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Abstract—Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been

used widely in many applications involving high-dimensional data, such as image and text classification. An intrinsic limitation of

classical LDA is the so-called singularity problems; that is, it fails when all scatter matrices are singular. Many LDA extensions were

proposed in the past to overcome the singularity problems. Among these extensions, PCA+LDA, a two-stage method, received

relatively more attention. In PCA+LDA, the LDA stage is preceded by an intermediate dimension reduction stage using Principal

Component Analysis (PCA). Most previous LDA extensions are computationally expensive, and not scalable, due to the use of

Singular Value Decomposition or Generalized Singular Value Decomposition. In this paper, we propose a two-stage LDA method,

namely LDA/QR, which aims to overcome the singularity problems of classical LDA, while achieving efficiency and scalability

simultaneously. The key difference between LDA/QR and PCA+LDA lies in the first stage, where LDA/QR applies QR decomposition

to a small matrix involving the class centroids, while PCA+LDA applies PCA to the total scatter matrix involving all training data points.

We further justify the proposed algorithm by showing the relationship among LDA/QR and previous LDA methods. Extensive

experiments on face images and text documents are presented to show the effectiveness of the proposed algorithm.

Index Terms—Linear discriminant analysis, dimension reduction, QR decomposition, classification.
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1 INTRODUCTION

LINEAR Discriminant Analysis [6], [9] is a well-known

method for feature extraction and dimension reduction.
It has been used widely in many applications such as face

recognition [2], [19], [21], [27], text classification [4], [11],

[32], microarray data classification [7], etc. Classical LDA

aims to find an optimal transformation by minimizing the

within-class distance and maximizing the between-class

distance simultaneously, thus achieving maximum discri-

mination. The optimal transformation is readily computed

by applying the eigen-decomposition to the scatter matrices.
An intrinsic limitation of classical LDA is that its objective

function requires that one of the scatter matrices be

nonsingular. For many applications, such as face recogni-

tion and text classification, all scatter matrices in question

can be singular since the dimension, in general, exceeds the

number of data points. This is known as the singularity or

undersampled problem [16], [32].
In recent years, many approaches have been brought to

bear on such high-dimensional, undersampled problems.
We will review four important extensions of classical
discriminant analysis, including pseudoinverse LDA [24],

Regularized LDA [8], PCA+LDA [2], [27], and LDA/GSVD
[11], [32]. The difference of these four extensions can be
briefly described as follows: Pseudoinverse LDA applies

pseudoinverse to deal with the singularity of matrices;
Regularized LDA adds a scaled identity matrix to the
scatter matrix so that the perturbed scatter matrix is positive
definite and, hence, nonsingular; PCA+LDA applies an
intermediate dimension reduction stage using PCA on the
original data to obtain a more compact representation so
that the singularity of the scatter matrix is decreased; and
LDA/GSVD applies Generalized Singular Value Decom-
position [31] to deal with the inversion of the scatter matrix.
The common point of these LDA extensions is the use of
Singular Value Decomposition (SVD) [10] or Generalized
Singular Value Decomposition (GSVD) [31], which not only
degrades the training efficiency but also makes them hard
to scale to large data sets.

In this paper, we propose a two-stage LDA extension,
namely, LDA/QR. The first stage of LDA/QR maximizes
the separation between different classes by applying
QR decomposition to a small size matrix. The distinct
property of this stage is its low time/space complexity. It
can be used independently as a dimension reduction
algorithm. We name it pre-LDA/QR for convenience. The
second stage of LDA/QR incorporates both between-class
and within-class information by applying LDA to the
“reduced” scatter matrices resulting from the first stage.
Our theoretical analysis indicates that the computational
complexity of LDA/QR is linear on the number of training
data points as well as the number of dimensions. Unlike
many LDA methods, LDA/QR scales to large data sets
since it does not require the entire data in main memory.

With the (training) efficiency and scalability, LDA/QR is
desirable in retrieval applications involving large, high-
dimensional, and dynamic databases. (In real-life applica-
tions, databases can be extremely large and dynamic [15].)
Scalability makes LDA/QR suitable in handling extremely
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large databases, and training efficiency makes it superior in
handling dynamic databases over the traditional LDA
methods.

We further justify the proposed algorithm by showing

the relationship among LDA/QR and other LDA meth-

ods. More specifically, LDA/QR is shown to be a special

case of pseudoinverse LDA, where the pseudoinverse is

applied to the between-class scatter matrix. We also show

that both LDA/QR and PCA+LDA are approximations of

LDA/GSVD. The main difference is that LDA/QR applies

pre-LDA/QR before the LDA stage, while PCA+LDA

applies PCA instead.

We have conducted extensive experiments to evaluate the

proposed algorithm on various well-known data sets of both

face images and text documents and compare it with other

algorithms. Results have shown that the LDA/QR algorithm

has low computational cost, while it achieves or approx-

imates closely to the best accuracy that other LDA methods

achieve. One interesting observation is that pre-LDA/QR

followed by the classifier yields better accuracy than PCA

followed by the classifier. (K-Nearest Neighbor [6] is used as

the classifier in this paper.) The rationale behind this lies in

the fact that pre-LDA/QR makes use of the class label

information, while PCA is unsupervised. This partly

explains why LDA/QR is competitive with PCA+LDA in

classification.
The main contributions of this paper include:

. We propose a two-stage LDA method, namely,
LDA/QR, which couples the QR decomposition
with LDA for dimension reduction. LDA/QR has
significantly lower costs in time and space than
many LDA methods, which is shown both theore-
tically and empirically.

