
gence since they are inconsistent on the boundary with non-negligible asymp-
totic bias [28, 42]; these deficiencies are overcome by the monotone and convex
B-spline estimators [37, 41]. In spite of numerical efficiency and performance
advantages, the asymptotic analysis of k-monotone B-spline estimators is non-
trivial, particularly when the sup-norm risk is considered.

1.2. Challenges in k-monotone estimation

A major challenge in k-monotone spline estimation arises from the difficulty
of accurately approximating certain k-monotone functions by splines that pre-
serve the k-monotone shape. It is known that when k > 3, the accuracy of a
k-monotone spline approximation associated with a given knot sequence is ham-
pered by the k-monotone constraint [21]. Consequently, the bias of a k-monotone
B-spline estimator associated with a given knot sequence is unsatisfactorily large
if the knot sequence is coarse. In particular, knot sequences typically utilized
to produce unconstrained B-spline estimators with optimal (asymptotic) per-
formance are too coarse to be directly used in the production of k-monotone
B-spline estimators. Further, the noisy data prevents us from choosing (asymp-
totically) finer knot sequences to obtain a more accurate k-monotone B-spline
estimator. Hence, a single stage k-monotone B-spline estimator cannot achieve
the optimal asymptotic performance under the sup-norm risk when k > 3.

Another major challenge in the k-monotone B-spline estimator asymptotic
analysis emerges from the requirement of a deep understanding of the map-
ping from a (weighted) input vector to the corresponding B-spline coefficient
vector associated with the k-monotone constraint, where the size of the input
vector is related to that of the knot sequence. For fixed knot and design point
sequences, it is known in optimization theory that this mapping is a Lipschitz
piecewise linear function due to the k-monotone inequality constraint. As the
sample and knot sequence sizes increase and tend to infinity, an infinite family
of size-varying piecewise linear functions arises. A fundamental question in the
asymptotic analysis asks how the Lipschitz constants of these piecewise linear
functions behave as the knot sequence size tends to infinity. A critical uniform
Lipschitz property has been established for monotone P-splines (corresponding
to k = 1) [37] and convex B-splines (corresponding to k = 2) [41]. This property
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states that the size-varying piecewise linear mappings from the (weighted) input
vector to the constrained B-spline coefficient vector attain a uniform Lipschitz
constant under the �∞-norm, independent of the number of linear pieces, design
points, and knots. It leads to many important results in the asymptotic perfor-
mance analysis, e.g., uniform convergence, optimal convergence rates, and the
sup-norm and pointwise mean squared risks [41]. It has been conjectured that
this property can be extended to k > 2 [41]. However, this extension encounters
several difficulties: the proof of this property for the monotone and convex cases
(k = 1 or 2), relies on the diagonal dominance of certain matrices that no longer
holds for larger k. In addition, the results in [37, 41] are based on a restrictive
assumption of evenly spaced design points and knots, and the extension to the
unevenly spaced case is nontrivial.

1.3. Contributions

This paper addresses the aforementioned challenges and presents new develop-
ments in k-monotone estimation. We summarize these results and contributions
as follows.

(1) As one of the key contributions of this paper, we establish the uniform
Lipschitz property for general k ∈ N via a new technique (cf. Theorem 3.1).
This technique relies on a deep result in B-spline theory (dubbed de Boor’s
conjecture) first proved by A. Shardin [34]; see [16] for a recent, simpler proof.
Informally speaking, this result says that the �∞-norm of the inverse of the
Gramian formed by the normalized B-splines of order k is uniformly bounded,
independent of the knot sequence and the number of B-splines (cf. Theorem 7.1).
Inspired by this result, we construct (nontrivial) coefficient matrices for the
piecewise linear functions corresponding to the k-monotone constraint and relate
these matrices to suitable B-splines. This yields the uniform bounds on the
Lipschitz constants in the �∞-norm for arbitrary k and possibly unevenly spaced
design points and knots; see Section 7.1 for an overview of the proof.

(2) We propose a novel two stage k-monotone B-spline estimator. In the first
stage, an unconstrained estimator with optimal performance is used; in the sec-
ond stage, a k-monotone B-spline estimator is constructed by projecting the first
stage estimator onto the cone of k-monotone B-splines with a suitable knot se-
quence. The second stage estimator can be quickly produced by solving a strictly
convex quadratic program with a small number of variables; see Section 3.2. The
two stage estimator has several notable advantages: it is simple, flexible, and
can be efficiently computed. More importantly, the optimal first stage estimator
allows the second stage constrained B-spline estimator to obtain optimal bias
and stochastic error, a key motivation for the two stage estimator.

(3) By leveraging the uniform Lipschitz property, k-monotone approximation
theory, and statistical techniques, we derive (asymptotically) optimal uniform
bounds on the estimator risk with respect to the sup-norm, pointwise, and Lp-
norm (with p ∈ [1,∞)) errors over a Hölder class. These bounds lead to the
uniform convergence and convergence rates under the sup-norm, pointwise, and
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Lp-norm (with p ∈ [1,∞)) risks, including boundary consistency, noting that
many constrained estimators, such as the monotone least-squares estimators,
fail to achieve the boundary consistency [28, 42].

(4) Finally, we show that the proposed k-monotone estimator obtains an
optimal convergence rate, and thus the optimal minimax risk, over a suitable
Hölder class in the sup-norm, by exploiting the recent development in minimax
lower bound theory for k-monotone estimators [23, Chapter V]. This result is
the first of its kind to the best of our knowledge.

The present paper not only recovers the monotone and convex estimation
results and leads to new asymptotic analysis results for arbitrary k ∈ N, but
also treats k-monotone estimation in a unified framework and paves the way for
the study of constrained estimation under a broader class of shape constraints.

1.4. Organization and notation

The paper is organized as follows. In Section 2, we introduce the k-monotone
estimation problem and k-monotone splines. In Section 3, we present the two
stage k-monotone B-spline estimator, characterize the second stage estimator,
and state the uniform Lipschitz property. With the help of the uniform Lipschitz
property, we establish optimal convergence rates for the two stage estimator in
Section 4. Two numerical examples illustrate the performance of the second
stage estimator in Section 5. Concluding remarks and the proof of the uniform
Lipschitz property are given in Sections 6 and 7 respectively.

Notation. We introduce some notation used in this paper. Define the function
δij on N×N so that δij = 1 if i = j, and δij = 0 otherwise. Let IS be the indicator
function for a set S and let 1n ∈ R

n and 1n1×n2 ∈ R
n1×n2 be the column vector

and matrix of all ones, respectively. For an index set α, let α be its complement
and |α| be its cardinality. For j ∈ N, let the set α + j := {i+ j : i ∈ α}. For a
column vector v ∈ R

n, let vi be its ith component. For a matrix A, let (A)ij or
(A)i,j be its (i, j)-entry, let (A)i• be its ith row, and (A)•j be its jth column.
Given an index set α, let vα ∈ R

|α| be the vector formed by the components
of v indexed by elements of α, and (A)α• be the matrix formed by the rows of
A indexed by elements of α. Let

(
n
p

)
denote the binomial coefficient indexed by

n, p ∈ N with n ≥ p. For sequences of positive numbers (an) and (bn) we write
an � bn if there exist positive c, C ∈ R

n such that c ≤ lim infn→∞ an/bn ≤
lim supn→∞ an/bn ≤ C. For p ∈ [1,∞), let ‖ · ‖Lp denote the Lp-norm on
[0, 1] (or on some other interval I ⊆ R when the context is clear), so that

‖f‖Lp =
[ ∫ 1

0
|f(x)|p dx

] 1
p

for any piecewise continuous function f : [0, 1] → R.

Additionally, let 〈·, ·〉L2 denote the L2-inner product on [0, 1] (or on some other

interval I ⊆ R when the context is clear), i.e., 〈f, g〉L2 :=
∫ 1

0
f(x)g(x) dx for any

piecewise continuous functions f : [0, 1] → R and g : [0, 1] → R. Lastly, let E(·)
denote the expectation operator.
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2. k-monotone estimation and k-monotone splines

In this section, we introduce the k-monotone estimation problem, and collect
some key properties of k-monotone splines to be used in the sequel.

2.1. k-monotone estimation

Fix k ∈ N. The class of k-monotone univariate functions on the interval [0, 1] is

Sk :=
{
f : [0, 1] → R

∣∣∣ the (k − 1)th derivative f (k−1) exists almost

everywhere on [0, 1], and
(
f (k−1)(x1)− f (k−1)(x2)

)
·
(
x1 − x2

)
≥ 0 (1)

when f (k−1)(x1), f
(k−1)(x2) exist

}
.

When k = 1, Sk represents the set of increasing functions on [0, 1]. Similarly,
when k = 2, Sk denotes the set of continuous convex functions on [0, 1]. Let
r ∈ (k − 1, k] and L > 0. Set γ := r − (k − 1), and define the Hölder class Hr

L

with Hölder exponent r and Hölder constant L:

Hr
L :=

{
f : [0, 1] → R

∣∣∣ |f (k−1)(x1)−f (k−1)(x2)| ≤ L|x1−x2|γ , ∀x1, x2 ∈ [0, 1]
}
.

(2)
Additionally, given n ∈ N, consider the family of design point sequences for
fixed constants cω,1 and cω,2 such that 0 < cω,1 ≤ 1 ≤ cω,2, where cω,1 is used
for the minimax lower bound analysis:

Pn :=
{
(xi)

n
i=0

∣∣∣ 0 = x0 < x1 < · · · < xn = 1, and (3)

cω,1

n
≤ xi − xi−1 ≤ cω,2

n
, ∀ i = 1, . . . , n

}
.

This paper focuses on the estimation of functions in Sk,H(r, L) := Sk ∩Hr
L.

Specifically, given a sequence of design points (xi)
n
i=0 ∈ Pn on the interval [0, 1],

consider the regression problem

yi = f(xi) + σεi, i = 0, 1, . . . , n, (4)

where f is an unknown true function in Sk,H(r, L), the εi’s are independent
standard normal errors, σ is a positive constant, and the yi’s are samples. The
goal of k-monotone estimation is to construct an estimator f̂ that preserves the
k-monotonicity of the true function characterized by Sk. With regards to the
estimator asymptotic analysis, we are particularly interested in the estimator
uniform convergence on the entire interval [0, 1], as well as the convergence rates

of (i) supf∈Sk,H(r,L) E(‖f̂ − f‖∞), (ii) supf∈Sk,H(r,L)

[
E(|f̂(x) − f(x)|p)

] 1
p for

fixed x ∈ [0, 1], p ∈ [1,∞), and (iii) supf∈Sk,H(r,L) E(‖f̂ − f‖Lp) for p ∈ [1,∞),
when the sample size n is sufficiently large. Note that it is possible to relax the
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assumption of the normality of the errors εi’s in the model (4). However, we
assume normal errors to simplify technical developments in this paper.

A two stage k-monotone B-spline regression estimator will be developed for
k-monotone estimation problems (cf. Section 3). Since this estimator is given
by a k-monotone spline, we give a detailed discussion on such splines in the
following subsections.

2.2. B-spline properties

We first provide a brief review of B-splines as follows; see the monograph [8]
for more details. For a given K ∈ N, let t := {0 = t0 < t1 < · · · < tK = 1}
be a sequence of (K + 1) knots in R. Given p ∈ N, let {Bt

p,j}
K+p−1
j=1 denote the

(K + p − 1) B-splines of order p (or equivalently degree (p − 1)) with knots at
t0, t1, . . . , tK , and the usual extension t1−p = · · · = t−1 = 0 on the left and

tK+1 = · · · = tK+p−1 = 1 on the right, scaled such that
∑K+p−1

j=1 Bt
p,j(x) = 1

for any x ∈ [0, 1]. The support of Bt
p,j is given by (i) [tj−p, tj) when p = 1 and

1 ≤ j ≤ K−1; (ii) [tj−p, tj ] when p = 1 and j = K or for each j = 1, . . . ,K+p−1
when p ≥ 2. We summarize some properties of B-splines to be used in the
subsequent development below:

(i) Nonnegativity, upper bound, and partition of unity: for each p, j, and t,

0 ≤ Bt
p,j(x) ≤ 1 and

∑K+p−1
j=1 Bt

p,j(x) = 1 for any x ∈ [0, 1].

(ii) Continuity and differentiability: when p = 1, each Bt
p,j(x) is a (discontin-

uous) piecewise constant function given by I[tj−1,tj)(x) for 1 ≤ j ≤ K − 1
or I[tK−1,tK ](x) for j = K; also, Bt

p,i(x) · Bt
p,j(x) = 0, ∀ x if i �= j. When

p = 2, the Bt
p,j ’s are continuous piecewise linear functions, and there are at

most three points in R where each Bt
p,j is not differentiable. When p > 2,

each Bt
p,j is differentiable on R. For p ≥ 2, the derivative of Bt

p,j (when it
exists) is(

Bt
p,j(x)

)′
=

p− 1

tj−1 − tj−p
Bt

p−1,j−1(x) − p− 1

tj − tj−p+1
Bt

p−1,j(x), (5)

where we define p−1
tj−tj−p+1

Bt
p−1,j(x) := 0, ∀x ∈ [0, 1] for j = 0 and j =

K + p− 1.
(iii) L1-norm: for each j, the L1-norm of Bt

p,j is known to be [8, Chapter IX,
eqns.(5) and (7)]∥∥Bt

p,j

∥∥
L1

:=

∫
R

∣∣Bt
p,j(x)

∣∣ dx =
tj − tj−p

p
. (6)

2.3. k-monotone B-splines

In this subsection, we characterize the class of k-monotone splines via B-spline
coefficients. Let

t := {0 = t0 < t1 < · · · < tKn = 1}
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be a given sequence of (Kn + 1) knots in [0, 1], and let gb,t : [0, 1] → R be

such that gb,t(x) =
∑Kn+k−1

j=1 bkB
t
k,j(x), where the bj ’s are real coefficients

of B-splines, b := (b1, . . . , bKn+k−1)
T is the spline coefficient vector, and the

subscript n in Kn corresponds to the number of design points to be used in the
subsequent sections.

