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Abstract

Background: In microbiome studies, it is important to detect taxa which are associated with pathological

outcomes at the lowest definable taxonomic rank, such as genus or species. Traditionally, taxa at the target rank are

tested for individual association, followed by the Benjamini-Hochberg (BH) procedure to control for false discovery

rate (FDR). However, this approach neglects the dependence structure among taxa and may lead to conservative

results. The taxonomic tree of microbiome data represents alignment from phylum to species rank and

characterizes evolutionary relationships across microbial taxa. Taxa that are closer on the tree usually have similar

responses to the exposure (environment). The statistical power in microbial association tests can be enhanced by

efficiently employing the prior evolutionary information via the taxonomic tree.

Methods: We propose a two-stage microbial association mapping framework (massMap) which uses grouping

information from the taxonomic tree to strengthen statistical power in association tests at the target rank. massMap

first screens the association of taxonomic groups at a pre-selected higher taxonomic rank using a powerful

microbial group test OMiAT. The method then proceeds to test the association for each candidate taxon at the

target rank within the significant taxonomic groups identified in the first stage. Hierarchical BH (HBH) and selected

subset testing (SST) procedures are evaluated to control the FDR for the two-stage structured tests.

Results: Our simulations show that massMap incorporating OMiAT and the advanced FDR controlling methodologies

largely alleviates the multiplicity issue. It is statistically more powerful than the traditional association mapping directly

at the target rank while controlling the FDR at desired levels under most scenarios. In our real data analyses, massMap

detects more or the same amount of associated species with smaller adjusted p values compared to the traditional

method, which further illustrates the efficiency of the proposed framework. The R package of massMap is publicly

available at https://sites.google.com/site/huilinli09/software and https://github.com/JiyuanHu/.

Conclusions: massMap is a novel microbial association mapping framework and achieves additional efficiency by

utilizing the intrinsic taxonomic structure of microbiome data.

Keywords: Microbiome, Two-stage microbial association mapping, Taxonomic tree, Microbial group association test,

False discovery rate, Hierarchical BH, Selected subset testing

Background

The microbiome has important interactions in human

health and disease [1]. Microbiota disturbance has been

associated with human diseases including obesity, dia-

betes, Crohn’s disease, and numerous other conditions

[2–5]. With the development of next-generation sequen-

cing techniques, it is feasible to extract all the micro-

biota from multiple parts of the human body, assess

microbiome composition, and then link it with human

health/diseases [6]. Two high-throughput parallel se-

quencing approaches are widely used; one targeted to

the 16S rRNA amplicon sequencing and the other to

metagenomic shotgun sequencing [7].

We introduce our method using microbiome data gen-

erated from 16S rRNA sequencing studies. Based on 16S

rRNA sequencing, the reads from the amplicons are clus-

tered into operational taxonomic units (OTUs) according

to sequence similarity, and then their read counts or rela-

tive abundances are evaluated. OTUs are assigned to a
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taxonomic tree at the kingdom, phylum, class, order, fam-

ily, genus, and species ranks [8, 9], hierarchically using ei-

ther the online Greengenes [10] or the RDP classifier [11]

taxonomy assignments. The taxonomic tree displays the

evolutionary relationship among the microbial taxa; taxa

that are closer on the tree tend to have similar responses

to environmental shifts [12, 13].

There is general interest to detect association between

traits and microbial taxa at the various taxonomic ranks.

Researchers usually begin investigation for community-level

analysis at the highest taxonomic rank to determine

whether the overall microbial profiles are different between

groups or associated or not with the trait. For example, the

analyses of bacterial communities within (α-diversity) and

between samples (β-diversity) [2, 3, 14] are two commonly

used approaches. Significant results at the community level

lead to the further identification of the roles of specific mi-

crobes to better understand the mechanisms involved in

microbiome perturbations. Most often, investigators are in-

terested in the association mapping of taxa at the lowest de-

finable rank, such as genus or species, considered as the

‘target rank.’