. We present a detailed theoretical analysis on the
relationship among LDA/QR and other LDA meth-
ods. In particular, we show that LDA/QR is a special
case of pseudoinverse LDA (with the pseudoinverse
applied to the between-class scatter matrix), and
both LDA/QR and PCA+LDA are approximations
of LDA/GSVD.

. We have conducted extensive experiments on face
images and text documents to evaluate the effec-
tiveness of LDA/QR and compare it with other LDA
methods and PCA.

The rest of this paper is organized as follows: Section 2 is

on related work. Section 3 reviews classical LDA and its

several extensions. The LDA/QR algorithm is presented in

Section 4, where the relationship among LDA/QR and

other LDA methods is also discussed. A comprehensive

study on the performance of the LDA/QR algorithm is

presented in Section 5. A further discussion on LDA/QR is

given in Section 6. We conclude in Section 7 with a

discussion of related future work.

2 RELATED WORK

Principal Component Analysis (PCA), also known as
Karhunen-Loeve transform (KLT), is one of the well-known

methods for dimension reduction [14], [28], [30]. PCA is an

orthogonal transformation of the coordinate system. The new

coordinates are called principal components. It is often the case

that a small number of principal components is sufficient to

account for the main structure in the data. The principal

components are readily computed by applying an eigen-

decomposition to the covariance matrix. Turk and Pentland

developed the eigenface technique in [30], which is the

landmark of PCA entering appearance-based face recogni-

tion. Linear Discriminant Analysis (LDA) is another well-

known method for dimension reduction [6], [9]. A compara-

tive study of PCA and LDA can be found in [2], [21], [27].
The null space LDA [5] attempts to solve the small

sample size problems directly. Here, the null space refers to

the null space of the within-class scatter. More specifically,

it has been observed that the null space of the within-class

scatter contains useful discriminant information. The

method in [5] works as follows: First, project the data onto

the null space of the within-class scatter and, then, in the

projected space, compute the transformation that max-

imizes the between-class scatter. The null space LDA is

based on the eigen-decomposition of the (original) scatter

matrices, which is hard to be scalable. Besides, it may ignore

some useful information by considering the null space of

the within-class scatter only. The Discriminative Common

Vector method was recently proposed for face recognition

[3], which addressed computational difficulties encoun-

tered in null space LDA. Yu and Yang [33] developed a

direct method for LDA and claimed that the direct method

was equivalent to PCA+LDA. They called the direct method

“unified PCA+LDA” since there was no separate PCA

stage. Detailed analysis of the algorithm was not provided.
The LDA/GSVD algorithm is shown to be a special case

of pseudoinverse LDA, where the pseudoinverse is applied

to the total scatter matrix [32]. Interestingly, the LDA/QR

algorithm proposed in this paper is also a special case of

pseudoinverse LDA, where the pseudoinverse is applied to

the between-class scatter matrix instead. Detailed theore-

tical analysis on this equivalence will be presented in

Section 4.3.
Efficient algorithms that combine discriminant analysis

with tree classifiers were proposed in [12], [17]. The

algorithm in [12] casted a classification task into a

regression problem and applied doubly clustered sub-

space-based hierarchical discriminating regression (HDR)

for image retrieval. In [17], a hierarchical technique was

proposed to recursively decompose a k-class problem into

k� 1 two-class/binary problems. Both algorithms use

clustering/partitioning techniques to handle the decom-

position and build the hierarchical tree. The resulting tree in

[17] is binary, while the one in [12] is usually not.
Discriminant analysis can also be studied in the non-

linear fashion, so-called kernel discriminant analysis. It is

desirable if the data has weak linear separability. Our paper

focuses on linear discriminant analysis. The interested

readers can find more details on kernel discriminant

analysis in [1], [20], [26].
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3 AN OVERVIEW OF LINEAR DISCRIMINANT

ANALYSIS

In this section, we give a brief overview of classical LDA and

its four extensions: pseudoinverse LDA, Regularized LDA,

PCA+LDA, and LDA/GSVD. For convenience, we present

in Table 1 the important notations used in the paper.

3.1 Classical LDA

Given a data matrix A 2 IRn�N , we consider finding a linear

transformation G 2 IRn�‘ that maps each column ai of A, for

1 � i � N , in the n-dimensional space to a vector yi in the

‘-dimensional space as yi ¼ GTai 2 IR‘ð‘ < nÞ. Assume that

the original data in A is partitioned into k classes as

A ¼ ½A1; � � � ; Ak�, where Ai 2 IRn�Ni contains data points

from the ith class and
Pk

i¼1 Ni ¼ N . Classical LDA aims to

find the optimal transformation G such that the class

structure of the original high-dimensional space is pre-

served in the low-dimensional space.
In discriminant analysis, three scatter matrices, called

within-class, between-class, and total scatter matrices, are

defined as follows [9]:

Sb ¼
1

N

X

k

i¼1

Niðmi �mÞðmi �mÞT ¼ HbH
T
b ; ð1Þ

Sw ¼ 1

N

X

k

i¼1

X

x2Ai

ðx�miÞðx�miÞT ¼ HwH
T
w ; ð2Þ

St ¼ Sb þ Sw; ð3Þ

where the precursors Hb and Hw of the between-class and
within-class scatter matrices in (1) and (2) are

Hb ¼
1
ffiffiffiffiffi

N
p

ffiffiffiffiffiffi

N1

p

ðm1 �mÞ; � � � ;
ffiffiffiffiffiffi

Nk

p

ðmk �mÞ
h i

; ð4Þ

Hw ¼ 1
ffiffiffiffiffi

N
p A1 �m1 � eT1 ; � � � ; Ak �mk � eTk

� �

; ð5Þ

ei ¼ ð1; � � � ; 1ÞT 2 IRNi , Ai is the data matrix of the ith class,
mi is the centroid of the ith class, and m is the global
centroid of the training data set. It is worthwhile to note that
the total scatter matrix St is equal to a multiple of the so-
called covariance matrix in statistics.