To derive a necessary and sufficient condition for gb,t ∈ Sk, we introduce

some matrices. Let D̃(j) ∈ R
j×(j+1) denote the first order difference matrix, i.e.,

D̃(j) :=

⎡⎢⎢⎢⎢⎢⎢⎣

−1 1
−1 1

. . .
. . .

. . .
. . .

−1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
j×(j+1). (7)

If k = 1, let Dk,t := D̃(Kn−1). In what follows, consider k > 1. For the given
knot sequence t with the usual extension tj = 0 for any j < 0 and tj = 1 for

any j > Kn, define the following diagonal matrices: Δ̃0,t := IKn−1, and for each

p = 1, . . . , k, define each Δ̃p,t ∈ R
(Kn+p−1)×(Kn+p−1) as follows:

Δ̃p,t :=
1

p
diag

(
t1 − t1−p, t2 − t2−p, . . . , tKn+p−1 − tKn−1

)
. (8)

Furthermore, define the matrices Dp,t ∈ R
(Kn+k−1−p)×(Kn+k−1) inductively:

D0,t := IKn+k−1, and Dp,t := Δ̃−1
k−p,t · D̃(Kn+k−1−p) ·Dp−1,t, (9)

for each p = 1, . . . , k. To simplify notation, we often drop the subscript t and
write Dp,t as Dp when the context is clear. Roughly speaking, Dp,t denotes the
p th order difference matrix weighted by the knots of t. When the knots are
evenly spaced, it is almost identical to a standard difference matrix (except on

the boundary). Since Δ̃−1
k−p,t is invertible and D̃(Kn+k−1−p) has full row rank,

it can be shown via induction that Dp,t is of full row rank for any p and t.
In what follows, define N := Kn + k − 1 for a fixed spline order k ∈ N. Note

that N depends on Kn and thus on n.

Lemma 2.1. Fix k ∈ N. Let t = {0 = t0 < t1 < · · · < tKn = 1} be a sequence of

(Kn+1) knots, and for each p = 1, . . . , k, let {Bt
p,j}

Kn+p−1
j=1 denote the B-splines

of order p defined by t, with the usual extension. Then the following hold:

(1) For any given b ∈ R
N and p = 0, 1, . . . , k − 1, the pth derivative of

gb,t :=
∑N

j=1 bjB
t
k,j is

∑N−p
j=1

(
Dpb)jB

t
k−p,j , except at (at most) finitely

many points on [0, 1];
(2) gb,t ∈ Sk if and only if Dk b ≥ 0.

Proof. We write gb,t as g in the following proof for notational simplicity.
(1) We prove statement (1) by induction on p = 0, 1, . . . , k − 1. Clearly, the

statement holds for p = 0. Consider p with 1 ≤ p ≤ k − 1, and assume the
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statement holds for (p − 1). It follows from (5), the induction hypothesis, and

the definitions of Δ̃k−p,t and Dp that

g(p) =
(
g(p−1)

)′
=

⎛⎝N−p+1∑
j=1

(
Dp−1b

)
j
Bt

k−p+1,j

⎞⎠′

= (k − p)

N−p∑
j=1

(Dp−1b)j+1 − (Dp−1b)j
tj − tj−k+p

Bt
k−p,j

=

N−p∑
j=1

(
Δ̃−1

k−p,tD̃
(N−p)Dp−1b

)
j
Bt

k−p,j =

N−p∑
j=1

(
Dpb

)
j
Bt

k−p,j ,

whenever g(p) and g(p−1) exist. Hence, statement (1) holds for p.

(2) It is easy to see that g(k−1) exists on [0, 1] except at (at most) finitely
many points in [0, 1]. It thus follows from statement (1) that g(k−1) is a piecewise
constant function on [0, 1]. Therefore, g ∈ Sk if and only if the spline coefficients
of g(k−1) are increasing, i.e., (Dk−1b)j ≤ (Dk−1b)j+1 for each j = 1, . . . ,Kn−1.

This is equivalent to D̃(Kn−1)Dk−1b ≥ 0, which is further equivalent to Dkb ≥ 0,

in view of Δ̃0,t = I andDk = D̃(Kn−1)Dk−1. This gives rise to statement (2).

3. Two stage k-monotone B-spline estimator and the uniform
Lipschitz property

In this section, we present the two stage k-monotone B-spline estimator, study
the second stage k-monotone B-spline estimator, and state the uniform Lipschitz
property. This property is critical to the asymptotic performance analysis.

3.1. Two stage k-monotone B-spline estimator

The proposed k-monotone B-spline estimator consists of two stages: in the first
first stage, we choose any unconstrained estimator that converges to the true
function at the optimal rate over the Hölder class Hr

L in the minimax sense;
the second stage B-spline estimator is constructed roughly by projecting the
first stage estimator onto the cone of order k splines associated with Sk and a
suitable knot sequence. In what follows, we describe these two stages in detail.

3.1.1. First stage unconstrained estimator

Given a design point sequence P = (xi)
n
i=0 ∈ Pn, where cω,1, cω,2 are fixed

(cf. (3)), we choose the first stage estimator f̂
[1]
P to be any unconstrained es-

timator such that it converges to the true function at the optimal asymptotic
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rate uniformly over Hr
L for a given performance metric, independent of P ∈ Pn.

Specifically, when the sup-norm risk is considered, f̂
[1]
P achieves

sup
f∈Hr

L, P∈Pn

E

(∥∥f̂ [1]
P − f

∥∥
∞

)
�

(
logn

n

) r
2r+1

. (10)

Equivalently, there exists a positive constant c∗ such that f̂
[1]
P satisfies

sup
f∈Hr

L, P∈Pn

E

(∥∥f̂ [1]
P − f

∥∥
∞

)
≤ c∗

(
logn

n

) r
2r+1

, (11)

for all large n, where c∗ depends only on k, r, L, σ, cω,1, and cω,2.
Alternatively, when the pointwise p-risk or Lp-norm risk with p ∈ [1,∞) are

considered, the first stage estimator achieves

sup
f∈Hr

L, P∈Pn

[
E

( ∣∣∣f̂ [1]
P (x)− f(x)

∣∣∣p )] 1
p � n− r

2r+1 for any fixed x ∈ [0, 1], (12)

or equivalently, there exists a positive constant c′∗ such that for any fixed x ∈
[0, 1],

sup
f∈Hr

L, P∈Pn

[
E

( ∣∣∣f̂ [1]
P (x)− f(x)

∣∣∣p )] 1
p ≤ c′∗n

− r
2r+1 (13)

for all large n, where c′∗ depends only on p, k, r, L, σ, cω,1, and cω,2. The
asymptotic error bound on the second stage estimator Lp-norm risk, established
in Corollary 4.1, does not follow from an asymptotic error bound on the first
stage estimator Lp-norm risk. This is a result of the fact that the second stage
estimator depends on pointwise evaluations of the first stage estimator at each
of the design points (cf. (15) and (16)). Hence, we require (12) and (13) to hold
when the Lp-norm risk is the performance metric under consideration, rather
than analogous bounds on the first stage estimator Lp-norm risk.

It is known from nonparametric statistical theory [27, 39] that many (un-
constrained) estimators meet the above conditions. One example is the local

polynomial estimator of order (k − 1), with bandwidth hn �
(

logn
n

) 1
2r+1

for

the sup-norm risk (resp. hn � n− 1
2r+1 for the pointwise and Lp-norm (with

p ∈ [1,∞)) risks); see [39, Section 1.6]. Another example is the (unconstrained)
B-spline estimator. This gives rise to great flexibility in the construction of the
two stage k-monotone estimator.

3.1.2. Second stage k-monotone B-spline estimator

In this subsection, we describe how the first stage unconstrained estimator f̂
[1]
P

is utilized to produce the second stage k-monotone B-spline estimator.
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Given a sample data vector y = (y0, y1, . . . , yn)
T ∈ R

(n+1) corresponding to

the to the design point sequence P = (xi)
n
i=0 ∈ Pn, compute f̂

[1]
P . Let (Kn)

be a sequence of integers depending on the sample size n to be specified later
(cf. Theorems 4.1, 4.2, and Corollary 4.1). Additionally, fix constants ct,1 and
ct,2 with 0 < ct,1 ≤ 1 ≤ ct,2. For each Kn ∈ N, define the set of sequences of
(Kn+1) knots on [0, 1] with the usual extension on the left and right boundary:

TKn :=
{
(tj)

Kn
j=0

∣∣∣ 0 = t0 < t1 < · · · < tKn = 1, and (14)

ct,1
Kn

≤ tj − tj−1 ≤ ct,2
Kn

, ∀ j = 1, . . . ,Kn

}
.

Recall that N = Kn + k − 1. For a given knot sequence t := (tj)
Kn
j=0 ∈ TKn , let

{Bt
k,j}Nj=1 denote the set of order k B-splines associated with t and the usual ex-

tension, scaled such that
∑N

j=1 B
t
k,j(x) = 1 for all x ∈ [0, 1] (see Section 2.2 for a

relevant discussion of the properties of B-splines). The second stage constrained
B-spline estimator characterized by Sk is given by

f̂P,t(x) :=
N∑
j=1

b̂jB
t
k,j(x), (15)

where the coefficient vector b̂P,t := (̂b1, b̂2, . . . , b̂N )T ∈ R
N is determined by the

constrained least squares regression problem

b̂P,t := argmin
Dk,tb≥0

n∑
i=0

(
xi+1 − xi

)⎛⎝f̂
[1]
P (xi)−

N∑
j=1

bjB
t
k,j(xi)

⎞⎠2

, (16)

where in (16) xn+1 := 1, and the matrix Dk,t is defined in (9). It follows from

Lemma 2.1 that the constraint Dk,tb̂P,t ≥ 0 is equivalent to the k-monotonicity

of the spline f̂P,t ∈ Sk. Hence, the second stage B-spline estimator f̂P,t preserves
the k-monotone constraint characterized by Sk.

Algorithm 1 below summarizes the construction of the two stage k-monotone
B-spline estimator. Note that the second stage estimator f̂P,t can be computed
in polynomial time as a function of N � n by solving a strictly convex quadratic
program; see Section 3.2 for more details.

3.2. Characterization of the second stage k-monotone B-spline
estimator

In this subsection, we further characterize the second stage constrained B-spline
estimator f̂P,t introduced in (15). Toward this end, we summarize all of the
assumptions that will be used throughout the rest of the paper for a fixed k ∈ N

as follows:

(A.1) The design point sequence P = (xi)
n
i=0 lies in Pn, where Pn is defined by

the fixed constants cω,1, cω,2 satisfying 0 < cω,1 ≤ 1 ≤ cω,2 (cf. (3)).
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Algorithm 1 Two Stage k-monotone B-spline Estimator Construction
Stage 1:
Fix constants cω,1, cω,2 with 0 < cω,1 ≤ 1 ≤ cω,2.
Obtain sample data y = (y0, y1, . . . , yn)T associated with design point sequence P =
(xi)

n
i=0 ∈ Pn.

Compute the first stage unconstrained estimator f̂
[1]
P to satisfy (10) or (12).

Stage 2:
Fix constants ct,1, ct,2 with 0 < ct,1 ≤ 1 ≤ ct,2.
Choose a suitable sequence of integers (Kn) (cf. Theorems 4.1, 4.2, and Corollary 4.1).
Pick a knot sequence t ∈ TKn .

Compute the second stage k-monotone B-spline estimator f̂P,t via (15) and (16).

(A.2) The sample y = (yi)
n
i=0 is produced from the regression model (4), i.e.,

yi = f(xi)+σεi, ∀ i, where the true function f ∈ Sk,H(r, L) with constants
L > 0, r ∈ (k−1, k] and σ > 0; the εi’s are independent standard normal
errors.

(A.3) The knot sequence t = (tj)
Kn
j=0 for the second stage k-monotone B-spline

estimator lies in TKn , where TKn is defined by the fixed constants ct,1, ct,2
satisfying 0 < ct,1 ≤ 1 ≤ ct,2 (cf. (14)).

Consider the second stage estimator f̂P,t given by (15) and (16). Let f̂ and

b̂ denote f̂P,t and b̂P,t respectively, noting that f̂ and b̂ depend on P and t. It

follows from Lemma 2.1 that f̂ ∈ Sk.
Define the diagonal matrix

Θ := diag(x1 − x0, x2 − x1, . . . , xn+1 − xn) ∈ R
(n+1)×(n+1),

and the design matrix X̂ ∈ R(n+1)×N with (X̂)(i+1),j := Bt
k,j(xi) ∀ i, j. Further,

let ΛKn,P,t := Kn ·X̂TΘX̂ ∈ R
N×N , where we write Λ for ΛKn,P,t for notational

simplicity. Let

�f [1] :=
(
f̂

[1]
P (x0), f̂

[1]
P (x1), . . . , f̂

[1]
P (xn)

)T

∈ R
(n+1), (17)

where f̂
[1]
P is the first stage estimator (cf. Section 3.1.1); define the weighted

input vector y := Kn · X̂TΘ�f [1] ∈ RN . The quadratic optimization problem in
(16) for b̂P,t or simply b̂ can be written as

b̂ := argmin
Dkb≥0

1

2
bT Λ b− bTy. (18)

Note that Λ is positive definite for any given Kn, P , and t. Hence, problem
(18) (or equivalently (16)) is a strictly convex quadratic program, which can be
solved in polynomial time by many effective numerical solvers.

Define Λ ∈ R
N×N and y ∈ R

N such that

( Λ )ij = Kn〈Bt
k,i, B

t
k,j〉L2 and ( y )i = Kn〈Bt

k,i, f̂
[1]
P 〉L2
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for i, j = 1, . . . , N . We note that for n sufficiently large, Λ approximates Λ and
y approximates y. Hence, (18) is closely related to

b̂ := argmin
Dkb≥0

1

2
bT Λ b− bT y = argmin

Dkb≥0

∥∥∥f̂ [1]
P −

N∑
j=1

bjB
t
k,j

∥∥∥2
L2

. (19)

Because a spline g :=
∑N

j=1 bjB
t
k,j is k-monotone if and only if Dk,tb ≥ 0

(cf. Lemma 2.1), it follows that the estimator f̂P,t(x) :=
∑N

j=1 b̂jB
t
k,j(x), with

b̂j given by (19), is the L2-projection of the first stage estimator onto the cone
of k-monotone splines with knot sequence t. Hence, the second stage estimator
given by (15) and (16) roughly corresponds to the L2-projection of the first
stage estimator onto the cone of k-monotone splines with knot sequence t.