Several statistical methods have been developed explicitly

for microbiome data to examine for differential abundance

among groups or to test for microbial association with con-

tinuous traits at a specific taxonomic rank [15–18]. LEfSe

[15] uses the Kruskal-Wallis test to detect significant differ-

ential abundances among groups, but does not correct for

multiple comparisons. Other association testing methods,

such as metagenomeSeq-fit Zig [16] and STAMP [17], as-

sume that the testing taxa are independent. They examine

taxa individually and use the q value method [19] or the

Benjamini-Hochberg (BH) procedure [20] to control the

false discovery rate (FDR). Because of the sparse signal and

large number of multiple comparisons, this usually leads to

very few discoveries. However, the microbes in a commu-

nity are usually dependent upon one another, and

trait-associated taxa tend to be clustered evolutionarily in-

stead of randomly distributed across the community [12].

Therefore, an association mapping framework which could

exploit the known taxonomic structure, i.e., the microbial

evolutionary relationships, to better target on associated

taxa would have substantial potential.

In this study, we propose a powerful two-stage microbial

association mapping framework (massMap), which incor-

porates advanced FDR-controlling procedures based on

the microbial dependence structures through the taxo-

nomic tree. In the first stage, an upper-level taxonomic

rank is first pre-selected as the ‘screening rank.’ The asso-

ciation for taxonomic groups at this selected rank is then

tested by OMiAT, a new microbiome-based group associ-

ation testing method, designed to discover significant as-

sociation signals for an upper-level taxon considering

various relative contributions from both microbial

abundance and phylogenetic information in its lower line-

ages [18]. In the second stage, the association tests for taxa

within the groups discovered in the first stage are per-

formed at the ‘target rank.’

The proposed framework constitutes three building

components: (1) a pre-selected taxonomic rank for screen-

ing; (2) a powerful microbial group test OMiAT, to iden-

tify the taxonomic groups that contain the associated taxa;

and (3) an advanced FDR-controlling methodology to re-

solve the dependency among taxa. The taxonomic tree

classifies the microbes in the bacterial kingdom into ranks

from the most general rank phylum where each taxo-

nomic group contains many taxa, to the most specific

rank species with one member in each group. Selection of

a screening rank balances the group testing power as well

as proportion of truly associated taxa among the signifi-

cant groups. The group association test for screening is

more powerful at a higher rank regarding. However, as the

groups classified by the higher rank have too many mem-

bers, there is still a very high proportion of unassociated

taxa within the groups, i.e., the signal has not condensed

enough after screening. Thus, a middle taxonomic rank

such as order or family is expected to perform best in the

proposed two-stage framework. A highly powerful micro-

bial group test guarantees a higher probability that it only

eliminates not-associated microbial taxa and retains true

signals to the target rank. The data-driven approach of

OMiAT is a microbial group test designed for this purpose

and it can efficiently detect microbial groups varying in as-

sociation patterns. The hierarchical BH (HBH) [21, 22]

and the selected subset testing (SST) procedures [23, 24]

are two FDR-controlling procedures capable of handling

multiple hypotheses with two-stage structures. These have

been applied in microarray data analysis and permit

greater discovery than the traditional BH procedure [25].

massMap fully utilizes the prior information from the

taxonomic tree, in which the first stage eliminates

less-promising taxa and therefore condenses the associ-

ation signal. Through extensive simulations and two real

data analyses, we show that massMap achieves higher

statistical power and detects more biologically meaning-

ful taxa than the traditional one-stage microbial associ-

ation test.

Methods

A two-stage microbial association testing framework:

massMap

Suppose we have observed the microbial abundance infor-

mation of N subjects for M taxa at the target rank. We

propose to perform the screening test at a pre-selected

higher screening rank, and its taxonomy assignment parti-

tions M taxa into G taxonomic groups. Let the gth group

consist of mg (mg ≥ 1) taxa then ∑gmg =M. For subject i,

denote the outcome trait, either binary or continuous, as
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Yi, the abundance of taxa in the gth group as Zig

¼ ðZig1;Zig2;…;Zigmg
Þ0; and p covariates as Xi = (Xi1, Xi2,

…, Xip)
′ respectively.