The traces of the within-class and between-class scatter
matrices can be computed as follows:

traceðSbÞ ¼
1

N

X

k

i¼1

Nijjmi �mjj22;

traceðSwÞ ¼
1

N

X

k

i¼1

X

x2Ai

jjx�mijj22:

Hence, traceðSwÞ measures the closeness of the vectors
within the classes, while traceðSbÞ measures the separation
between the classes.

In the low-dimensional space resulting from the linear
transformation G, the within-class, between-class, and total
scatter matrices become SL

b ¼ GTSbG, SL
w ¼ GTSwG, and

SL
t ¼ GTStG, respectively.
An optimal transformation G would maximize traceðSL

b Þ
and minimize traceðSL

wÞ. Common optimizations in classical
LDA include [9]:

max
G

traceððSL
wÞ

�1
SL
b Þ

n o

and min
G

traceððSL
b Þ

�1
SL
wÞ

n o

: ð6Þ

The optimization problems in (6) are equivalent to finding
the generalized eigenvectors satisfying Sbx ¼ �Swx, for
� 6¼ 0. The solution can be obtained by applying the eigen-
decomposition to the matrix S�1

w Sb, if Sw is nonsingular, or
S�1
b Sw, if Sb is nonsingular. It was shown in [9] that the

solution to the optimization problem in (6) can also be
obtained by computing the eigen-decomposition on the
matrix S�1

t Sb, assuming St is nonsingular. There are at most
k� 1 eigenvectors corresponding to nonzero eigenvalues
since the rank of the matrix Sb is bounded from above by
k� 1. Therefore, the number of retained dimensions in
classical LDA is at most k� 1. A stable way to compute the
eigen-decomposition is to apply SVD on the scatter matrices.
Details can be found in [27].

3.2 Extensions of Classical LDA

Note that a limitation of classical LDA in many applica-
tions involving undersampled data is that at least one
scatter matrix is nonsingular. Several extensions including
pseudoinverse LDA, Regularized LDA, PCA+LDA, and
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LDA/GSVD were proposed in the past to deal with the

singularity problems as follows.

3.2.1 Pseudoinverse LDA

Pseudoinverse is commonly used to deal with the singu-

larity of matrices. A natural extension of classical LDA,

using the pseudoinverse, is to apply the eigen-decomposi-

tion to the matrix Sþ
b Sw, S

þ
wSb, or S

þ
t Sb.

The pseudoinverse of a matrix can be computed by SVD

[10]. More specifically, let M ¼ U�V T be the SVD of M,

where U and V have orthonormal columns and � is

diagonal with positive diagonal entries, then the pseudoin-

verse of M can be computed as Mþ ¼ V��1UT . The

following property of pseudoinverse is straightforward

from its definition [10].

Proposition 1. Let P and Q be orthogonal matrices and let M be

any matrix with appropriate size. Then,

ðPMQÞþ ¼ QTMþPT :

This proposition will be used in Section 4.3 to show the

equivalence between LDA/QR and pseudoinverse LDA.

3.2.2 Regularized LDA

A simple way to deal with the singularity of Sw is to add a

multiple of identity matrix to Sw, as Sw þ �In, for some

� > 0, where In is an identity matrix [8]. It is easy to check

that Sw þ �In is positive definite, hence nonsingular. This

approach is called Regularized LDA (RLDA). A limitation

of RLDA is that the optimal value of the parameter � is

difficult to determine. Cross-validation can be used for

estimating the optimal � [16].

3.2.3 PCA+LDA

A common way to deal with the singularity problems is to

apply an intermediate dimension reduction stage, such as

PCA, to reduce the dimension of the original data before

classical LDA is applied. This is known as PCA+LDA. In

this two-stage algorithm, the discriminant stage is preceded

by a dimension reduction stage using PCA. It has received

extensive study in face recognition [2], [27]. However,

besides its expensive computation of SVD, the dimension

reduction stage using PCAmay potentially lose some useful

information for discrimination.

3.2.4 LDA/GSVD

The LDA/GSVD algorithm in [11], [32] is a more recent

approach. The inversion of the scatter matrix is avoided by

the simultaneous diagonalization of the scatter matrices via

the Generalized Singular Value Decomposition. Experi-

ments in [11], [32] showed that the GSVD based method

was competitive with other LDA methods on text classifica-

tion. However, one limitation of this method is the

expensive computation of GSVD on large data sets. It was

shown in [11], [32] that the time complexity of LDA/GSVD

is OððN þ kÞ2nÞ, where N is the number of data points, n is

the number of dimensions, and k is the number of classes.

4 LDA/QR: A TWO-STAGE LINEAR DISCRIMINANT

ANALYSIS

In this section, we propose an extension of classical LDA,

namely, LDA/QR. This algorithm has two stages. The first

stage maximizes the separation between different classes

via QR decomposition [10]. This stage can be used

independently as a dimension reduction algorithm. We

name it pre-LDA/QR for convenience. The distinct prop-

erty of pre-LDA/QR is the low time/space complexity. The

second stage addresses the issue of within-class distance,

while keeping low time/space complexity.
The first stage of LDA/QR aims to compute the optimal

transformation matrix G that solves the following optimiza-

tion problem:

G ¼ arg max
GTG¼I‘

traceðGTSbGÞ: ð7Þ

Note that this optimization problem only addresses the

issue of maximizing between-class distance. The solution

to (7) can be obtained through QR decomposition with

column pivoting [10] on the precursor of between-class

scatter matrix Hb in (4). More specifically, let Hb ¼ QR�

be the QR decomposition of Hb with column pivoting,

where Q 2 IRn�t has orthonormal columns, R 2 IRt�k is

upper triangular, � 2 IRk�k is a permutation matrix, and

t ¼ rankðHbÞ; then, G ¼ QW , for any orthogonal matrix

W 2 IRt�t, solves the optimization problem in (7), as stated

in the following theorem.