We call a function f : Rn → Rn piecewise linear if there are finitely many
linear functions {hs}rs=1 on R

n such that for any x ∈ R
n, f(x) = hs(x) for some

hs, where each linear function hs is called a linear piece of f . It is well known
that a (continuous) piecewise linear function is globally Lipschitz continuous

[33]. Note that b̂ in (18) can be treated as a function of the weighted input
vector y. In fact, since the matrix Λ is positive definite for any given Kn, P ,
and t, it follows from the standard theory of quadratic programming that the
function b̂ : RN → R

N from y to b̂(y) is piecewise linear and globally Lipschitz

continuous [33]. To establish the piecewise linear formulation of b̂ or equivalently

the linear pieces of b̂, we consider the KKT conditions for (18) given by:

Λ b̂(y)− y −DT
k χ = 0, 0 ≤ χ ⊥ Dk b̂(y) ≥ 0, (20)

where χ ∈ R
Kn−1 is the Lagrange multiplier, and u ⊥ v means that the vectors

u and v are orthogonal. Similar to [37, 38, 41], define the index set for any given
y ∈ R

N ,

α :=
{
i :

(
Dk b̂(y)

)
i
= 0

}
⊆ {1, . . . ,Kn − 1}, (21)

where αmay be the empty set. For each α associated with y, the KKT conditions
in (20) become

(Dk)α• b̂(y) = 0, χα = 0, Λ b̂(y)− y −
(
(Dk)α•

)T
χα = 0. (22)

For a given index set α, let FT
α ∈ R

N×(|α|+k) be a matrix whose columns
form a basis for the null space of (Dk,t)α• or simply (Dk)α•. This implies that
Fα depends on both α and t. In particular, if α is the empty set, then N =
Kn + k − 1 = |α| + k, and FT

α is the identity matrix of order N . To express

b̂(y) in terms of Fα for an arbitrary α, we deduce from (Dk)α• b̂(y) = 0 in (22)

that b̂(y) = FT
α b̃α, where b̃α is the vector of the free variables in the linear

equation (Dk)α•b̂(y) = 0. To determine b̃α, we substitute b̂(y) = FT
α b̃α into the
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rightmost equation of (22) and obtain that

ΛFT
α b̃α − y −

(
(Dk)α•

)T
χα = 0 =⇒ Fα ΛFT

α b̃α − Fαy = 0

=⇒ b̃α = (FαΛF
T
α )−1Fαy

=⇒ b̂(y) = FT
α b̃α = FT

α (FαΛF
T
α )−1Fαy,

where we use the fact that FαΛF
T
α is invertible, since Fα has full row rank and

Λ is positive definite.
For any index set α given in (21), define the linear function b̂α

P,t : R
N → R

N

as
b̂α
P,t(y) := FT

α

(
FαΛF

T
α

)−1
Fαy, (23)

where Fα depends on t, α, and Λ depends on Kn, P, t. Clearly, b̂
α
P,t is a lin-

ear piece of the piecewise linear function b̂ : R
N → R

N , and b̂ has 2Kn−1

linear pieces for a given Kn. Finally, observe that for any invertible matrix
R ∈ R

(|α|+k)×(|α|+k),

(RFα)
T((RFα)Λ(RFα)

T)−1(RFα) = FT
α (FαΛF

T
α )−1Fα.

Thus any choice of Fα leads to the same b̂αP,t, provided that the columns of FT
α

form a basis of the null space of (Dk)α•.

3.3. k-monotone B-spline estimator: Uniform Lipschitz property

As indicated in the previous subsection, the piecewise linear function b̂P,t(·) (or
simply b̂(·)) is Lipschitz continuous for fixed Kn, P, t. An important question

asks whether the Lipschitz constants of size-varying b̂ with respect to the �∞-
norm are uniformly bounded, independent of Kn, P , and t, as long as the
numbers of design points and knots are sufficiently large. If so, we say that b̂
satisfies the uniform Lipschitz property. Originally introduced and studied in
[37, 38, 40, 41] for monotone P-splines (k = 1) and convex B-splines (k = 2)
with equally spaced design points and knots, this property is shown to play a
crucial role in the uniform convergence and asymptotic analysis of k-monotone
B-spline estimators. In this paper, we establish this property for k-monotone B-
spline estimators with general k, under relaxed conditions on the design points
and knots.

For any p,Kn ∈ N, and t ∈ TKn , it is noted that for any tj ∈ t, we have,

tj − tj−p

p
=

1

p

j−p+1∑
s=j

(ts − ts−1) ≤ 1

p
· p · ct,2

Kn
≤ ct,2

Kn
.

Moreover, in view of tj−p = 0 for any j ≤ p and tj = 1 for any j ≥ Kn, it can

be shown that for each 1 ≤ j ≤ Kn + p − 1,
tj−tj−p

p ≥ ct,1/(p ·Kn) such that
p

tj−tj−p
≤ p ·Kn/ct,1. In summary, we have, for each j = 1, . . . ,Kn + p− 1,

ct,1
p ·Kn

≤ tj − tj−p

p
≤ ct,2

Kn
, and

Kn

ct,2
≤ p

tj − tj−p
≤ p ·Kn

ct,1
. (24)
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Using the above notation, the following theorem states one of the the main
results of the paper, i.e., the uniform Lipschitz property of b̂P,t(·). Since the
proof of this property is technical, we postpone it to Section 7 to maintain a
smooth paper flow.

Theorem 3.1. Let k ∈ N and constants cω,1, cω,2, ct,1, ct,2 be fixed, where
0 < cω,1 ≤ 1 ≤ cω,2 and 0 < ct,1 ≤ 1 ≤ ct,2. For any n,Kn ∈ N, let

b̂P,t : R
Kn+k−1 → R

Kn+k−1 be the piecewise linear function in (18) correspond-
ing to the kth order B-splines defined by the design point sequence P ∈ Pn and
the knot sequence t ∈ TKn . Then there exists a positive constant c∞, depending
on k, ct,1 only, such that for any increasing sequence (Kn) with Kn → ∞ and
Kn/n → 0 as n → ∞, there exists n∗ ∈ N, depending on (Kn) (and the fixed
constants k, cω,2, ct,1, ct,2) only, such that for any P ∈ Pn and t ∈ TKn with
n ≥ n∗, ∥∥ b̂P,t(u)− b̂P,t(v)

∥∥
∞ ≤ c∞

∥∥u− v
∥∥
∞, ∀ u, v ∈ R

Kn+k−1.

The above result can be refined for a particular sequence of P and t.

Corollary 3.1. Let (Kn) be an increasing sequence with Kn → ∞ and Kn/n →
0 as n → ∞, and

(
Pn, tn

)
be a sequence in Pn×TKn . Then there exists a positive

constant c′∞, independent of n, such that for each n,∥∥ b̂Pn,tn(u)− b̂Pn,tn(v)
∥∥
∞ ≤ c′∞

∥∥u− v
∥∥
∞, ∀ u, v ∈ R

Kn+k−1.

This corollary recovers the past results on the uniform Lipschitz property for
k = 1, 2 (e.g., [37, 41]) for equally spaced design points and knots.

4. Two stage k-monotone estimator risk and optimal convergence
rate

In this section, we exploit the uniform Lipschitz property to establish the sup-
norm, pointwise, and Lp-norm (with p ∈ [1,∞)) risks of the second stage k-
monotone B-spline estimator. In particular, we show that the second stage k-
monotone B-spline estimator achieves the same asymptotic convergence rate as
the first stage (unconstrained) estimator over Sk,H(r, L) under the sup-norm
risk, pointwise risk, and Lp-norm risk. This result leads to the optimal conver-

gence rate of the two stage k-monotone B-spline estimator f̂P,t over Sk,H(r, L)
in the sup-norm (cf. Theorem 4.4).

4.1. Second stage k-monotone B-spline estimator risks

To develop the risks of the second stage k-monotone B-spline estimator f̂P,t,
we first establish the following lemma, which concerns the approximation of
k-monotone functions f ∈ Sk,H(r, L) by k-monotone splines associated with a



k-monotone B-spline estimator 1403

given knot sequence. It will be used to bound the second stage estimator risks
in the subsequent development. For a given knot sequence t ∈ TKn , let

S
t
+,k :=

{
fB : [0, 1] → R

∣∣∣ fB is an order k B-spline with knots in t

and fB ∈ Sk

}
.

Recall that r ∈ (k − 1, k] for a fixed k ∈ N, and define q := min{r − k + 3, r}.
Lemma 4.1. Let the positive constant cB := 3

2Lc
3
t,2. Then for each Kn ∈ N,

t ∈ TKn , and f ∈ Sk,H(r, L), there exists an order k spline fB ∈ S
t
+,k satisfying

‖fB − f‖∞ ≤ cBK
−q
n .

Proof. Consider the following two cases:
Case 1: q = r. In this case, we have that r ≤ r − k + 3 so that k ≤ 3, i.e.,

k = 1, 2, or 3. It is known in [4, 9] that the lemma holds for k = 1, by taking
fB to be the piecewise constant least squares approximation or interpolant of f .
Similarly, when k = 2, the lemma holds, by taking fB to be the piecewise linear
interpolant of f at the knots in t [3, 4, 41]. Finally, when k = 3, it is shown
in [20] that the lemma holds for evenly spaced knots and in [30] that a similar
result holds (where cB is taken to be a slightly larger constant) for unevenly
spaced knots. An alternative construction of the k-monotone constrained fB is
given in [23, Appendix A], demonstrating that when k = 3, the lemma holds for
unevenly spaced knots with cB = 3

2Lc
3
t,2. Hence, the lemma holds in Case 1.

Case 2: q < r. In this case, we have that r > r−k+3 = q so that k > 3. Define
g := f (k−3) ∈ S3,H(r + 3− k, L). By the results of Case 1, there exists a spline
gB ∈ S

t
+,k such that ‖gB − g‖∞ ≤ cBK

−q
n . Define the function fB : [0, 1] → R

as

fB(x) :=
k−4∑
p=0

f (p)(0)

p!
xp +

∫ x

0

∫ t1

0

. . .

∫ tk−4

0

gB(tk−3) dtk−3 · · · dt2 dt1,

Then fB ∈ Sk,H(r, L) and

∣∣fB(x)− f(x)
∣∣ ≤

∫ x

0

∫ t1

0

· · ·
∫ tk−4

0

∣∣gB(tk−3)− g(tk−3)
∣∣ dtk−3 · · · dt2 dt1

≤
∫ x

0

∫ t1

0

· · ·
∫ tk−4

0

cBK
−q
n dtk−3 · · · dt2 dt1

≤ cB
(k − 3)!

K−q
n ≤ cBK

−q
n ,

for all x ∈ [0, 1], where, if k > 4, we define, for any integrable function h,∫ x

0

∫ t1

0

· · ·
∫ tk−4

0

h(tk−3) dtk−3 · · · dt2 dt1 :=

∫ x

0

h(t1) dt1.

Consequently, we have ‖fB − f‖∞ ≤ cBK
−q
n in either case.
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The above lemma establishes a uniform bound on the error that arises from
approximating a k-monotone function f ∈ Sk,H(r, L) by a k-monotone spline
for a fixed knot sequence. With the help of this result, we obtain the following
theorem, which bounds the risk and establishes a convergence rate for the second
stage k-monotone B-spline estimator under the sup-norm over this Hölder class.

Theorem 4.1. Let Kn :=

⌈(
n

logn

) r
q(2r+1)

⌉
. Let f̂

[1]
P denote any suitable first

stage estimator as described in Section 3.1.1 (cf. (11)). Then there exists a
constant Ck > 0, depending only on k, r, L, ct,1, ct,2, cω,1, cω,2, and σ such
that for all n sufficiently large,

sup
f∈Sk,H(r,L), P∈Pn, t∈TKn

E

(
‖f̂P,t − f‖∞

)
≤ Ck

(
logn

n

) r
2r+1

.

Proof. Fix f ∈ Sk,H(r, L). For notational simplicity, let f̂ and f̂ [1] denote f̂P,t

and f̂
[1]
P respectively for any given P ∈ Pn and t ∈ TKn . By Lemma 4.1, for each

Kn ∈ N and t ∈ TKn , there exists fB ∈ S
t
+,k such that ‖f − fB‖∞ ≤ cBK

−q
n ≤

cB

(
logn
n

) r
2r+1

. Hence,

‖f̂ − f‖∞ ≤ ‖f̂ − fB‖∞ + ‖fB − f‖∞ ≤ ‖f̂ − fB‖∞ + cB

(
logn

n

) r
2r+1

, (25)

and we bound ‖f̂−fB‖∞ as follows. In view of fB ∈ S
t
+,k and Lemma 2.1, there

exists b̃ := (̃b1, . . . , b̃N )T ∈ R
N such that

fB(x) =

N∑
j=1

b̃jB
t
k,j(x) and Dk,t b̃ ≥ 0.

Define �fB := (fB(x0), fB(x1), . . . , fB(xn))
T ∈ R

(n+1). In light of the results in
Section 3, we have

1

2

∥∥K1/2
n Θ1/2(X̂b̃− �fB)

∥∥2
2
= 0,

and therefore,

b̃ = argmin
Dk,tb≥0

1

2
bTΛb− bT (KnX̂

TΘ�fB).