At the screening rank, the group association test is

used to examine the association between each group of

taxa and the outcome trait. We use the logistic regres-

sion model for a binary outcome:

Logit P Y i ¼ 1ð Þ½ � ¼ β0 þ α0
X i þ β0

gZig ; ð1Þ

and the linear regression model for a continuous outcome:

Y i ¼ β0 þ α0
X i þ β0gZig þ ϵi: ð2Þ

where β0 is the intercept, α = (α1,…, αp)
′ is the vector of

coefficients of covariates, βg ¼ ðβg1; βg2;…; βgmg
Þ0 is the

vector of coefficients for abundance of taxa from group

g, and ϵi is an error term with mean 0 and variance σ2.

The definition of a trait-associated group is that at least

one of the taxa in the group is associated with the trait.

Correspondingly, the screening hypothesis for the gth

group is

H0g : βg1 ¼ βg2 ¼ … ¼ βgmg
¼ 0 v:s:H1g

: at least one βgj≠0; j ¼ 1;…;mg :

OMiAT is a powerful test specifically designed for the

detection of varying association patterns for a group of

taxa and can accommodate multiple covariates [18].

Thus, it is a useful screening test for our two-stage asso-

ciation mapping framework, and we employ it to test

the associations between taxonomic groups and traits.

The corresponding test statistic is

M
g
OMiAT ¼ minP T

g
aSPU ;Q

g
OMiRKAT

� �

:

where T
g
aSPU and Q

g
OMiRKAT are two adaptive test statistics.

T
g
aSPU is useful for modulating different association pat-

terns arising from highly imbalanced microbial abun-

dances. It is adapted from the sum of score powered tests

(SPU) [26] which was originally proposed for gene- or

region-based association testing in genome-wide associ-

ation studies [18]. Q
g
OMiRKAT , advantageous in detecting

microbial group associations utilizing phylogenetic tree in-

formation, is tailored from the microbiome regression-

based kernel association test (MiRKAT) [27], originally

proposed as a microbial community association test.

Please see Eq. (9) of [18] for notation and detailed explan-

ation. OMiAT aims to detect varying association patterns

which can be captured by either aSPU or OMiRKAT,

using the minP procedure within the taxonomy group.

At the target rank, we are interested in the association

between each taxon and the outcome trait. For taxon j(j

= 1,…,mg) from the gth group, the model for binary,

and continuous trait are

Logit P Y i ¼ 1ð Þ½ � ¼ β0 þ α0
X i þ βgjZigj;

and

Y i ¼ β0 þ α
0

X i þ βgjZigj þ ϵi:

respectively. Thus, the corresponding targeting hypoth-

eses within group g are

H0g1 : βg1 ¼ 0 vs H1g1 : βg1≠0;

…

H0gj : βgj ¼ 0 vs H1gj : βgj≠0;

…

H0gmg
: βgmg

¼ 0 vs H1gmg
: βgmg

≠0:

Denote the predicted value of Yi under H0gj by Ŷ i ,

where Ŷ i ¼ β̂0 þ α̂ 0
X i for continuous traits and Ŷ i

¼ Logit−1ðβ̂0 þ α̂0
X iÞ for binary traits, respectively; β̂0

and α̂ are the maximum likelihood estimates (MLEs)

under H0gj. The association between the jth taxon and

the trait can be tested by the non-parametric score test

statistic [18]:

Ugj ¼
X

N
i¼1 Y i−Ŷ i

� �

Zigj; j ¼ 1;…;mg:
ð3Þ

We used the residual-permutation method to calculate

p values of statistics as in [18].