Theorem 1. Let Hb ¼ QR� be the QR decomposition of Hb with

column pivoting defined above. Then, G ¼ QW , for any

orthogonal W 2 IRt�t, solves the optimization problem in (7).

Proof. Let Q̂Q 2 IRn�ðn�tÞ be the matrix such that P ¼ ½Q; Q̂Q�
is orthogonal, i.e., PP T ¼ P TP ¼ In. It follows that

Sb¼HbH
T
b ¼ðQR�Þð�TRTQT Þ¼QRRTQT ¼P�P T , where

� ¼ RRT 0

0 0

� �

:

Hence, traceðGTSbGÞ ¼ traceð ~GGT� ~GGÞ, where ~GG ¼ P TG.

Note that ~GGT ~GG ¼ GTPP TG ¼ GTG ¼ I‘ since P is ortho-

gonal and G has orthonormal columns. It follows that

traceðGTSbGÞ ¼ traceð ~GGT� ~GGÞ � traceð�Þ ¼ traceðRRT Þ;

where the inequality becomes equality if

~GG ¼ W

0

� �

;

for any orthogonal W 2 IRt�t. Hence, G ¼ P ~GG ¼ QW , for

any orthogonal W , solves the optimization problem in

(7). This completes the proof of the theorem. tu
In our implementation, we choose W to be the identity

matrix for simplicity. The pseudocode for this algorithm is

given in Algorithm 1. Note that the rank t of the matrix Hb

is bounded from above by k� 1. In practice, the k centroids

in the data set are usually linearly independent. In this case,

the number of retained dimensions is t ¼ k� 1.
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The QR decomposition with column pivoting for

computing the optimal transformation G takes Oðk2nÞ time

[10]. It then takes OðknNÞ time to get the reduced

representation AL by AL ¼ GTA, where each column in A

(respectively, AL) corresponds to a training data point in the

original high-dimensional space (respectively, low-dimen-

sional space). Hence, the total time to get the reduced

representation in the first stage (pre-LDA/QR) is OðknNÞ.
Note that the time complexity of pre-LDA/QR is much

lower than many LDA methods. In summary, pre-LDA/QR

algorithm gains its efficiency by ignoring the within-class

information.
The second stage of LDA/QR refines the first stage by

addressing the issue of within-class distance. It incorporates

the within-class scatter information by applying a relaxation

scheme to W (relaxing W from an orthogonal matrix to an

arbitrary matrix). More specifically, we look for a transfor-

mation matrix G such that G ¼ QW , for some W . (Note that

W is not required to be orthogonal.) The original problem

on computing G is equivalent to computing W . Since

GTSbG ¼ WT ðQTSbQÞW;

GTSwG ¼ WT ðQTSwQÞW;

the original optimization problem on finding optimal G is

equivalent to finding optimal W , with ~SSb ¼ QTSbQ and
~SSw ¼ QTSwQ as the “reduced” between-class and within-

class scatter matrices, respectively.
The optimal W can be computed by solving the

following optimization problem:

W ¼ argmin
W

trace ðWT ~SSbW Þ�1ðWT ~SSwW Þ
� �

: ð8Þ

Note that ~SSb is nonsingular and has much smaller size than

the original scatter matrix Sb.
The optimization problem in (8) can be solved using the

similar method for classical LDA. That is, we compute

optimal W by applying the eigen-decomposition to ~SS�1
b

~SSw.

The pseudocode for this algorithm is given in Algorithm 2.

Note that the eigenvalues are ordered in nondecreasing

order in Line 6 of the LDA/QR algorithm, since the inversion

is applied to the “reduced” between-class scatter ~SSb.

4.1 Time Complexity of LDA/QR Algorithm

The time complexity of the LDA/QR algorithm can be

analyzed as follows: Line 2 takes Oðk2nÞ time for QR

decomposition with column pivoting [10]. Line 3 takes

OðNnkÞ time for multiplication of two matrices. It takes

Oðt2kÞ time in Line 4, where t ¼ rankðHbÞ is less than or

equal to k� 1; hence, Line 4 takes Oðk3Þ. Similarly, the

complexity for Line 5 is Oðk2NÞ. Line 6 computes the eigen-

decomposition of a k by k matrix, hence takes Oðk3Þ [10].

The matrix multiplication in Line 7 takes Oðnt2Þ ¼ Oðnk2Þ.
Finally, in Line 8, it takes OðtnNÞ ¼ OðknNÞ time for matrix

multiplication.
Recall that the number of dimensions (n) and the total

number of points (N) are usually much larger than the

number of classes (k). Hence, the most expensive steps in

the second stage of the LDA/QR algorithm are Lines 3 and

8, which take OðNnkÞ. Therefore, the total (training)

complexity of the LDA/QR algorithm is the same as pre-

LDA/QR, i.e., linear on the number of data points, as well

as the number of dimensions. In the test stage, the

complexity of reducing the dimension of a new coming

datum is OðnkÞ, which is the same as other LDA methods.