By the uniform Lipschitz property stated in Theorem 3.1, there exist a uniform
positive constant c∞ and a large n∗ ∈ N such that for all n ≥ n∗,∥∥∥ f̂ − fB

∥∥∥
∞

≤
∥∥∥ b̂P,t − b̃

∥∥∥
∞

≤ c∞

∥∥∥KnX̂
TΘ

(
�f [1] − �fB

)∥∥∥
∞

≤ c∞
∥∥KnX̂

TΘ
∥∥
∞ ·

∥∥∥f̂ [1] − fB

∥∥∥
∞

≤ c∞
∥∥KnX̂

TΘ
∥∥
∞ ·

(
‖f̂ [1] − f‖∞ + ‖f − fB‖∞

)
≤ c∞

∥∥KnX̂
TΘ

∥∥
∞ ·

(
‖f̂ [1] − f‖∞ + cB

( logn
n

) r
2r+1

)
, (26)
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where �f [1] is defined in (17). Additionally, it follows from the definition of X̂T

and the non-negativity, upper bound, and support of the Bt
k,j ’s shown in Sec-

tion 2.2 that for each j = 1, . . . , N ,

∥∥∥(Kn X̂
T Θ)j•

∥∥∥
∞

= Kn

n∑
i=0

Bt
k,j(xi) · (xi+1 − xi)

≤ Kn

n∑
i=0

I[tj−k, tj ](xi) · (xi+1 − xi)

≤ Kn

(
tj − tj−k +

2cω,2

n

)
≤ k · ct,2 +

2cω,2Kn

n

≤ ct,2(k + 1), (27)

whenever n is sufficiently large such that (2cω,2Kn/n) ≤ ct,2. Combining (25)–
(27), we obtain

‖f̂ − f‖∞ ≤ c∞ct,2(k + 1) ·
∥∥f − f̂ [1]

∥∥
∞ + cB

(
c∞ct,2(k + 1) + 1

)( logn

n

) r
2r+1

.

In view of (11) and taking the expectation of both sides of the above inequality,
we have

E

(
‖f̂ − f‖∞

)
≤

[
(cB + c∗) c∞ ct,2(k + 1) + cB

]( logn

n

) r
2r+1

for all n sufficiently large. This yields the desired result with Ck := (cB +
c∗) c∞ ct,2(k + 1) + cB.

The above theorem establishes the uniform convergence of the estimator f̂P,t

on the entire interval [0, 1], as well as this estimator’s consistency, including
the consistency at the two boundary points, over a Hölder class. Note that the
monotone and convex least-squares estimators are inconsistent at the boundary
points due to a non-negligible asymptotic bias [17, 28, 29, 42], which is known as
the spiking problem. Furthermore, the asymptotic convergence rate established
in Theorem 4.1 will be shown to be optimal in Section 4.2.

An analogous result can be established under the pointwise risk by using the
uniform Lipschitz property and piecewise linear function theory [33].

Theorem 4.2. Let Kn :=
⌈
n

r
q(2r+1)

⌉
and p ∈ [1,∞). For any x∗ ∈ [0, 1], let f̂

[1]
P

denote any suitable first stage estimator as described in Section 3.1.1 (cf. (13)).
Then there exists a positive constant Cp,k, depending only on p, k, r, L, ct,1,
ct,2, cω,1, cω,2, and σ, such that for all n sufficiently large,

sup
f∈Sk,H(r,L), P∈Pn, t∈TKn

[
E

(∣∣∣ f̂P,t(x∗)− f(x∗)
∣∣∣p)] 1

p ≤ Cp,k n
− r

2r+1 .
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Proof. Fix arbitrary f ∈ Sk,H(r, L) and x∗ ∈ [0, 1]. For any P ∈ Pn and t ∈ TKn ,

we again let f̂ and f̂ [1] denote f̂P,t and f̂
[1]
P , respectively. By an argument

similar to that in the proof of Theorem 4.1, there exists fB ∈ S
t
+,k such that

‖f − fB‖∞ ≤ cBK
−q
n , where fB(x) =

∑N
j=1 b̃jB

t
k,j(x) for all x ∈ [0, 1] for some

b̃ := (̃b1, . . . , b̃N )T ∈ R
N satisfying Dk,tb̃ ≥ 0. Note that for p ∈ [1,∞),∣∣f̂(x∗)− f(x∗)

∣∣p ≤
(
|f̂(x∗)− fB(x∗)|+ |fB(x∗)− f(x∗)|

)p

≤
[
max

(
2 |f̂(x∗)− fB(x∗)|, 2 |fB(x∗)− f(x∗)|

)]p
≤ 2p

∣∣f̂(x∗)− fB(x∗)
∣∣p + 2p

∣∣fB(x∗)− f(x∗)
∣∣p (28)

≤ 2p|f̂(x∗)− fB(x∗)|p + 2p cpB n− pr
2r+1 .

In what follows, we establish a uniform bound on
∣∣f̂(x∗)− fB(x∗)

∣∣p.
Define �fB := (fB(x0), fB(x1), . . . , fB(xn))

T ∈ R
(n+1). As in the proof of

Theorem 4.1, we have

b̃ = argmin
Dk,tb≥0

1

2
bTΛb− bT (KnX̂

TΘ�fB).

Now, define h :=
(
Bt

k,1(x∗), B
t
k,2(x∗), · · · · · · , Bt

k,N (x∗)
)T

∈ R
N , and for any

given P and t, let Wα := FT
α

(
FαΛFT

α )−1Fα for any index set α defined in

(21). Since b̂P,t(·) : RN → R
N is a Lipschitz piecewise linear function on R

N ,

it follows from piecewise linear function theory [33] that b̂P,t(·) admits a conic
subdivision of RN , which consists of qN polyhedral cones that partition RN . On
the sth polyhedral cone where s = 1, . . . , qN , the function b̂P,t(·) coincides with
a linear function whose coefficient matrix is given by Wαs for some index set αs

defined in (21). By an argument similar to that in [41, Proposition 4.3], we see
that for any z, z′ ∈ R

N , there exist real numbers μ1, . . . , μqN ∈ [0, 1] (depending
on z and z′) whose sum is one such that

b̂P,t(z
′)− b̂P,t(z) =

(
qN∑
s=1

μsWαs

)
(z′ − z).

Note that b̂ = b̂P,t(KnX̂
TΘ�f [1]) and b̃ = b̂P,t(KnX̂

TΘ�fB). Thus for fixed �f [1]

and �fB , there exist μ1, . . . , μqN ∈ [0, 1], whose sum is one, such that∣∣f̂(x∗)− fB(x∗)
∣∣p =

∣∣hT (̂b− b̃)
∣∣p

=
∣∣∣hT

(
b̂P,t(KnX̂

TΘ�f [1])− b̂P,t(KnX̂
TΘ�fB)

)∣∣∣p
=
∣∣∣hT

( qN∑
s=1

μsWαs

)
(KnX̂

TΘ)(�f [1] − �fB)
∣∣∣p (29)

≤ 2p
∣∣∣hT

( qN∑
s=1

μsWαs

)
(KnX̂

TΘ)(�f [1] − �f)
∣∣∣p



k-monotone B-spline estimator 1407

+ 2p
∣∣∣hT

( qN∑
s=1

μsWαs

)
(KnX̂

TΘ)(�f − �fB)
∣∣∣p,

where the inequality follows from an argument similar to that in (28), and
�f := (f(x0), f(x1), . . . , f(xn))

T ∈ R
n+1 denotes the noiseless data vector. Fur-

thermore, by (27), we have, for all n sufficiently large,∥∥KnΘX̂
∥∥
1
= max

j=1,...,N

∥∥(KnΘX̂)•j
∥∥
1
= max

j=1,...,N

∥∥(KnX̂
TΘ)j•

∥∥
∞ ≤ ct,2(k + 1).

Now, the uniform Lipschitz property (cf. Theorem 3.1) implies ‖Wαs‖∞ ≤ c∞
for any αs. Therefore, in view of ‖h‖1 = 1 and the symmetry of Wαs , we
have, for all n sufficiently large and any fixed qN -tuple (μ1, . . . , μqN ) satisfying
μs ∈ [0, 1], ∀ s = 1, . . . , qN and

∑qN
s=1 μs = 1,

∥∥∥KnΘX̂
( qN∑

s=1

μsWαs

)
h
∥∥∥
1
≤

∥∥∥KnΘX̂
∥∥∥
1
·
(

qN∑
s=1

μs‖Wαs‖∞

)
·
∥∥h∥∥

1

≤ ct,2(k + 1)c∞. (30)

To simplify notation, define the random vectors v := KnΘX̂
(∑qN

s=1 μsWαs

)
h ∈

Rn+1 and u := �f [1] − �f ∈ R(n+1). By (30) and the bound on ‖f − fB‖∞,

E

[ ∣∣∣vT (�f − �fB
)∣∣∣p ] ≤ E

[ ∣∣∣‖v‖1 · ‖�f − �fB‖∞
∣∣∣p ] ≤ E

[
‖v‖p1

]
· ‖f − fB‖p∞

≤
[
ct,2(k + 1)c∞

]p
cpB n− pr

2r+1 .

By (13), (30), Jensen’s inequality, the law of total expectation, we obtain

E

[∣∣vTu∣∣p] ≤ E

[ ∣∣∣∣∣
n+1∑
i=1

|vi| · |ui|
∣∣∣∣∣
p ]

≤ E

[
‖v‖p1 ·

n+1∑
i=1

|vi|
‖v‖1

|ui|p
]

≤
[
ct,2(k + 1)c∞

]p · E[E[n+1∑
i=1

|vi|
‖v‖1

|ui|p
∣∣∣ v]] (31)

≤
[
ct,2(k + 1)c∞

]p
(c′∗)

p n− pr
2r+1 ,

noting that the positive constant c′∗ given in (13) is independent of x ∈ [0, 1].
Combining the above results and (29), we obtain

E

(∣∣∣f̂(x∗)− fB(x∗)
∣∣∣p) ≤ 2p

[
ct,2(k + 1)c∞

]p
((c′∗)

p + cpB)n
− pr

2r+1 .

It then follows from the above display and (28) that for all n sufficiently large,[
E(|f̂(x∗)− f(x∗)|p)

] 1
p ≤ Cp,k n

− r
2r+1 ,

where Cp,k := 2
[[
ct,2(k + 1)c∞

]p
((c′∗)

p + cpB) + cpB

] 1
p

.
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We finally bound the Lp-norm risk of the second stage k-monotone B-spline
estimator, over a Hölder class, in the following corollary.

Corollary 4.1. Let Kn :=
⌈
n

r
q(2r+1)

⌉
and p ∈ [1,∞). Let f̂

[1]
P denote any

suitable first stage estimator as described in Section 3.1.1 (cf. (13)). Then there
exists a positive constant Cp,k, depending only on k, r, L, ct,1, ct,2, cω,1, cω,2,
σ, and p, such that for all n sufficiently large,

sup
f∈Sk,H(r,L), P∈Pn, t∈TKn

E

(
‖ f̂P,t − f ‖Lp

)
≤ Cp,k n

− r
2r+1 .

Proof. By the concavity of the function p
√· and the Fubini-Tonelli Theorem,

E

(
‖ f̂P,t − f ‖Lp

)
= E

[( ∫ 1

0

|f̂P,t(x)− f(x)|p dx
) 1

p
]

≤
[
E

(∫ 1

0

|f̂P,t(x)− f(x)|p dx
)] 1

p

=
[ ∫ 1

0

E(|f̂P,t(x)− f(x)|p) dx
] 1

p ≤ Cp,k n
− r

2r+1 .

The last inequality follows from Theorem 4.2, as Cp,k in Theorem 4.2 does not
depend on x∗ ∈ [0, 1].

4.2. Optimal convergence rate in the sup-norm

In this subsection, we show that the attained convergence rate indicates the
optimal asymptotic performance in the sup-norm. Consider the k-monotone
regression problem given by (4). For simplicity, we assume that for each n ∈
N, the design points (xi)

n
i=0 are evenly spaced, i.e., xi = i/n, although this

assumption is not crucial and can be relaxed. In what follows, we denote an
estimator as f̂n to emphasize the dependence on the sample size n.

Theorem 4.3 below establishes a lower bound under the sup-norm on the min-
imax risk associated with k-monotone estimators over Sk,H(r, L). Its proof relies
on minimax lower bound theory from nonparametric estimation [39, Section 2]
and a careful construction of a suitable collection of functions (called hypothe-
ses) that satisfy the k-monotone constraint. In particular, such a collection of
hypothesis functions from Sk,H(r, L) satisfies a certain sup-norm separation or-
der and a small total L2-distance order, based upon information theoretical
results on distances between probability measures in minimax lower bound the-
ory [27, 39]. See [23, Chapter V] for the construction and complete proof; a
simpler proof using a similar idea for convex estimation is given in [24].

Theorem 4.3. Fix k ∈ N and r ∈ (k−1, k]. Consider the constrained regression
problem (4). There exists a positive constant ck such that

lim inf
n→∞

inf
f̂n

sup
f∈Sk,H(r,L)

(
n

log n

) r
2r+1

· E
(
‖f̂n − f‖∞

)
≥ ck,
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where inf f̂n denotes the infimum over all k-monotone estimators f̂n ∈ Sk on the

interval [0, 1].

It follows from Theorems 4.1 and 4.3 that the two stage k-monotone B-spline
estimator f̂P,t satisfies: for all n sufficiently large,

ck

( log n
n

) r
2r+1 ≤ inf

f̂n

sup
f∈Sk,H(r,L)

E
(
‖f̂n − f‖∞

)
≤ sup

f∈Sk,H(r,L)

E
(
‖f̂P,t − f‖∞

)
≤ Ck

( logn
n

) r
2r+1

.

In light of the above result, we obtain the following theorem demonstrating
that f̂P,t is an (asymptotically) optimally performing estimator over the con-
strained function class Sk,H(r, L), and the optimal rate of convergence is given

by
(

logn
n

) r
2r+1

. This result not only unifies the optimal minimax risk theory for

monotone and convex estimation in the sup-norm, but also extends such de-
velopments to the general k-monotone case with unevenly spaced design points
and/or knots, which is the first result of its kind to the best of our knowledge.

Theorem 4.4. Fix k ∈ N, r ∈ (k − 1, k], and L > 0. Consider the regression
problem given by (4). Then

inf
f̂n

sup
f∈Sk,H(r,L)

E
(
‖f̂n − f‖∞

)
�

( logn
n

) r
2r+1

,

where inf f̂n denotes the infimum over all k-monotone estimators f̂n ∈ Sk on the

interval [0, 1].