The two-stage microbial association mapping frame-

work massMap is described as a two-level hierarchical

tree in Fig. 1. The group association test and the individ-

ual taxon detection are performed at the screening rank

and the target rank respectively. massMap screens out

groups among which taxa are unlikely to be associated

and only retains the more promising ones to the target

rank. The association signal condenses after the screen-

ing step so that the proportion of truly associated taxa is

increased within the candidate groups. By utilizing the

advanced FDR controlling procedures introduced below,

we could further enhance the association mapping

power. Next, we discuss how to implement the advanced

FDR controlling procedures to move from the screening

rank to the target rank to discover associated taxa.

Advanced FDR controlling procedures

We consider two advanced FDR-controlling procedures:

the hierarchical BH (HBH) procedure [21, 22] and the

selected subset testing with BH (SST) procedure [23, 24]

to accommodate the hierarchically structured hypoth-

eses in massMap. Both procedures involve the assembly

of multiple BH procedures. All of the BH procedures

below are conducted at level FDR = q without explicit

declaration. Denote the set of screening hypotheses by
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T 0 ¼ fH01;…;H0g ;…;H0Gg and the target hypotheses

organized into groups by T 1 ¼ fH011;…;H01 j;…;H01m1

g;…; T G ¼ fH0G1;…;H0Gj;…;H0GmG
g. Further, the cor-

responding raw p values are denoted by P0 ¼ fp01;…;

p0g ;…; p0Gg , P1 ¼ fp011;…; p01 j;…; p01m1
g;…; and PG

¼ fp0G1;…; p0Gj;…; p0GmG
g, respectively.

HBH procedure

The HBH procedure applies to p values arranged in a

tree of disjoint subfamilies and is conducted as follows:

At the screening rank: apply the BH procedure to

P0. The groups with adjusted p values <q are called the

discovered groups. Without loss of generality, we

assume that the first R groups are discovered;

At the target rank: within the gth discovered group, g

= 1, , R, apply the BH procedure to Pg . The taxa with

adjusted p values <q are reported as trait-associated taxa.

SST procedure

The SST procedure is to treat the two-level hierarchical

tree simply as a two-stage structure, and it can be imple-

mented as follows:

At the screening rank: same as in the HBH

procedure;

At the target rank: pool the p values from

R discovered groups into one set and denote it as

Ppooled ¼ fp011;…; p01m1
;…; p0R1;…; p0RmR

g. The

corresponding taxa are called the selected subset.

Apply the BH procedure to the pooled p values. The

taxa with adjusted p values <q are reported as trait-

associated taxa.

The HBH procedure has merit since it reports

many discoveries [21, 22], but it sometimes has

higher FDR than the nominal level. In comparison,

SST is more conservative than HBH. If tests between

two stages are independent, either utilizing an inde-

pendent source of data or testing unrelated hypoth-

eses, SST procedure can control the FDR at the

desired level. Notice that in our setting, we use the

same data to implement the tests in both stages; the

test statistics in the second stage might thus not be

independent of those in the first stage. As the SST

procedure is commonly implemented in microarray

analysis where tests from both stages use the same

data [25], we ignore the minor dependence among

tests from both stages and apply the SST procedure

to the microbial association mapping analysis. For

convenience, we denote the two-stage framework

with OMiAT as the screening test and HBH or SST

as the FDR-control procedures as OMiAT-HBH or

OMiAT-SST, respectively.

Aggregated methods

Apart from OMiAT [18], there are other methods to de-

tect microbial group associations which are termed ag-

gregated methods in this article, including commonly

used programs such as LEfSe [15], metagenomeSeq-fit

Zig [16], and STAMP [17]. Even though the modeling

techniques and test statistics used are different, they all

assume that the effect sizes and directions of all taxa

within the tested group are the same. Under this as-

sumption, the abundance within each tested group is

summed and regressed towards the outcome. Here, we

investigate a representative aggregated method, as illus-

trated in [18]. Specifically, for the gth group, the corre-

sponding logistic regression model for binary outcome is

Fig. 1 Schematic of the two-stage microbial association mapping framework massMap. The association testing hypotheses are organized into a

two-level tree. The screening test is conducted at the first level of the tree using OMiAT (proposed) or the aggregated method (competing

method). Two advanced FDR controlling procedures are evaluated in this framework: the hierarchical BH (HBH) and the selected subset testing

with BH (SST) procedure [23, 24]
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Logit P Y i ¼ 1ð Þ½ � ¼ β0 þ α0
X i þ β�g