4.2 Scalability of LDA/QR Algorithm

Scalability of a dimension reduction algorithm is highly

desirable for large data sets. Most algorithms, such as PCA,

PCA+LDA, LDA/GSVD, and RLDA, require the entire data

in main memory for the SVD or GSVD computation, and

are thus not scalable. LDA/QR is highly scalable under the

assumption that the number of classes is small enough such

that all class centroids can reside in main memory. This is

not a restrictive assumption for most applications. With this

assumption, the scalability of LDA is mainly achieved by

the incremental matrix computations in Lines 3 and 8. By

incremental matrix computation, we refer to the processing

of one data-stream at a time in matrix computation.
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Next, we give more detailed analysis on the scalability of

the LDA/QR algorithm. It first computes the k class

centroids mi and the global centroid m by scanning the

whole data set once and stores them in a temporary array.

By subtracting each local centroid mi by the global

centroid m, we keep the matrix Hb in main memory.

QR decomposition with column pivoting is then applied to

Hb. As mentioned above, we can process one data-stream at

a time to do the matrix multiplication in Line 3 by scanning

the whole data set one more time. Lines 4, 6, and 7 only

involve small matrices. Recall that ~SSb; ~SSw and ~SS�1
b

~SSw are all

of size t� t, where t, the rank of Hb, is smaller than the

number of classes. Line 5 involves the matrix Z 2 IRN�k.

The multiplication ZTZ can be computed efficiently if the

matrix Z can be kept in main memory. Otherwise, the

matrix multiplication can be done incrementally by the

following observation: If

Z ¼ Z1

Z2

� �

;

then

ZTZ ¼ ZT
1 ; Z

T
2

� 	 Z1

Z2

� �

¼ ZT
1 Z1 þ ZT

2 Z2:

Similar to Line 3, the computation in Line 8 can be done by

scanning the whole data set one more time.
Table 2 lists the time/space complexity of the dimension

reduction algorithms discussed in this paper. We can

observe that LDA/QR and pre-LDA/QR are distinctly

more efficient than other methods.

4.3 Equivalence between LDA/QR and
Pseudoinverse LDA

As discussed in Section 3.1, classical LDA computes the

optimal transformation matrix by computing the eigen-

decomposition on S�1
w Sb, if Sw is nonsingular, or S�1

b Sw, if Sb

is nonsingular. A natural extension of classical LDA for

singular scatter matrices is to compute the eigen-decom-

position on Sþ
b Sw or Sþ

wSb, as discussed in Section 3.2.1.
The eigen-decomposition on Sþ

b Sw is closely related to

the LDA/QR algorithm, as stated in the following theorem.

Theorem 2. Let G be the optimal transformation matrix obtained
from the LDA/QR algorithm. Then, the columns of G are
eigenvectors of Sþ

b Sw corresponding to the nonzero eigenvalues.

Proof. Let x be an eigenvector of Sþ
b Sw corresponding to the

nonzero eigenvalue �, i.e., Sþ
b Swx ¼ �x. Let

Hb ¼ ½Q; ~QQ� R

0

� �

�

be the QR decomposition of Hb with column pivoting,
where ½Q; ~QQ� 2 IRn�n is orthogonal, R is upper triangular,
and � is a permutation matrix. It follows from Proposi-
tion 1 that

Sþ
b ¼ ðHbH

T
b Þ

þ ¼ ½Q; ~QQ� ðRRT Þ�1
0

0 0

� �

½Q; ~QQ�T :

Hence,

Sþ
b Swx ¼ ½Q; ~QQ� ðRRT Þ�1

0

0 0

� �

½Q; ~QQ�THwH
T
wx ¼ �x;

or

ðRRT Þ�1
0

0 0

� �

QT

~QQT

� �

HwH
T
wx ¼ �

QT

~QQT

� �

x:

It follows that

ðRRT Þ�1

0

� �

QTHwH
T
w ½Q; ~QQ� QTx

~QQTx

� �

¼ �
QTx
~QQTx

� �

:

It is easy to check that ~QQTx ¼ 0. Hence,

ðRRT Þ�1
QTHwH

T
wQ

� 	

QTx ¼ �QTx;

which implies that QTx is an eigenvector of

ðRRT Þ�1
QTHwH

T
wQ;

the same matrix used in Line 6 of the LDA/QR
algorithm. This completes the proof of the theorem. tu
Theorem 2 shows the relationship between LDA/QR and

pseudoinverse LDA. More specifically, LDA/QR is shown
to be a special case of pseudoinverse LDA with the
pseudoinverse applied to the between-class scatter matrix
Sb, and the LDA/QR algorithm proposed in this paper
provides an efficient way for computing the eigen-decom-
position of Sþ

b Sw.

4.4 LDA/QR and PCA+LDA: Approximations
of LDA/GSVD

In [32], the equivalence between pseudoinverse LDA and
LDA/GSVD was presented. More specifically, it was shown
that the solution to LDA/GSVD can be obtained by
computing the eigen-decomposition on the matrix Sþ

t Sb.
That is, LDA/GSVD is a special case of pseudoinverse LDA,
where the pseudoinverse is applied to the total scatter
matrix St. It is then straightforward to show that LDA/
GSVD can be decomposed into two stages: an intermediate
dimension reduction stage using the eigen-decomposition
on St followed by LDA. More specifically, let St ¼ U�UT be
the eigen-decomposition, where U 2 IRn�r has orthonormal
columns, � 2 IRr�r is diagonal with positive diagonal
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TABLE 2
Complexity Comparison: N Is the Number of Training Data

Points, n Is the Number of Dimensions, and
k Is the Number of Classes



entries, and r ¼ rankðStÞ. Then, the “reduced” scatter

matrices after the first stage are

~SSw ¼ ðUTHwÞðUTHwÞT ;
~SSb ¼ ðUTHbÞðUTHbÞT ;
~SSt ¼ UTStU ¼ �:

Since ~SSt is nonsingular, the second stage computes the

optimal transformation by applying the eigen-decomposi-

tion to ð ~SStÞ�1 ~SSb, as discussed in Section 3.1.
The decomposition of LDA/GSVD into two stages

naturally leads to its connection with LDA/QR and

PCA+LDA since both LDA/QR and PCA+LDA apply two-

stage dimension reduction. In the first stage of LDA/QR, the

eigen-decomposition is applied to Sb. Note that Sb is an

approximation ofSt, when all data points from the same class

are replaced by the centroid. This can be observed from the

following equality:

St � Sb ¼ Sw ¼ 1

N

X

k

i¼1

X

x2Ai

ðx�miÞðx�miÞT ;

where mi is the centroid of the ith class and Ai contains the

data points from the ith class. Hence, LDA/QR can be

considered as an approximation of LDA/GSVD, where the

eigen-decomposition is applied to Sb, instead of St, in its

first stage.
In the first stage of PCA+LDA, the total scatter St ¼

U�UT is approximated by St � Up�pU
T
p , where Up consists

of the first p columns of U , and �p is the pth principal

submatrix of �. Hence, PCA+LDA can also be considered as

an approximation of LDA/GSVD, where St is approxi-

mated by its optimal rank-p approximation in its first stage.

It is worthwhile to note that when p is equal to the rank of

St, PCA+LDA is equivalent to LDA/GSVD.
Therefore, both LDA/QR and PCA+LDA are approxima-

tions of LDA/GSVD. The main difference is that LDA/QR

applies pre-LDA/QR in the first stage, while PCA+LDA

applies PCA in the first stage. However, LDA/QR is much

more efficient than PCA+LDA, as shown in Table 2. Detailed

comparative studies are given in the next section.

5 EXPERIMENTS

We evaluate the effectiveness of the LDA/QR algorithm in

this section. It contains four parts. The data sets for our

performance study arepresented in Section 5.1. In Section 5.2,

we compare LDA/QR with other LDA methods, including

PCA+LDA, LDA/GSVD, and RLDA, in terms of classifica-

tion accuracy. (We also report the result on PCA, in

unsupervised implementation, for each data set.) We use

theK-NearestNeighbor (KNN) algorithm [6] as the classifier.

The classification accuracies are estimated by 10-fold cross-

validation [6].
In Section 5.3, we study the efficiency of the LDA/QR

algorithm and compare it with other competing algorithms.

Our hardware configuration is 1.80GHz CPU and 1G RAM.

An important observation from this study is that LDA/QR

and pre-LDA/QR have distinctly less computational time

than other dimension reduction algorithms. Finally, we
study the scalability of the LDA/QR algorithm in Section 5.4.

5.1 Data Sets

We have three types of data sets for our performance
evaluation: 1) synthetic data (2D and 50D), 2) face images
(PIX, ORL, and AR), and 3) text documents (tr41, re0, and
re1), as shown below:

. 2D synthetic data set. It contains 200 data points
from two classes (each has 100 points) in the
2D space. Data in the first class is generated from a
Gaussian whose mean is ½0; 0�, and data in the
second class is generated from a mixture of two
Gaussians: The first one has 30 points with the mean
½2; 2� � ½

ffiffi

2
p

2
;�

ffiffi

2
p

2
��, and the second one has 70 points

with the mean ½2; 2� þ ½
ffiffi

2
p

2
;�

ffiffi

2
p

2
�� (for some �). All

these Gaussians have covariance 0:5I2, where I2 2
IR2�2 is the identity matrix.

. 50D synthetic data set. It contains 450 data points
from three classes in the 50D space. The three
classes contain 100, 150, and 200 points, respec-
tively, which are generated from Gaussians of
different means: 01�50, 11�50þ0:2½11�25;�11�25�, and
11�50�0:2½11�25;�11�25�, where 01�u (respectively,
11�u) is a vector consisting of u zeros (respectively,
ones). All these Gaussians have covariance 0:5I50,
where I50 2 IR50�50 is the identity matrix.

. ORL face data set.1 It contains 400 face images of
40 individuals. The image size is 92� 112. The face
images are perfectly centralized. The major chal-
lenge on this data set is the variation of the face pose.
There is no lighting variation with minimal facial
expression variations and no occlusion. We use the
whole image as an instance (i.e., the dimension of an
instance is 92� 112 ¼ 10; 304).

. PIX face data set.2 It contains 300 face images of
30 individuals. The image size is 512� 512. We
subsample the images with sample step 5� 5, and
the dimension of each instance is reduced to
100� 100 ¼ 10; 000.

. AR face data set.3 It is a large face image data set
[22]. The instance of each face may contain sig-
nificantly large areas of occlusion, due to the
presence of sun glasses and scarves. The existence
of occlusion dramatically increases the within-class
variations of AR face image data. In this study, we
use a subset of AR containing 1,638 face images of
126 individuals. Its image size is 768� 576. We first
crop the image from the row 100 to 500 and the
column 200 to 550, and then subsample the cropped
images with sample step 4� 4. The dimension of
each instance is reduced to 101� 88 ¼ 8; 888.

. tr41 text data set. It is derived from the TREC-5,
TREC-6, and TREC-7 collections [29].

. re0 and re1 text data sets. They are derived from
Reuters-21578 text categorization test collection Dis-
tribution 1.0 [18].
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For all three text data sets, we use a stop-list to remove
common words, and the words are stemmed using Porter’s
suffix-stripping algorithm [23]. Moreover, any term that
occurs in fewer than two documents is eliminated as in
[34]. We use the tf-idf weighting scheme [25], [34] for all the
documents. Finally, all document vectors are normalized to
have unit length. More information on the three text data
sets can be found in [34].