5. Numerical examples

In this section, two numerical examples are presented, in order to illustrate the
performance of the second stage k-monotone B-spline estimator under the sup-
norm risk, the pointwise root mean squared error, and the L2-norm risk. In both
examples, the first stage unconstrained estimator is given by a minimax optimal
unconstrained B-spline estimator, with evenly spaced knots; the second stage
k-monotone/constrained B-spline estimator utilizes evenly spaced knots as well.
For performance comparision, the k-monotone least squares estimator is also
computed. The design points are taken to be evenly spaced in both examples.
The sample data vector y is generated via the model in (4). In Example 1, we
consider the 3-monotone function f ∈ S3,H(3, 54) given by f(t) := 9min((t −
1/3), 0)3 with k = r = 3 and L = 54 and take σ = 0.1. In Example 2, we consider
the 4-monotone function f(t) := et+16(max(0, t−1/2))4 ∈ S4,H(4, 384+e) with
k = r = 4 and L = 384+ e, and take σ = 1. The number of subintervals for the

second stage constrained B-spline estimator is given by Kn := �2
(

n
logn

) 1
2q+1 �,

when analyzing the sup-norm risk, and Kn := �2n 1
2q+1 �, when analyzing the
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Fig 1. When n = 100, left column: estimator performance for 3-monotone (top) and 4-
monotone (bottom) functions; right column: the corresponding absolute error.

pointwise root mean squared error and the L2-norm risk, with q = min(r− k+
3, r) = 3 (cf. Section 4.1) in both cases.

Plots of the second stage k-monotone/constrained B-spline estimator, the
unconstrained first stage estimator, and the k-monotone least squares estimator
are given on the left in Figure 1 for Example 1 and Example 2, with n = 100.
The corresponding absolute errors for these three estimators are then plotted
on the right in the same figure. To further compare the performance of the
three estimators, simulations were run 200 times, and the average performance
of each estimator over these simulations was recorded in each case. Three per-
formance metrics were considered, i.e., the sup-norm risk, the pointwise root
mean squared error (at x = 0), and the L2-norm risk. Table 1 summarizes the

performance of the estimators for different sample sizes, where f̂ denotes the
computed estimator. It is seen in these examples, the second stage constrained
estimator either performs approximately the same as or noticeably outperforms
the other two estimators. In particular, the second stage estimator outperforms
the other two estimators with respect to the sup-norm risk (in all cases). It is
also observed that the k-monotone least squares estimator performs poorly with
respect to both the sup-norm risk and the root mean squared error at x = 0.
This is expected, as least squares constrained estimators are inconsistent on the
boundary [17, 42].

6. Conclusions

This paper establishes a critical uniform Lipschitz property for a two stage
k-monotone B-spline estimator with possibly unevenly spaced design points
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Table 1

Performance of the 2nd Stage Estimator (con.), the 1st Stage Estimator (unc.), and the
k-Monotone Least Squares Estimator (LSQR)

E

[
‖f − f̂‖∞

] √
E

[
(f(0)− f̂(0))2

]
E

[
‖f − f̂‖L2

]
n con. unc. LSQR con. unc. LSQR con. unc. LSQR

Example 1 Example 1 Example 1
102 0.0548 0.0607 0.0915 0.0488 0.0481 0.0757 0.0100 0.0101 0.0101
103 0.0192 0.0223 0.0838 0.0185 0.0188 0.0779 0.0033 0.0033 0.0033
104 0.0076 0.0083 0.0856 0.0071 0.0072 0.0737 0.0010 0.0010 0.0010

Example 2 Example 2 Example 2
102 0.5217 0.6325 1.0524 0.3805 0.5525 0.8695 0.1006 0.1009 0.1002
103 0.1858 0.2380 1.0207 0.1192 0.2155 0.8710 0.0327 0.0327 0.0327
104 0.0736 0.0849 1.0307 0.0485 0.0759 0.8206 0.0100 0.0100 0.0100

and/or knots. This property is exploited, in combination with statistical tech-
niques and B-spline approximation theory, to study the asymptotic performance
of the two stage k-monotone B-spline estimator under the sup-norm, pointwise,
and Lp-norm (with p ∈ [1,∞)) risks. The optimal convergence rate under the
sup-norm risk is established. Future research topics include estimation under
more general constraints, e.g., multiple derivative constraints or constraints on
a linear combination of derivatives of different orders. Additional extensions to
Sobolev classes and multivariate regression will also be considered.

7. Appendix: Proof of the uniform Lipschitz property

In this section, we prove the uniform Lipschitz property stated in Theorem 3.1.

7.1. Overview of the proof

The proof of Theorem 3.1 is somewhat technical. To facilitate the reading, we
outline its key ideas and provide a road map of the proof as follows. In view of
the piecewise linear formulation of b̂P,t(·) in (23), we see that for any given Kn,

P , and t, the Lipschitz constant of b̂P,t(·) with respect to the �∞-norm is

max
α

∥∥FT
α

(
FαΛF

T
α

)−1
Fα

∥∥
∞,

where maxα denotes the maximum over all the index sets α defined in (21).

Therefore it suffices to establish a uniform bound on ‖FT
α

(
FαΛFT

α

)−1
Fα‖∞ for

all large n, independent of Kn, α, P ∈ Pn, and t ∈ TKn . Motivated by [41], we
observe that for any diagonal matrix Ξ′

α (possibly depending on α) with positive
diagonal entries,∥∥FT

α

(
FαΛF

T
α

)−1
Fα

∥∥
∞ ≤ ‖FT

α ‖∞ ·
∥∥(Ξ′

αFαΛF
T
α

)−1∥∥
∞ · ‖Ξ′

αFα‖∞. (32)

Hence, a natural idea is to choose suitable matrices Fα and Ξ′
α so that the quan-

tities ‖FT
α ‖∞,

∥∥(Ξ′
αFαΛFT

α

)−1∥∥
∞, and ‖Ξ′

αFα‖∞ are all uniformly bounded.
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A critical technique for establishing a uniform bound on
∥∥(Ξ′

αFαΛF
T
α

)−1∥∥
∞

relies on a deep result in B-spline theory (dubbed de Boor’s conjecture) proved
by Shardin [34]. Roughly speaking, this result says that the �∞-norm of the
inverse of the Gramian of the normalized B-splines of order k is uniformly
bounded, independent of the knot sequence and the number of B-splines.

Theorem 7.1. [34, Theorem I] Fix a spline order k ∈ N. Let a, b ∈ R with
a < b, and {Bt′

k,j}K+k−1
j=1 be the kth order B-splines on [a, b] defined by a knot

sequence t′ := {a = t′0 < t′1 < · · · < t′K = b} for some K ∈ N. Let G ∈
R

(K+k−1)×(K+k−1) be the Gramian matrix given by

(
G
)
ij

:=

〈
Bt′

k,i, Bt′

k,j

〉
∥∥Bt′

k,i

∥∥
L1

, ∀ i, j = 1, . . . ,K + k − 1.

Then there exists a positive constant ρk, independent of a, b, t′, and K, such
that ‖G−1‖∞ ≤ ρk.

Inspired by this theorem, we intend to approximate Ξ′
αFαΛF

T
α by an appro-

priate B-spline Gramian matrix with a uniform approximation error bound. To
achieve this goal, we construct suitable matrices Fα and Ξ′

α in Section 7.2; see
Fα := Fα,k,t defined in (39) and Ξ′

α := k
Kn

· Ξk,Vα,t defined in (37). In view

of FαΛF
T
α = Kn ·

(
FαX̂

T
)
· Θ ·

(
FαX̂

T
)T

, we compute the entries of FαX̂
T in

Section 7.3 and show that they are related to suitable B-splines (cf. Proposi-
tion 7.2). It is shown in Section 7.4 that FT

α and Ξ′
αFα attain uniform bounds

(cf. Proposition 7.4) and that Ξ′
αFαΛF

T
α attains a uniform approximation er-

ror bound (cf. Proposition 7.5), all with respect to the �∞-norm. We then apply

Theorem 7.1 to establish a uniform bound on
(
Ξ′
αFαΛF

T
α

)−1
(cf. Corollary 7.1).

Using these bounds, the uniform Lipschitz property is proven in Section 7.5.

7.2. Construction of the matrix Fα

In this subsection, we construct a suitable matrix Fα used for the piecewise
linear formulation of b̂P,t in (23). For Kn ∈ N, let t ∈ TKn be a knot sequence
of (Kn+1) knots, and α ⊆ {1, . . . ,Kn− 1} be an index set defined in (21). The
complement of α is α = {i1, . . . , i|α|} with 1 ≤ i1 < · · · < i|α| ≤ Kn − 1. For
notational simplicity, define qα := |α|+ k.

We introduce the following matrix which is of full row rank:

Fα,0,t := (IN )(α ∪ {Kn,Kn+1,...,N}) • ∈ R
qα×N , (33)

where we recall N = Kn + k − 1. For the given index set α, define the knots

τα,t,j :=

⎧⎪⎨⎪⎩
0, for j = 1− k, . . . , 0

tij , for j = 1, . . . , |α|
1, for j = |α|+ 1, . . . , qα,

(34)

and the associated knot sequence
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Vα,t :=
{
τα,t,0, τα,t,1, . . . . . . , τα,t,|α|+1

}
, (35)

with the usual extension. To simplify notation, we write τα,t,j and Vα,t as τj
and V respectively if the context is clear. Note that if α is empty, then α =
{1, . . . ,Kn − 1}, Fα,0,t = IN , and V = t.

For any fixed K ∈ N and any knot sequence t′ := (t′j)
K
j=0 on [0, 1] with

(K + 1) distinct knots and the usual extension, consider the diagonal matrices
of order (K + k − 1): Δ0,t′ := IK+k−1 and for each p = 1, . . . , k,

Δp,t′ :=

[
p · Δ̃p,t′ 0

0 Ik−p

]
= diag

(
(t′1 − t′1−p), (t

′
2 − t′2−p), . . . , (t

′
K+p−1 − t′K−1), 1, . . . , 1︸ ︷︷ ︸

(k−p)−copies

)
, (36)

where Δ̃p,t′ is defined in (8). Related to these, we further introduce the following

matrices of order (K + k − 1): for p = 0, let Ξ0,t′ := (Δ0,t′)
−1

= IK+k−1, and
for each p = 1, . . . , k,

Ξp,t′ :=
(
Δp,t′

)−1

= diag
(
(t′1 − t′1−p)

−1, (t′2 − t′2−p)
−1, . . . , (t′K+p−1 − t′K−1)

−1, 1, . . . , 1︸ ︷︷ ︸
(k−p)−copies

)
.

(37)

In addition, define the following square matrices of order r ∈ N:

Ŝ(r) :=

⎡⎢⎢⎢⎣
1
1 1
...

...
. . .

1 1 . . . 1

⎤⎥⎥⎥⎦ , and D̂(r) :=
(
Ŝ(r)

)−1
=

⎡⎢⎢⎢⎣
1
−1 1

. . .
. . .

−1 1

⎤⎥⎥⎥⎦ . (38)

Note that Ŝ(r) acts as a summation operator, while D̂(r) is similar to a difference
matrix.

With the above notation, we now define Fα,p,t inductively: Fα,0,t is as defined
in (33), and

Fα,p,t := D̂(qα) ·Ξp−1,Vα,t ·Fα,p−1,t ·Δp−1,t ·Ŝ(N) ∈ R
qα×N , p = 1, . . . , k. (39)

For notational simplicity, we also write Fα,p,t as Fα,p for each p = 0, 1, . . . , k.
Note that Fα,p depends on both α and t for p ≥ 1, since Ξp−1,V := Ξp−1,Vα,t

depends on both α and t, and Δp−1,t depends on t. Additionally, since D̂(qα),

Ξp−1,V , Δp−1,t, and Ŝ(N) are all invertible, each Fα,p has full row rank by
induction. Furthermore, it is easy to see that if α is the empty set, then, in view
of Fα,0 = IN and using induction, Fα,p = IN for each p = 1, . . . , k, regardless of
the choice of t.
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For any K ∈ N and any knot sequence t′ := (t′j)
K
j=0 with (K + 1) knots, we

also define the following matrices inductively:

S0,t′ := IK+k−1, and Sp,t′ := Δk−p,t′ · Ŝ(K+k−1) · Sp−1,t′ , p = 1, . . . , k.
(40)

A useful observation is that Fα,k,t can be expressed in terms of Sk,t. In fact, it
is easy to verify that Fα,k,t = Q ·Fα,0,t ·Sk,t for a suitable matrix Q. It is shown
below that Fα,k,t (or simply Fα,k) constructed above is a suitable choice for Fα

in the piecewise linear formulation of the function b̂P,t in (23).

Proposition 7.1. Fix t ∈ TKn , and let α be any index set defined in (21).
If α is nonempty, then the columns of FT

α,k,t form a basis of the null space of

(Dk,t)α•; otherwise, F
T
α,k,t = IN .

Proof. When α is the empty set, it has been shown that FT
α,k,t = IN ; see the

discussion below (39). Therefore, in what follows, consider the case when α is

nonempty. To simplify notation, we drop the subscript t in Δ̃p,t, Dp,t, Δp,t, and

Sp,t for p = 0, 1, . . . , k; see (8), (9), (36), and (40) for the definitions of Δ̃p,t,
Dp,t, Δp,t, and Sp,t respectively.

We first show via induction on p that there exists a constant cp,k ∈ R, de-
pending only on p and k, such that

Dp · ST
p = cp,k

[
IN−p 0(N−p)×p

]
, ∀ p = 0, 1, . . . , k. (41)

Clearly, this result holds for p = 0 with c0,k = 1. Given p ≥ 1, and assuming that
(41) holds for (p− 1), it follows from (7)-(9), (36), (38), (40), and the induction
hypothesis that

Dp · ST
p =

(
Δ̃−1

k−p D̃
(N−p) Dp−1

)
·
(
ST
p−1 (Ŝ

(N))T Δk−p

)
= cp−1,k Δ̃

−1
k−p D̃

(N−p)
[
IN−(p−1) 0(N−(p−1))×(p−1)

] (
Ŝ(N)

)T
Δk−p

= cp−1,k Δ̃
−1
k−p D̃

(N−p)
[(
Ŝ(N−(p−1))

)T
1(N−(p−1))×(p−1)

]
Δk−p

= −cp−1,k Δ̃
−1
k−p

[
IN−p 0(N−p)×p

]
Δk−p

= cp,k Δ̃
−1
k−p

[
Δ̃k−p 0(N−p)×p

]
= cp,k

[
IN−p 0(N−p)×p

]
,

where cp,k := −(k − p)cp−1,k for p = 1, . . . , k − 1, and ck,k := −ck−1,k. This
gives us (41).