X

jZigj;

and the linear regression model for the continuous out-

come is

Y i ¼ β0 þ α0
X i þ β�g

X

j

Zigj þ ϵi

where β�g is the shared coefficient for the taxa in group

g, which reflects the assumption of the aggregated

methods: the effect sizes and directions of all taxa within

the tested group are the same. Then, its screening hy-

pothesis is

H0g : β
�
g ¼ 0 vs H1g : β

�
g≠0:

The non-parametric score test statistic from Eq. (3) is

used to test this screening hypothesis. As a comparison,

we include this test in the simulations and real data ana-

lyses and refer to it as the aggregated method. We denote

the two-stage framework with the aggregated method as

the screening test and HBH or SST as FDR-control proce-

dures as AGG-HBH or AGG-SST, respectively.

Traditional one-stage method

The traditional microbial association tests do not require

a screening step, rather directly conducting the associ-

ation test between the trait and taxa one by one at the

target rank. Therefore, the hypotheses set is the union of

hypotheses from G groups, i.e., T ¼ T 1∪…∪T G . The

corresponding p value set are denoted by P ¼ P1∪…∪

PG , and are calculated from the non-parametric score

statistics in Eq. (3). In traditional methods, the BH pro-

cedure is most commonly used to control FDR for mul-

tiple comparisons. We used the traditional method as

the benchmark method in both the simulations and real

data analyses, and denoted it as BH.

Results

We first conducted comprehensive simulations to evaluate

the performance of OMiAT-HBH, OMiAT-SST,

AGG-HBH, AGG-SST, and BH methods in relation to their

false discovery rates (FDR) and true positive rates (TPR) for

identifying the associated taxa at the target rank. Then, we

further applied those methods to two real microbiome stud-

ies to compare their practical performance: one involving

the American Gut Project (AGP) (www.americangut.org)

and the other, a two-group murine study [28].

Simulation settings

The simulation settings were similar to those used in prior

studies [18, 27, 29]. In those studies, the abundance tables

were first generated from the Dirichlet-multinomial (DM)

distribution based on a real microbiome dataset. Then,

the generalized linear model was utilized to generate the

value of outcome traits. OTUs were partitioned into clus-

ters using the partitioning-around-medoids (PAM) clus-

tering algorithm [30], where OTUs from a certain number

of clusters were further assigned to be trait-associated.

Following those prior studies, we generated our simula-

tion data as below. The taxonomic and phylogenetic tree

information and OTU table from AGP’s baseline micro-

biome data are the basis of our simulated data. In our

AGP data analysis, there are 174 OTUs retained after the

filtering. We generated the OTU abundance from the DM

distribution with 15,000 total reads per sample, using

function dirmult() from the R package “dirmult” [31]. The

corresponding proportion means and dispersion parame-

ters of the DM distribution were estimated from AGP’s

baseline microbiome data.

The continuous and binary traits were generated

under the following linear model (4) and logistic regres-

sion model (5), respectively,

Y i ¼
X

j∈Λ
β jscale Zij

� �

þ ϵi ð4Þ

Logit P Y i ¼ 1jZið Þ½ � ¼
X

j∈Λβ jscale Zij

� �

ð5Þ

where ϵi ∼N(0, 1) is the error term, and Zij is the OTU

abundance for subject i = 1, …, N. β = (β1,…, βj,…, β|Λ|)
′

is a vector of coefficients for the associated OTU. Λ is a

set of the indices of truly associated OTU and ∣Λ∣ is

the number of associated OTU.