Table 3 summarizes the statistics of our real test data sets.
The two synthetic data sets are used to visually evaluate

the performance of LDA/QR in comparison with LDA/
GSVD. Note that LDA/GSVD is equivalent to classical LDA
with nonsingular scatter matrices, which is the case for our
two synthetic data sets.

Visualization of LDA/QR. We first consider the

2D synthetic data set with � ¼ 0 (Fig. 1a). LDA/GSVD

and LDA/QR are applied to the 2D synthetic data set,

respectively. The two projection lines of LDA/GSVD and

LDA/QR are shown in Fig. 1a. Figs. 1b and 1c) show the

projections of all points onto the two projection lines of

LDA/GSVD and LDA/QR, respectively. We can observe

that the transformation (projection line) of LDA/QR is close

to that of LDA/GSVD and, thus, the separability of the

projected data in both cases are also similar to each other

(see Figs. 1b and 1c).
Next, we consider the 50D synthetic data set. Its

2D projection via LDA/GSVD and LDA/QR are shown in

Fig. 2. (Recall that we have three classes here.) We can

observe the similar separability of data in these two cases.
Centroid sensitivity of LDA/QR. Note that the first

stage of LDA/QR is essentially the orthogonalization of the

k class centroids. If the centroids do not configure the

decision boundary well, LDA/QR tends to fail, as shown in

Figs. 1d, 1e, and 1f, where we increase � from 0 to 5 (i.e., the

distance between the centroids of two Gaussians in the

second class increases). In this scenario, there is a significant

disagreement between LDA/QR and LDA/GSVD, as

shown in the different angles of two transformations/lines

in Fig. 1d. We can observe from Fig. 1f that the projections

of two classes via LDA/QR overlap. On the other hand,

LDA/GSVD considers the maximum discrimination be-

tween different classes and is able to separate these two

classes, as shown in Fig. 1e.
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TABLE 3
Statistics of Our Real Test Data Sets

Fig. 1. Visualization of 2D synthetic data and its projections via LDA/GSVD (dashdot lines) and LDA/QR (solid lines). The first and second rows

correspond to � ¼ 0 and � ¼ 5, respectively. (b), (e) LDA/GSVD, (c), (f) LDA/QR.



5.2 Classification Accuracy

In this experiment, we evaluate the LDA/QR algorithm in

terms of classification accuracy and compare it with other

algorithms, including PCA, PCA+LDA, Pre-LDA/QR,

LDA/GSVD, and RLDA. The relevant parameters are as

follows: p ¼ 100 principal components in PCA and the PCA

stage of PCA+LDA (except the AR data set, where p ¼ 150)

and � ¼ 0:5 in RLDA. For LDA algorithms, the output

dimension is k� 1, where k is the number of classes in the

data set, as the k centroids in all data sets are linearly

independent.

Table 4 shows the classification accuracy results of

different dimension reduction algorithms on three face

image data sets: ORL, PIX, and AR. The most interesting

result lies in the classification accuracy results on the

AR data set. We observe that LDA/QR, PCA+LDA,

LDA/GSVD, and RLDA distinctly outperform the other

two dimension reduction algorithms. Recall that the images

in the AR data set contain large areas of occlusion whose

direct consequence is the large within-class variation of

each individual. The effort of minimizing the within-class

variation achieves distinct success in this situation. Neither

YE AND LI: A TWO-STAGE LINEAR DISCRIMINANT ANALYSIS VIA QR-DECOMPOSITION 937

Fig. 2. Projections of 50D synthetic data onto the 2D planes via LDA/GSVD and LDA/QR. (a) LDA/GSVD, (b) LDA/QR.

TABLE 4
Classification Accuracies (%) of Different Dimension Reduction Algorithms on the Three Face Image Data Sets: ORL, PIX, and AR

The mean and standard deviation (in parenthesis) of accuracies from ten runs are shown.



PCA nor pre-LDA/QR has the effort in minimizing the
within-class variation, which predicts their poor perfor-
mance in this situation.

Besides the major observation mentioned above, other
important observations on image data sets include:

. KNN with K ¼ 1 usually performs the best by all
algorithms on all three image data sets. Except
LDA/GSVD and RLDA, there is a clear trend of
decrease in accuracy for each data set asK increases.

. On ORL and PIX, the best accuracies are around
99 percent. Several algorithms can achieve this
accuracy. This is mainly due to the relatively small
within-class variations in these data. Recall that ORL
face images contain small pose variations, and PIX
face images contain facial expression variations only.

Next, let us shift the performance study to the text data.
Table 5 shows the classification accuracy results on three
text data sets: tr41, re0, and re1. The main observation on
the text data is that pre-LDA/QR becomes competitive with
other LDA algorithms. This may be related to the fact that
text data sets have relatively small within-class variation.

Besides the main observation, two important observa-
tions on text data are:

. The accuracy of different LDA methods keeps
increasing up to K ¼ 10. This phenomenon does
not occur on image data. This is mainly due to the
large number of instances contained in each class of

text data. For example, each class in tr41 has
90 instances in average.

. We observe that the best accuracy on tr41 is around
96 percent, which is distinctly higher than the best
accuracy on the other two (86 percent). (Recall that
the dimension, 7,454, of the first data set, is much
higher than those of the other two, which are around
3,000.)

5.3 Efficiency

In this experiment, we study the efficiency of the

algorithms, measured by the CPU time (in log scale). The

results are summarized in Fig. 3. We observe that, except

pre-LDA/QR, the computational time of LDA/QR is

distinctly less than others. Since the number of principal

components used in PCA is usually small, (p ¼ 150 for AR

and p ¼ 100 for other data sets), the computational times of

PCA and PCA+LDA are close to each other.