Recalling that N = Kn + k − 1, it is easy to see via (9) and (33), that

(D0)α• · FT
α,0 = (IN )α•(IN )•(α ∪ {Kn,Kn+1,...,N}) = 0 ∈ R

|α|×qα .

Moreover, it follows from the discussions below (40) that Fα,k = Q ·Fα,0 ·Sk for
a suitable matrix Q. Combining the above results, we have
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(Dk)α• · FT
α,k =

((
IKn−1

)
α• Dk

)
·
(
QFα,0 Sk

)T

=
(
IKn−1

)
α• ·Dk · ST

k · FT
α,0 ·QT

= ck,k
(
IKn−1

)
α•
[
IKn−1 0(Kn−1)×k

]
FT
α,0 ·QT

= ck,k
(
IN

)
α• · F

T
α,0 ·QT = ck,k

(
D0

)
α• · F

T
α,0 ·QT

= 0.

Since Fα,k has full row rank, the qα columns of FT
α,k are linearly independent.

Additionally, since Dk is of full row rank, as indicated after (9), so is (Dk)α•.
Therefore, rank[(Dk)α•] = |α| and the null space of (Dk)α• has dimension (Kn+
k − 1 − |α|), which is equal to qα in light of |α| + |α| = Kn − 1. Therefore the
columns of FT

α,k form a basis for the null space of (Dk)α•.

The above proposition shows that for any knot sequent t ∈ TKn and any
index set α, the matrix Fα,k,t defined in (39) is a suitable choice for Fα that

determines the linear piece b̂αP,t associated with α shown in (23). Hence we
conclude this subsection by setting

Fα := Fα,k = Fα,k,t. (42)

7.3. Properties of the matrix FαX̂
T

As discussed in Section 7.1, the proof of the uniform Lipschitz property boils
down to establishing certain uniform bounds in the �∞-norm, including bounds

for ‖
(
Ξ′
αFαΛF

T
α

)−1‖∞, where Ξ′
α is a diagonal matrix with positive diagonal

entries to be specified later. Recall that Λ := ΛKn,P,t = Kn · X̂TΘX̂ ∈ R
N×N

for a design point sequence P and a knot sequence t ∈ TKn ; see the definition

above (18). Note that the design matrix X̂ depends on P and t, and

FαΛF
T
α = Kn · (FαX̂

T) ·Θ · (FαX̂
T)T.

Therefore in order to study the matrix FαΛF
T
α , it is essential to know about

FαX̂
T. In Proposition 7.2, we determine the values of most of the entries of

FαX̂
T in terms of certain B-splines. For this purpose, we first establish a tech-

nical lemma, which relates the B-spline design matrix X̂ to certain truncated
power functions.

Let P = (xi)
n
i=0 be a sequence of design points on the interval [0, 1]. For each

i = 0, 1, . . . , n, consider the truncated power function ϕi : [0, 1] → R given by

ϕi(x) :=
[
(x− xi)+

]k−1
. (43)

In what follows, ϕi[s0, s1, . . . , sp] denotes the pth order Newton divided differ-
ence of ϕi [8, page 3] at the points s0, s1, . . . , sp ∈ [0, 1]. The following lemma

relates ϕi and X̂.

Lemma 7.1. Let t′ := (t′j)
K
j=0 be a sequence of (K + 1) distinct knots on [0, 1]

with t′0 = 0, t′K = 1, and the usual extension. Let P := (xi)
n
i=0 be a sequence
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of distinct design points with x0 = 0 and xn = 1, so that the design matrix X̂
is given by (X̂T)j(i+1) = Bt′

j,k(xi) for each i and j. For any i = 1, . . . , n − 1,
j = 1, . . . , N := K + k − 1, and p = 0, 1, . . . , k,

(
Sp,t′ X̂

T
)
j(i+1)

=

⎧⎪⎪⎨⎪⎪⎩
(
Δk−p,t′

)
jj

· ϕi[t
′
j−k+p, . . . , t

′
j ] j = 1, . . . , N − p,

j−N+p−1∑
�=0

ϕ
(k−p+�)
i (1)

(k − p+ �)!

(
j −N + p− 1

�

)
otherwise ,

(44)
where the matrix Sp,t′ is defined in (40),

Proof. In what follows, we drop the subscript t′ in Sp,t′ and Δp,t′ to simplify
notation. Fix i = 1, . . . , n− 1 and j = 1, . . . , N . We proceed by induction on p.

Consider p = 0 first. By the definition of X̂ and [8, page 87], we have

(S0 X̂
T)j(i+1) = (X̂T)j(i+1) = Bt′

k,j(xi) = (t′j − t′j−k) · ϕi[t
′
j−k, . . . , t

′
j ]

= (Δk)jj · ϕi[t
′
j−k, . . . , t

′
j ].

Hence, (44) holds for p = 0.
Fix p = 1, . . . , k, and assume that the result holds for (p − 1). First, note

that since xi > 0 for all i = 1, . . . , n, we have, in view of (43), that for each

q ∈ Z+, the q-th derivative ϕ
(q)
i (0) = 0. By [8, (viii) on page 6], we have, for all

p = 0, 1, . . . , k,

ϕi[t
′
p−k, . . . , t

′
0] = ϕi[ 0, . . . , 0︸ ︷︷ ︸

(k−p+1) copies

] =
ϕ
(k−p)
i

(k − p)!
(0) = 0. (45)

We consider the following two cases.
Case 1: j = 1, . . . , N−p. In this case, by the definition of Δk−p+1 in (36), the

structure of Ŝ(N) in (38) and Sp−1 in (40), the induction hypothesis, and (45),
we have(
Sp X̂

T
)
j(i+1)

=
(
Δk−p Ŝ

(N) Sp−1 X̂
T
)
j(i+1)

= (Δk−p)jj
(
Ŝ(N)

)
j•
(
Sp−1 X̂

T
)
•(i+1)

= (Δk−p)jj

j∑
�=1

(Sp−1 X̂
T)�(i+1)

= (Δk−p)jj

j∑
�=1

(Δk−p+1)�� · ϕi[t
′
�−k+p−1, . . . , t

′
�]

= (Δk−p)jj

j∑
�=1

(
t′� − t′�−k+p−1

)
· ϕi[t

′
�−k+p−1, . . . , t

′
�] (46)

= (Δk−p)jj

j∑
�=1

(
ϕi[t

′
�−k+p, . . . , t

′
�]− ϕi[t

′
�−k+p−1, . . . , t

′
�−1]

)
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= (Δk−p)jj ·
(
ϕi[t

′
j−k+p, . . . , t

′
j ]− ϕi[t

′
p−k, . . . , t

′
0]
)

= (Δk−p)jj · ϕi[t
′
j−k+p, . . . , t

′
j ],

where the derivation of (46) follows from [8, eqn.(20) on page 9]. Thus (44) holds
in Case 1.

Case 2: j = N − p+1, . . . , N . We show that (44) holds for p in this case by
induction on j.

Consider j = N − p + 1 first. Similar to the argument for Case 1, we use
(Δk−p)jj = 1 for j = N − p+ 1, . . . , N and [8, eqn.(20) on page 9], to obtain(

Sp X̂
T
)
(N−p+1)(i+1)

=
(
Δk−p Ŝ

(N) Sp−1 X̂
T
)
(N−p+1)(i+1)

= (Δk−p)(N−p+1)(N−p+1) ·
(
Ŝ(N)

)
(N−p+1)•

(
Sp−1 X̂

T
)
•(i+1)

=

N−p+1∑
�=1

(Sp−1 X̂
T)�(i+1)

=

N−p+1∑
�=1

(Δk−p+1)�� · ϕi[t
′
�−k+p−1, . . . , t

′
�]

=

N−p+1∑
�=1

(
ϕi[t

′
�−k+p, . . . , t

′
�]− ϕi[t

′
�−k+p−1, . . . , t

′
�−1]

)
= ϕi[t

′
N−k+1, . . . , t

′
N−p+1]− ϕi[t

′
p−k, . . . , t

′
0]

= ϕi[ 1, . . . , 1︸ ︷︷ ︸
(k−p+1) copies

] =
ϕ
(k−p)
i (1)

(k − p)!
,

where the last equality follows from [8, (viii) on page 6] and the fact that for
any i = 1, . . . , n−1, xi < 1 such that ϕi(·) is smooth at x = 1. Hence (44) holds
for p in Case 2, when j = N − p+ 1.

Now, fix j = N − p+ 2, . . . , N , and assume that (44) holds for (j − 1). Since
(Δk−p)jj = 1 for j = N − p+ 1, . . . , N , we obtain via (40) that(

Sp X̂
T
)
j(i+1)

=
(
Δk−p Ŝ

(N) Sp−1 X̂
T
)
j(i+1)

=
(
Δk−p

)
jj

(
Ŝ(N)

)
j•
(
Sp−1 X̂

T
)
•(i+1)

=

j∑
�=1

(
Sp−1 X̂

T
)
�(i+1)

=

j−1∑
�=1

(
Sp−1 X̂

T
)
�(i+1)

+
(
Sp−1 X̂

T
)
j(i+1)

=
(
Δk−p

)
(j−1)(j−1)

(
Ŝ(N)

)
(j−1)•

(
Sp−1X̂

T
)
•(i+1)

+
(
Sp−1 X̂

T
)
j(i+1)

=
(
Δk−p · Ŝ(N) · Sp−1X̂

T
)
(j−1)(i+1)

+
(
Sp−1 X̂

T
)
j(i+1)
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=
(
Sp X̂

T
)
(j−1)(i+1)

+
(
Sp−1 X̂

T
)
j(i+1)

.

By the respective induction hypotheses on j and p, we further have

(
Sp X̂

T
)
j(i+1)

=

j−N+p−2∑
�=0

ϕ
(k−p+�)
i (1)

(k − p+ �)!

(
j −N + p− 2

�

)

+

j−N+p−2∑
�=0

ϕ
(k−p+1+�)
i (1)

(k − p+ 1 + �)!

(
j −N + p− 2

�

)

=

j−N+p−2∑
�=0

ϕ
(k−p+�)
i (1)

(k − p+ �)!

(
j −N + p− 2

�

)

+

j−N+p−1∑
�=1

ϕ
(k−p+�)
i (1)

(k − p+ �)!

(
j −N + p− 2

�− 1

)

=
ϕ
(k−p)
i (1)

(k − p)!
+

j−N+p−2∑
�=1

ϕ
(k−p+�)
i (1)

(k − p+ �)!

[(
j −N + p− 2

�

)
+

(
j −N + p− 2

�− 1

)]

+
ϕ
(k+j−N−1)
i (1)

(k + j −N − 1)!
=

j−N+p−1∑
�=0

ϕ
(k−p+�)
i (1)

(k − p+ �)!

(
j −N + p− 1

�

)
.

Hence, (44) holds for p in Case 2 by induction. This completes the proof.

Based on Lemma 7.1, we show next that most of the entries of FαX̂
T are char-

acterized by certain B-splines defined by the knot sequence Vα,t (or simply V ).

Proposition 7.2. Fix a knot sequence t ∈ TKn , and an index set α defined in
(21). Let P := (xi)

n
i=0 be a sequence of distinct design points with x0 = 0 and

xn = 1, so that the design matrix X̂ is given by (X̂T)j(i+1) = Bt
k,j(xi) for each i

and j. Let V := Vα,t be the knot sequence given by (34) and (35), and {BV
k,j}

qα
j=1

be the B-splines of order k with knot sequence V and the usual extension, where
qα = |α|+ k. For each i = 1, . . . , n− 1,

(
FαX̂

T
)
•(i+1)

=
(
Fα,k,tX̂

T
)
•(i+1)

=
(
BV

k,1(xi), B
V
k,2(xi), . . . . . . , B

V
k,qα(xi)

)T

.

(47)

Proof. Recall that N = Kn + k− 1. Let t = (tj)
Kn

j=0. Setting p = k, we have via
Lemma 7.1 that for each i = 1, . . . , n− 1,

(
Sk,t X̂

T
)
j(i+1)

=

⎧⎪⎪⎨⎪⎪⎩
ϕi(tj) if j = 1, . . . ,Kn − 1,

j−Kn∑
�=0

ϕ
(�)
i (1)

�!

(
j −Kn

�

)
if j = Kn, . . . , N.

Therefore, in view of the definition of Fα,0,t (33) and that of τj = τα,t,j (34),
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(
Fα,0,t Sk,t X̂

T
)
j(i+1)

=

⎧⎪⎪⎨⎪⎪⎩
ϕi(τj) j = 1, . . . , |α|,
j−|α|−1∑

�=0

ϕ
(�)
i (1)

�!

(
j − |α| − 1

�

)
j = |α|+ 1, . . . , qα.

(48)
For the knot sequence V := Vα,t = {τ0, τ1, . . . , τ|α|+1} of (|α| + 2) knots with
τ0 = 0 and τ|α|+1 = 1 given in (35) and the design point sequence P = (xi)

n
i=0,

let X̂V be the design matrix given by
(
(X̂V )

T
)
j(i+1)

= BV
k,j(xi) for each i =

0, 1, . . . , n and j = 1, . . . , qα. Applying Lemma 7.1 with t′ = V and p = k, we
see via (48) that for each i = 1, . . . , n− 1,

Sk,V ·
(
(X̂V )

T
)
•(i+1)

=
(
Sk,V (X̂V )

T
)
•(i+1)

=
(
Fα,0,t Sk,t X̂

T
)
•(i+1)

. (49)

Moreover, it follows from (37)-(40) that

Fα,k,t X̂
T

=
(
D̂(qα) · Ξk−1,V · · · D̂(qα) · Ξ1,V · D̂(qα) Ξ0,V

)
·
(
Fα,0,t Sk,t X̂

T
)

=
(
Δ0,V · Ŝ(qα) ·Δ1,V · Ŝ(qα) · · ·Δk−1,V · Ŝ(qα) · S0,V

)−1

·
(
Fα,0,t Sk,t X̂

T
)

=
(
Sk,V

)−1 ·
(
Fα,0,t Sk,t X̂

T
)
.