To estimate the empirical false discovery rate (FDR)

and true positive rate (TPR) at the target rank, i.e., the

OTU level, we assigned 17 OTUs (10%) as the truly as-

sociated taxa as follows. We first partitioned the phylo-

genetic tree of AGP data into 10 groups based on the

co-phenetic distance matrix using the PAM algorithm.

Then, we randomly selected two groups. If the total

number of OTUs in the selected groups was greater than

17, we would stop. Otherwise, we would continue select-

ing the group randomly without replacement until there

are ≥17 OTUs in the selected groups. Lastly, we pooled

all the OTUs in the selected groups together and ran-

domly assigned 17 OTUs as trait-associated. As the

PAM algorithm partitions OTUs based on their phylo-

genetic distances, the associated OTUs from the clusters

are phylogenetically closer to each other. This procedure

is believed to be more realistic to represent the situation

when associated taxa are phylogenetically related [6, 12,

27, 30, 32]. Also note that the PAM clusters are only for

assigning the associated taxa, and we used the original

taxonomic structure from AGP data while implementing

the massMap.

For those 17 associated taxa, we considered two scenar-

ios of association. Under scenario 1, effects of associated

taxa have the same sign but varied strength, with small
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(βj∼ uniform (0, 2)), modest (βj∼ uniform (0, 3)) or large

effect sizes (βj∼ uniform (0, 4)). In contrast, the effect di-

rections were mixed in scenario 2, i.e., βj∼ uniform (− 2,

2), uniform (− 3,3), or uniform(− 4, 4). As sensitivity stud-

ies, we generated data where only 5% OTUs are

trait-associate. This represents the condition when a much

smaller proportion of OTUs are associated with the out-

come. We also simulated data when associated taxa

spread among the taxonomic tree. We partitioned the

phylogenetic tree into 50 small groups using the PAM al-

gorithm. Then 10% trait-associated OTUs are selected

from the 50 groups instead of from the 10 groups. In the

sensitivity studies, we only consider scenario 1 for the bin-

ary outcome as an illustration. In each simulation, we gen-

erated N=200 subjects and control the FDR at 0.05. Two

thousand independent replications are conducted for each

setting. The p values at screening rank and the target rank

are estimated based on 1 × 105 permutations.

Simulation results

In this section, we present the result for the binary out-

come and defer the result for the continuous outcome in

Additional files 1, 2 and 3: Figures S1–S3. We first

evaluate the screening performance of OMiAT and the

aggregated method using the receiver operating charac-

teristic (ROC) curves and the area under the curves

(AUCs) at the phylum, class, order, family, and genus

ranks, respectively (Fig. 2). From the ROC, it is evident

that OMiAT’s curves are consistently higher than those

from the aggregated method for all ranks under both

a

b

Fig. 2 The ROC curves and area under the curves (AUCs) for OMiAT and the aggregated method for identifying the associated groups at the

phylum, class, order, family, and genus ranks, respectively, in relation to the binary outcome variable. Panel a scenario 1: associated taxa have the

same positive effect direction; b scenario 2: associated taxa have mixed-effect directions
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scenarios (Fig. 2a for the same effect direction and Fig. 2b

for mixed directions). When we look into the AUC, we

observe that OMiAT’s performance as a screening test is

consistent between two scenarios and its AUC is highest

at the phylum rank, and decreases as the taxonomic

rank descends. This is explainable since OMiAT is more

powerful when the group size is larger and the upper

rank (such as phylum) groups consist of more target

level taxa than do the lower rank groups. In contrast,

the screening performance of the aggregated method is

less satisfactory when the associated taxa within the test-

ing group are more in mixed directions (Fig. 2b) than in

the same direction (Fig. 2a), because the aggregation

cancels the mixed-effect signals. Further, unlike OMiAT,

the AUC of the aggregated method increases as the

taxonomic rank descends because in theory the aggre-

gated method achieves the highest power when all taxa

within the group have the same effect size and direction.