5.4 Scalability

We study two aspects of scalability in this section: the

scalability with respect to the number of original/input

dimensions and the scalability with respect to the number

of training data points. We analyze the scalability using the

AR image data set. The results for PCA+LDA are also

shown for comparison. Following the analysis in [13], we

use the total response time for generating the optimal

transformation as the parameter for measurement.
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Classification Accuracies (%) of Different Dimension Reduction Algorithms

on the Three Text Document Data Sets: tr41, re0, and re1

The mean and standard deviation (in parenthesis) of accuracies from ten runs are shown.



In the first experiment, we consider the case where the
whole data matrix is kept in main memory. This is the case

for our AR data set. We fix the number of training data
points and vary the number of original/input dimensions

from 2,000 to 8,000 by removing the remaining dimensions
in the original full-dimensional space. The results are
shown in Fig. 4, where the horizontal axis denotes the
number of original/input dimensions and the vertical axis
denotes the total response time. Here, the time for reading
the data matrix is omitted since the whole data set is
scanned once only. Fig. 4 shows that the total response
times of both LDA/QR and PCA+LDA are linear on the
number of dimensions for a fixed number of training data
points. However, the increasing rate of LDA/QR is much
lower than that of PCA+LDA.

Next, we fix the number of original/input dimensions
and vary the number of training data points from 200 to
1,600. The results are shown in Fig. 5. We can observe that
the total response time of LDA/QR is still linear on the
number of training data points, whereas the total response
time of PCA+LDA is quadratic on the number of training
data points. These results confirm the theoretical complex-
ity estimation in Table 2.

In the second experiment, we simulate the scalability of
the LDA/QR algorithm by reading 400 data points each
time. (Note that PCA+LDA is not scalable in this case.) The
results are shown in Fig. 6, where the horizontal axis
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Fig. 3. Comparison of different dimension reduction algorithms on the

CPU time (measured in seconds in log scale) in computing the reduced

representations.

Fig. 4. Scalability of LDA/QR and PCA+LDA with respect to the number of original/input dimensions, using the AR data set. The horizontal axis is the
number of dimensions, and the vertical axis is the total response time. (a) LDA/QR, (b) PCA+LDA.

Fig. 5. Scalability of LDA/QR and PCA+LDA with respect to the number of training data points, using the AR data set. The horizontal axis is the
number of training data points, and the vertical axis is the total response time. (a) LDA/QR, (b) PCA+LDA.



denotes the number of training data points and the vertical
axis denotes the total response time. It is clear from Fig. 6
that the total response time of LDA/QR is linear on the
number of training data points, except when the number of
data points reaches 400, where there is a jump. Note that
we read 400 data points each time, which is much fewer
than the total number of data points in the AR data set.
Hence, the whole data matrix gets scanned multiple times
in the LDA/QR algorithm (see the scalability analysis in
Section 5.4).

6 DISCUSSION

6.1 LDA/QR versus Pre-LDA/QR

From the perspective of linear algebra, the solution to pre-
LDA/QR is a special case of the LDA/QR algorithm when
the within-class scatter matrix Sw is set to be an identity
matrix. Or equivalently, LDA/QR can be considered as an
extension of pre-LDA/QR by incorporating the within-class
information. When the within-class variation in a data set is
large, the pre-LDA/QR algorithm is not guaranteed to
perform well. LDA/QR overcomes this limitation by
incorporating the within-class information at the second
stage. This has been justified by the result on the AR data
set in Section 5.2.

6.2 LDA/QR versus PCA+LDA

As discussed earlier, both LDA/QR and PCA+LDA apply
an intermediate dimension reduction stage before the LDA
stage. The main difference is that pre-LDA/QR is applied in
LDA/QR, in contrast to PCA in PCA+LDA. Extensive
experiments in Section 5.2 show that pre-LDA/QR outper-
forms PCA, which partly explains why LDA/QR is
competitive with PCA+LDA. The superiority of pre-LDA/
QR over PCA may be related to the fact that class label
information is used in pre-LDA/QR, while PCA is
unsupervised. Another interesting observation here is that,
even though pre-LDA/QR outperforms PCA, when com-
bined with LDA, PCA+LDA is competitive with LDA/QR.
However, when large data sets are involved and efficiency
is considered to be an important factor, LDA/QR is

preferred, due to its lower time and space complexities
compared to PCA+LDA (see Section 5.3).

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose an extension of discriminant
analysis, namely, LDA/QR, which is highly efficient and
scalable. It is the QR decomposition that contributes to the
efficiency and scalability of the LDA/QR algorithm, which
is not only shown by our theoretical analysis, but also
strongly supported by our empirical results.

The proposed algorithm is closely related to other LDA
methods. More specifically, LDA/QR is shown to be a
special case of pseudoinverse LDA with the pseudoinverse
applied to the between-class scatter matrix. We also show
that both LDA/QR and PCA+LDA are approximations of
LDA/GSVD. The main difference is that LDA/QR applies
pre-LDA/QR before the LDA stage, while PCA+LDA
applies PCA instead.

Our experiments on face image and text data have
shown that the accuracy achieved by the LDA/QR
algorithm is competitive with the ones achieved by other
LDA algorithms. Among all experiments, the results on the
AR image data set (that contains large within-class
variation) justify the effort of LDA/QR in minimizing the
within-class distance in its second stage.

With efficiency and scalability, LDA/QR is promising in
applications involving extremely high-dimensional data,
such as video, which is one of our future work.
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