Hence Sk,V Fα,k,t X̂
T = Fα,0,t Sk,t X̂

T and for each i = 1, . . . , n − 1, Sk,V ·
(Fα,k,t X̂

T)•(i+1) =
(
Fα,0,t Sk,t X̂

T
)
•(i+1)

. Since the matrix Sk,V is invertible,

we have, for each i = 1, . . . , n− 1, (Fα,k,t X̂
T)•(i+1) =

(
(X̂V )

T
)
•(i+1)

, via (49).

Therefore by the definition of X̂V and (42), we obtain(
FαX̂

T
)
•(i+1)

=
(
Fα,k,t X̂

T
)
•(i+1)

=
(
BV

k,1(xi), B
V
k,2(xi), . . . . . . , B

V
k,qα(xi)

)T

for each i = 1, . . . , n− 1.

The following proposition reveals further properties of Fα,k,t (or simply Fα)
based on Proposition 7.2. In particular, it interprets the result in (47) in terms
of B-spline functions and shows that (47) holds for i = 0, n using the continuity
of B-splines.

Proposition 7.3. For any given k,Kn ∈ N, a knot sequence t ∈ TKn , an
index set α defined in (21), and the knot sequence V := Vα,t given by (35), the
B-splines {BV

k,�}
qα
�=1 and {Bt

k,j}Nj=1 satisfy

N∑
j=1

(Fα)�j Bt
k,j(x) = BV

k,�(x), ∀ x ∈ [0, 1], (50)

for each � = 1, . . . , qα, where Fα := Fα,k,t is given by (39).

Proof. Let x∗ be an arbitrary but fixed real number in the open interval (0, 1).
Consider a sequence of design points P = (xi)

n
i=0 with x0 = 0 and xn = 1
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such that xi∗ = x∗ for some i∗ ∈ {1, . . . , n − 1}. As before, let X̂ be the
design matrix defined by the B-splines Bt

k,j and P . By Proposition 7.2, we have

(FαX̂
T)� (i∗+1) = BV

k,�(x∗) for any � = 1, . . . , qα. In light of (FαX̂
T)� (i∗+1) =∑N

j=1 (Fα)� j B
t
k,j(x∗), we deduce that for any � = 1, . . . , qα,

N∑
j=1

(
Fα

)
�j
Bt

k,j(x∗) =
(
FαX̂

T
)
� (i∗+1)

= BV
k,�(x∗).

This shows that (50) holds for all x ∈ (0, 1). Since Bt
k,j(·) and BV

k,�(·) are right
continuous on [0, 1) for any j, �, t, and α, we conclude that (50) holds for x = 0.
Finally, the continuity of Bt

k,j(·) and BV
k,�(·) on [tKn−1, tKn ] also implies that

(50) holds at x = 1. Setting x = x0, xn demonstrates that (47) holds for i = 0, n,

via the definition of X̂.

7.4. Preliminary uniform bounds

This subsection establishes uniform bounds and uniform approximation error
bounds of several of the constructed matrices.

We first derive uniform bounds for ‖FT
α ‖∞ and ‖ k

Kn
Ξk,V Fα‖∞ using Propo-

sition 7.3. We introduce more notation. Let e� be the �th standard basis vec-
tor in the Euclidean space, i.e.,

[
e�
]
i
= δ�i. Moreover, for a given vector v =

(v1, . . . , vj) ∈ R
j , the number of sign changes of v is defined as the largest inte-

ger rv ∈ Z+ such that for some 1 ≤ j1 < · · · < jrv ≤ j, vji · vji+1 < 0 for each
i = 1, . . . , rv [8, page 138]. Clearly, e� has zero sign changes for each �.

Proposition 7.4. Fix k,Kn ∈ N, t ∈ TKn , and an index set α defined in (21).
Let Fα := Fα,k,t be given by (42) and V := Vα,t be given by (35). Then the
following hold:

(1) Fα is a nonnegative matrix, ‖FT
α ‖∞ = 1, and

(2)
∥∥ k
Kn

Ξk,V Fα

∥∥
∞ ≤ k

ct,1
.

Proof. (1) Observe that the knot sequence t either can be formed by inserting
additional knots into the knot sequence V (if α �= ∅), or is the same as V (if
α = ∅). Fix � = 1, . . . , qα. By Proposition 7.3, we see that

N∑
j=1

(
Fα

)
�j
Bt

k,j(x) = BV
k,�(x) =

qα∑
i=1

[e�
]
i
BV

k,i(x), ∀x ∈ [0, 1].

Since e� has zero sign changes, we deduce via [8, Lemma 27, Chapter XI] that(
Fα

)
� • has zero sign changes. This shows that either

(
Fα

)
� • ≥ 0 or

(
Fα

)
� • ≤ 0.

In view of the nonnegativity of Bt
k,j and (50), the latter implies that BV

k,�(x) ≤ 0

for all x ∈ [0, 1]. But this contradicts the fact that BV
k,�(x) > 0 when x is in the

interior of the support of BV
k,�. Therefore, Fα is a nonnegative matrix.
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Next, define b ∈ R
N such that b := FT

α · 1qα , i.e., bj =
∑qα

�=1(Fα)�,j for each
j = 1, . . . , N . By the nonnegativity of Fα, we have ‖FT

α ‖∞ = ‖FT
α · 1qα‖∞ =

‖b‖∞. Further, in view of item (i) in Section 3 and Proposition 7.3,

N∑
j=1

bjB
t
k,j(x) =

N∑
j=1

qα∑
�=1

(Fα)�jB
t
k,j(x) =

qα∑
�=1

N∑
j=1

(Fα)�jB
t
k,j(x)

=

qα∑
�=1

BV
k,�(x) = 1, ∀ x ∈ [0, 1].

Since the Bt
k,j ’s form a partition of unity and a basis of the space of order k

splines with the knot sequence t, we must have b = 1N by the above display.
Thus ‖FT

α ‖∞ = ‖b‖∞ = 1. This completes the proof of statement (1).

(2) It follows from (50) that for each � = 1, . . . , qα,
∑N

j=1(Fα)�jB
t
k,j(x) = 0

except on the support of BV
k,� given by [τ�−k, τ�] := [ti�−k

, ti� ] for some i�
and i�−k. Note that i� := � if � < 0, and i|α|+p := Kn + p − 1 for any
p = 1, . . . , k; furthermore, ti� = 0 if � ≤ 0 and ti� = 1 for � ≥ |α| + 1. Ad-
ditionally, for any r = 1, . . . ,Kn, the B-splines Bt

k,j that are not identically
zero on [tr−1, tr] are linearly independent when restricted to [tr−1, tr]. Hence, if∑N

j=1(Fα)�jB
t
k,j(x) = BV

k,�(x) = 0, ∀ x ∈ [tr−1, tr] for some r, then (Fα)�j = 0

for each j = r, r + 1, . . . , r + k − 1. This, along with the fact that BV
k,�(x) = 0

except on [ti�−k
, ti� ], shows that (Fα)�j = 0 for all j = 1, 2, . . . , i�−k + k− 1 and

j = i�+1, i� +2, . . . , N . Moreover, by the nonnegativity of Fα and ‖FT
α ‖∞ = 1,

we see that all nonzero entries of Fα are less than or equal to one. Therefore,
by the definition of Ξk,V (cf. (37)), we have, for each � = 1, . . . , qα,∥∥∥∥( k

Kn
Ξk,V Fα

)
� •

∥∥∥∥
∞

=
1

Kn
· k

ti� − ti�−k

i�∑
j=i�−k+k

(Fα)�j

≤ 1

Kn
· k

ti� − ti�−k

·
(
i� − i�−k − k + 1

)
.

By virtue of the discussions before (24), we also have

ti� − ti�−k
≥ ct,1

Kn

(
i� − i�−k − k + 1

)
> 0.

Consequently, we obtain, for each � = 1, . . . , qα,
∥∥( k

Kn
Ξk,V Fα

)
� •
∥∥
∞ ≤ k/ct,1.

This completes the proof of statement (2).

Motivated by Proposition 7.4, we define the following diagonal matrix with
positive diagonal entries for the given α, t, and V := Vα,t:

Ξ′
α :=

k

Kn
· Ξk,V , (51)

where the diagonal matrix Ξk,V is given in (37). By Proposition 7.4, both ‖FT
α ‖∞

and ‖Ξ′
αFα‖∞ are uniformly bounded. As discussed in Section 7.1, in order to

establish the uniform Lipschitz property, it remains to establish a uniform bound
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on
∥∥(Ξ′

α Fα ΛFT
α

)−1∥∥
∞. We will demonstrate that Ξ′

α Fα ΛFT
α approximates a

certain B-spline Gramian matrix to obtain such a bound.

Consider the kth order B-splines
{
BV

k,j

}|α|+k

j=1
corresponding to the knot se-

quence V := Vα,t defined in (35), associated with t ∈ TKn and any index
set α defined in (21). Recall that qα = |α| + k. Define the Gramian matrix
Gα,t ∈ R

qα×qα as

(
Gα,t

)
i, j

:=

〈
BV

k,i, BV
k,j

〉
∥∥BV

k,i

∥∥
L1

, ∀ i, j = 1, . . . , qα. (52)

Proposition 7.5 given below shows that Ξ′
αFαΛF

T
α approximates Gα,t with a

uniform approximation error bound. Its proof relies on the following technical
lemma, which characterizes the difference between an integral of a continuous
function and its discrete approximation.

Lemma 7.2. Let ñ ∈ N, [a, b] ⊂ R with a < b, and the sequence of points
(si)

ñ
i=0 with a = s0 < s1 < · · · < sñ = b be such that maxi=1,...ñ |si − si−1| ≤ 

for some  > 0. Let a continuous function f : [a, b] → R be differentiable on
[a, b] except at finitely many points in [a, b]. Let the positive constant μ be such
that |f ′(x)| ≤ μ for any x ∈ [a, b] where f ′(x) exists. Then∣∣∣∣∣

ñ∑
i=1

f(si−1)
(
si − si−1

)
−
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ 3

2
μ(b− a).

Proof. Fix an arbitrary i ∈ {1, . . . , ñ}. Suppose that s̃1, . . . , s̃�−1 ∈ (si−1, si)
with si−1 := s̃0 < s̃1 < s̃2 < · · · < s̃�−1 < s̃� := si are the only points where f is
not differentiable on the interval (si−1, si). It follows from the continuity of f and
the Mean-value Theorem that for each j = 1, . . . , �, there exists ξj ∈ (s̃j−1, s̃j)
such that

f(s̃j) = f(s̃j−1) + f ′(ξj)(s̃j − s̃j−1) = f(si−1) +

j∑
r=1

f ′(ξr)(s̃r − s̃r−1).

Since f is continuous and piecewise differentiable, we have∣∣∣ ∫ si

si−1

f(x) dx−
(
si − si−1

)
f(si−1)

∣∣∣
=

∣∣∣ �∑
j=1

∫ s̃j

s̃j−1

[
f(s̃j−1) + f ′(ξx)

(
x− s̃j−1

)]
dx−

(
si − si−1

)
f(si−1)

∣∣∣
≤

∣∣∣ �∑
j=1

[
f(si−1) +

j−1∑
r=1

f ′(ξr)(s̃r − s̃r−1)
]
(s̃j − s̃j−1)−

(
si − si−1

)
f(si−1)

∣∣∣
+
∣∣∣ �∑
j=1

∫ s̃j

s̃j−1

f ′(ξx)
(
x− s̃j−1

)
dx

∣∣∣
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≤
∣∣∣ �∑
j=1

f ′(ξj)
(
s̃j − s̃j−1

)(
si − s̃j

)∣∣∣+ μ

2

�∑
j=1

(
s̃j − s̃j−1

)2
≤ 3μ

2

(
si − si−1

)2 ≤ 3μ

2
(si − si−1).

Consequently,∣∣∣ ñ∑
i=1

f(si−1)
(
si − si−1

)
−
∫ b

a

f(x) dx
∣∣∣ ≤ ñ∑

i=1

∣∣∣f(si−1)
(
si − si−1

)
−
∫ si

si−1

f(x) dx
∣∣∣

≤
ñ∑

i=1

3μ

2
(si − si−1) =

3μ

2
(b− a).

This completes the proof.

Proposition 7.5. Let (Kn) be an increasing sequence with Kn → ∞ and Kn

n →
0 as n → ∞. Let Fα := Fα,k,t, V := Vα,t, Ξ

′
α := (k/Kn)·Ξk,V , and Λ := ΛKn,P,t

be defined for Kn, P ∈ Pn, t ∈ TKn and the index set α. Then there exists
n1 ∈ N, independent of P , t, and α, such that for any P ∈ Pn and t ∈ TKn

with n ≥ n1, and any index set α defined in (21),∥∥∥Gα,t − Ξ′
α Fα ΛFT

α

∥∥∥
∞

≤ 16k3cω,2

ct,1

Kn

n
, ∀ n ≥ n1.

Proof. Let P = (xi)
n
i=0. In light of (6), (37), the definitions of X̂, Θ, and Λ,

(47), and (51), we have, for any j, r = 1, . . . , qα,(
Ξ′
αFαΛF

T
α

)
j,r

=

(
k

Kn
Ξk,V FαΛF

T
α

)
j,r

=
k

tij − tij−k

(FαX̂
T)j• Θ(FαX̂

T)Tr•

=
∥∥BV

k,j

∥∥−1

L1

n∑
�=1

BV
k,j(x�−1) ·BV

k,r(x�−1) · (x� − x�−1). (53)

Consider k = 1 first. In this case, Gα,t is diagonal (see the summary of
B-spline properties in Section 2.2 for the reason), and(

Gα,t

)
j,j

=
∥∥ I[tij−1

,tij )

∥∥−1

L1
·
〈
I[tij−1

,tij )
, I[tij−1

,tij )

〉
= 1.

Additionally, Ξ′
αFαΛF

T
α is also diagonal in view of the definitions of Λ and

X̂, (47), and (51). Since P ∈ Pn, V ⊆ t ∈ TKn , and
(
‖BV

1,j‖L1

)−1
= 1

tij−tij−1
=

(Ξ1,V )j,j , we have, by (53), that for each j,∣∣∣(Ξ′
αFαΛF

T
α

)
j,j

− 1
∣∣∣ =

∣∣∣(K−1
n Ξ1,V FαΛF

T
α

)
j,j

− 1
∣∣∣

=

∣∣∣∣∣
n∑

�=1

I[tij−1
,tij )

(x�−1)

tij − tij−1

(x� − x�−1)− 1

∣∣∣∣∣ ≤ 2cω,2Kn

ct,1n
.

Thus the proposition holds for k = 1.
We consider k ≥ 2 next. Note that BV

k,j(·)×BV
k,r(·) is continuous and differ-

entiable on [0, 1] except at (at most) finitely many points in [0, 1]. In light of
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items (i) and (ii) in Section 3, as well as the discussion following (14), we have,
for any x ∈ [0, 1] where the derivative exists,∣∣∣(BV

k,j(x)
)′∣∣∣ ≤ 2max

�

∣∣∣ k − 1

ti� − ti�−k+1

BV
k−1,�(x)

∣∣∣ ≤ 2(k − 1)

ct,1
Kn.

Hence, we also have that∣∣∣(BV
k,j(x)B

V
k,r(x)

)′∣∣∣ = ∣∣∣(BV
k,j

)′
(x)BV

k,r(x) +BV
k,j(x)

(
BV

k,r

)′
(x)

∣∣∣ ≤ 4(k − 1)

ct,1
Kn.

(54)

For a fixed j, let xaj−1 and xbj−1 be the first and last points in P such that
xaj−1, xbj−1 ∈ [tij−k

, tij ]. Since P ∈ Pn, we have |xaj−1 − tij−k
| ≤ cω,2

n and
|xbj − tij | ≤

cω,2

n . Therefore, by (6), we obtain∣∣xbj −xaj−1

∣∣ ≤
∣∣xbj − tij

∣∣+ ∣∣tij − tij−k

∣∣+ ∣∣xaj−1− tij−k

∣∣ ≤ k
∥∥BV

k,j

∥∥
L1

+
2cω,2

n
.

(55)
Since Kn

n → 0 as n → ∞, we deduce via (6) and the discussion following (14)
that there exists n1 sufficiently large (depending on (Kn) only) such that

2cω,2

n
≤ ct,1

kKn
≤

∥∥BV
k,j

∥∥
L1
, ∀n ≥ n1. (56)

Hence, combining (55) and (56), we have
∣∣xbj − xaj−1

∣∣ ≤ (k + 1)
∥∥BV

k,j

∥∥
L1
,

∀n ≥ n1. By this result, (53)-(54), (56) and Lemma 7.2, with a := xaj−1, b :=
xbj , si := xaj−1+i,  := cω,2/n, f(x) := BV

k,j(x) · BV
k,r(x) satisfying ‖f‖∞ ≤ 1,

and μ := 4(k−1)
ct,1

Kn, we obtain that for any j, r = 1, . . . , qα,∣∣∣∣(Ξ′
αFαΛF

T
α

)
j,r

−
(
Gα,t

)
j,r

∣∣∣∣
≤
∥∥BV

k,j

∥∥−1

L1
·

∣∣∣∣∣∣
bj∑

�=aj

f(x�−1)(x� − x�−1)−
∫ xbj

xaj−1

f(t)dt

∣∣∣∣∣∣
+

∥∥BV
k,j

∥∥−1

L1
·
(∣∣∣ ∫ xaj−1

tij−k

f(x) dx
∣∣∣+ ∣∣∣ ∫ tij

xbj

f(x) dx
∣∣∣)

≤
∥∥BV

k,j

∥∥−1

L1
· 3
2

4(k − 1)Kn

ct,1

cω,2

n
·
∣∣xbj − xaj−1

∣∣
+

∥∥BV
k,j

∥∥−1

L1
·
(
|xbj − tij

∣∣+ ∣∣xaj−1 − tij−k

∣∣)
≤
∥∥BV

k,j

∥∥−1

L1
· 3
2

4(k − 1)Kn

ct,1

cω,2

n
· (k + 1)

∥∥BV
k,j

∥∥
L1

+
∥∥BV

k,j

∥∥−1

L1
· 2cω,2

n

≤ 6k2cω,2

ct,1

Kn

n
+

2cω,2k

ct,1

Kn

n
≤ 8k2cω,2

ct,1

Kn

n
, ∀ n ≥ n1.

Based on the support of each BV
k,j , each row of Gα,t and Ξ′

αFαΛF
T
α has at most

(2k− 1) nonzero entries. Thus, we deduce that for any α, t ∈ TKn , and P ∈ Pn,
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αFαΛF

T
α

∥∥∥
∞

≤ (2k − 1) · 8k
2cω,2

ct,1

Kn

n
≤ 16k3cω,2

ct,1

Kn

n
, ∀ n ≥ n1.

This yields the uniform approximation error bound.

The following technical lemma is instrumental to attaining a uniform bound
on the inverses of size-varying matrices in the next corollary.

Lemma 7.3. Let {Ai ∈ R
ni×ni : i ∈ I } and {Bi ∈ R

ni×ni : i ∈ I } be two
families of invertible matrices for a (possibly infinite) index set I, where ni ∈ N

need not be the same for different i ∈ I. Suppose that μ := supi∈I ‖A−1
i ‖∞ < ∞

and supi∈I ‖Ai −Bi‖∞ ≤ 1
2μ . Then for all i ∈ I, ‖B−1

i ‖∞ ≤ 2μ.

Proof. Define Ci := Bi − Ai so that ‖Ci‖∞ < 1
2μ for each i ∈ I. Since Bi =

Ai + Ci and Ai is invertible, we have A−1
i Bi = I +A−1

i Ci. Hence, we obtain∥∥A−1
i Ci

∥∥
∞ ≤ ‖A−1

i ‖∞ · ‖Ci‖∞ ≤ μ · 1

2μ
=

1

2
, ∀ i ∈ I.

Furthermore,
∥∥∥(I +A−1

i Ci

)−1
∥∥∥
∞

≤ 1

1−
∥∥A−1

i Ci

∥∥
∞

≤ 2, ∀ i ∈ I. Using

A−1
i Bi = I +A−1

i Ci again, we further have that∥∥B−1
i

∥∥
∞ =

∥∥∥(I +A−1
i Ci

)−1 ·A−1
i

∥∥∥
∞

≤
∥∥∥(I +A−1

i Ci

)−1
∥∥∥
∞

· ‖A−1
i ‖∞ ≤ 2μ,

for all i ∈ I. This yields the desired bound for B−1
i .

An immediate consequence of Proposition 7.5 and Lemma 7.3 is a uniform
bound on the inverse of Ξ′

αFαΛF
T
α in the �∞-norm. Note that each Ξ′

αFαΛF
T
α

is invertible, since Λ is positive definite (see Section 3.2), Fα has full row rank
(see Section 7.2), and Ξ′

α is invertible.

Corollary 7.1. Let (Kn) be an increasing sequence with Kn → ∞ and Kn

n → 0
as n → ∞. For any P ∈ Pn, t ∈ TKn , and index set α defined in (21), let Fα :=
Fα,k,t, Ξ

′
α := (k/Kn) Ξk,V for the knot sequence V := Vα,t, and Λ := ΛKn,P,t.

There exists n∗ ∈ N, which depends on (Kn) only, such that for any P ∈ Pn

and t ∈ TKn with n ≥ n∗, and any index set α,∥∥∥(Ξ′
αFαΛF

T
α

)−1
∥∥∥
∞

≤ 2ρk,

where ρk is a positive constant depending on k only.

Proof. Choose arbitrary α, t ∈ TKn , and P ∈ Pn. By [34, Theorem I] (cf.
Theorem 7.1), the Gramian matrix Gα,t is invertible and there exists a positive
constant ρk, independent of α, t, P , such that ‖(Gα,t)

−1‖∞ ≤ ρk. Also, it follows

from Proposition 7.5 that ‖Gα,t − Ξ′
αFαΛF

T
α ‖∞ ≤ 16k3cω,2

ct,1
Kn

n , provided that

n ≥ n1. Since
Kn

n → ∞ as n → ∞, we deduce from Lemma 7.3 that there exists
n∗ ∈ N with n∗ ≥ n1 such that for any P ∈ Pn and t ∈ TKn with n ≥ n∗, and

any index set α,
∥∥(Ξ′

αFαΛF
T
α

)−1∥∥
∞ ≤ 2ρk.
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7.5. Proof of Theorem 3.1

We apply the results established in the previous subsections to show the uniform
Lipschitz property of b̂P,t(·) stated in Theorem 3.1. Fix the B-spline order k ∈ N.
Let the strictly increasing sequence (Kn) be such that Kn → ∞ and Kn/n → 0
as n → ∞.

Let n ≥ n∗ (cf. Corollary 7.1). Fix P ∈ Pn, t ∈ TKn , and an index set α de-
fined in (21). Recall that qα = |α|+k,N = Kn+k−1, Λ := ΛKn,P,t ∈ R

N×N , and
V := Vα,t. We then construct the following matrices based on the previous de-
velopments: Fα := Fα,k,t ∈ R

qα×N (cf. (39)) and Ξ′
α := (k/Kn) Ξk,V ∈ R

qα×qα

(cf. (37)). In light of Proposition 7.1 and (23), the linear piece of b̂P,t(·) corre-
sponding to α is b̂αP,t(y) = FT

α ·
(
FαΛF

T
α

)−1 ·Fα y. By combining Proposition 7.4
and Corollary 7.1, we have that∥∥∥FT

α ·
(
FαΛF

T
α

)−1 · Fα

∥∥∥
∞

≤
∥∥FT

α

∥∥
∞ ·

∥∥(Ξ′
αFα ΛFT

α

)−1∥∥
∞ ·

∥∥Ξ′
αFα

∥∥
∞

≤ 1 · 2ρk · k

ct,1
=: c∞,

Since n ≥ n∗, P ∈ Pn, t ∈ TKn , and α are arbitrary, the uniform Lipschitz

property of b̂P,t(·) holds.
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[11] Dümbgen, L., Freitag, S., Jongbloed, G. (2004) Consistency of concave re-
gression with an application to current-status data. Math. Methods Statist.,
13, 69–81. MR2078313

[12] Eeckhoudt, L. and Schlesinger, H. (2013) Higher-order risk attitudes. In
Handbook of Insurance 41–57. Springer.

[13] Gao, F.C. (2008) Entropy estimate for k-monotone functions via small ball
probability of integrated Brownian motions. Electron. Commun. Probab.,
13, 121–130. MR2386068

[14] Gao, F.C. and Wellner, J.A. (2009) On the rate of convergence of the
maximum likelihood estimator of a k-monotone density. Sci. China Ser. A,
52, 1–14. MR2520591

[15] Giguelay, J. (2017) Estimation of a discrete probability under constraint of
k-monotonicity. Electron. J. Stat., 11, 1–49. MR3592697

[16] Golitschek, M.V. (2014) On the L∞-norm of the orthogonal projector onto
splines: A short proof of A. Shardin’s theorem. J. Approx. Theory, 181,
30–42. MR3182739

[17] Groeneboom, P., Jongbloed, F., and Wellner, J.A. (2001) Estimation of a
convex function: Characterizations and asymptotic theory. Ann. Statist.,
29, 1653–1698. MR1891742

[18] Guntuboyina, A. and Sen, B. (2015) Global risk bounds and adaptation in
univariate convex regression. Probab. Theory Related Fields, 63, 379–411.
MR3405621

[19] Hu, Y.K. (1991) Convexity preserving approximation by free knot splines.
SIAM J. Math. Anal., 22 1183–1191. MR1112074

[20] Konovalov, V.N. and Leviatan, D. (2001) Estimates on the approximation
of 3-monotone functions by 3-monotone quadratic splines. East J. Approx.,
7, 333–349. MR1861396

[21] Konovalov, V.N. and Leviatan, D. (2003) Shape preserving widths of
Sobolev-type classes of s-monotone functions on a finite interval. Israel
J. Math., 133, 239–268. MR1968430

[22] Kuipers, B.J., Chiu, C., Dalle Molle, D.T., and Throop, D.R. (1991).
Higher-order derivative constraints in qualitative simulation. Artificial In-
telligence, 51, 343–379. MR1144605

[23] Lebair, T.M. (2016) Constrained Estimation and Approximation using Con-
trol, Optimization, and Spline Theory. Ph.D. Dissertation, University of
Maryland, Baltimore County. http://pages.jh.edu/~tlebair1/Lebair_
thesis.pdf MR3579487

[24] Lebair, T.M., Shen, J., and Wang, X. (2016) Minimax lower bound and
optimal estimation of convex functions in the sup-norm. IEEE Trans. Au-
tomat. Control, Vol. 62(7), pp. 3482–3487, 2017. MR3669469

[25] Mammen, E. (1991) Nonparametric regression under qualitative smooth-
ness assumptions. Ann. Statist., 19, 741–759. MR1105842

[26] Mammen, E. and van de Geer, S. (1997) Locally adaptive regression splines.
Ann. Statist., 25, 387–413. MR1429931

http://www.ams.org/mathscinet-getitem?mr=2078313
http://www.ams.org/mathscinet-getitem?mr=2386068
http://www.ams.org/mathscinet-getitem?mr=2520591
http://www.ams.org/mathscinet-getitem?mr=3592697
http://www.ams.org/mathscinet-getitem?mr=3182739
http://www.ams.org/mathscinet-getitem?mr=1891742
http://www.ams.org/mathscinet-getitem?mr=3405621
http://www.ams.org/mathscinet-getitem?mr=1112074
http://www.ams.org/mathscinet-getitem?mr=1861396
http://www.ams.org/mathscinet-getitem?mr=1968430
http://www.ams.org/mathscinet-getitem?mr=1144605
http://pages.jh.edu/~tlebair1/Lebair_thesis.pdf
http://pages.jh.edu/~tlebair1/Lebair_thesis.pdf
http://www.ams.org/mathscinet-getitem?mr=3579487
http://www.ams.org/mathscinet-getitem?mr=3669469
http://www.ams.org/mathscinet-getitem?mr=1105842
http://www.ams.org/mathscinet-getitem?mr=1429931


1428 T. M. Lebair and J. Shen

[27] Nemirovski, A. (2000) Topics in Non-parametric Statistics. In Ecole d’Eté
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