As groups become smaller at lower taxonomic ranks,

the taxa within the group are more homogeneous, which

increases the power of the aggregated method. In sum-

mary, through simulations, we verified that the aggre-

gated method is not optimal for screening microbial

associated groups at the upper rank. As expected,

OMiAT exhibits marked performance as screening test

statistics in the proposed two-stage framework.

Figures 3 and 4 report the empirical FDR and the TPR at

the target rank for OMiAT-HBH, OMiAT-SST,

AGG-HBH, and AGG-SST two-stage tests, when their

screening tests are conducted at different taxonomic ranks

for two association scenarios, respectively. The traditional

one-stage method with BH procedure is considered as the

benchmark in this simulation. The empirical FDR is de-

fined as the proportion of the false discoveries among all

discoveries at the target rank. From Figs. 3a and 4a, we ob-

serve that OMiAT-HBH and OMiAT-SST’s empirical FDRs

are well-controlled around the nominal level 0.05, except

when the screening test is conducted at genus rank in

Fig. 3 The false discovery rate (a) and true positive rate (power) (b) of massMap and the traditional BH method for the binary outcome variable.

Scenario 1: the associated taxa have the same effect direction, with small (β ∼ uniform(0, 2), left panel), modest (β ∼ uniform(0, 3), middle panel),

and large effect size (β ∼ uniform(0, 4), right panel)
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Scenario 2 with small effect size (empirical FDR = 0.064

and 0.062 for OMiAT-HBH and OMiAT-SST, respectively).

Both AGG-HBH and AGG-SST can control the empirical

FDR when the associated taxa are in the same direction

(Fig. 3a), but they are susceptible to having inflated FDRs

when the associated taxa are in mixed directions especially

at the lower rank (Fig. 4a).

The TPR (power) is defined as the proportion of true

positives among the true associated taxa at the target rank.

Both AGG-HBH and AGG-SST suffer from poor power in

both scenarios, owing to the inferior screening performance

of the aggregated method. So we just focus on comparing

the two-stage OMiAT-HBH and OMiAT-SST with the

traditional BH method in the following. The proposed

two-stage framework using OMiAT as the screening test

has substantial power gain against the traditional BH

method, no matter which rank is selected as the screening

rank (Figs 3b and 4b). Noticeably, both OMiAT-HBH and

OMiAT-SST reach the highest power when family rank is

selected as the screening rank. This is a result of the bal-

ance between the screening test’s power and proportion of

truly associated taxa among the significant groups. Com-

paring the results of HBH and SST for controlling FDR, we

can see that HBH has relatively higher power than SST,

since at the target rank, HBH corrects for the multiple

comparisons within each discovered group. In comparison,

SST pools candidate taxa from discovered groups together,

leading to a higher penalty for multiple comparisons. When

the rank of family is chosen as the screening stage, the re-

sults for HBH and SST are similar.

The result for the continuous outcome is consistent with

that for the binary outcome, as shown in Additional files 1,

2 and 3: Figures S1-S3. Results of sensitivity studies show

that OMiAT-HBH/OMiAT-SST has the FDR well con-

trolled around the nominal level and has marked improve-

ment on statistical power compared with BH and

Fig. 4 The false discovery rate (a) and true positive rate (power) (b) of massMap and the traditional BH method for the binary outcome variable.

Scenario 2: the associated taxa have mixed effect directions, with small (β ∼ uniform(−2, 2), left panel), modest (β ∼ uniform(−3, 3), middle panel),

and large effect size (β ∼ uniform(−4, 4), right panel)
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AGG-HBH/AGG-SST, when a much smaller proportion of

OTUs are associated with the outcome (Additional file 4:

Figure S4) and when associated taxa spread among the

taxonomic tree (Additional file 5: Figure S5). In summary,

two implementations of massMap, i.e., OMiAT-HBH and

OMiAT-SST control the FDR around the nominal level for

most of the simulation scenarios. They achieve substantial

statistical power gain over the aggregated method based on

the two-stage method and the traditional one-stage

method, as they successfully incorporate the dependence

structure into the microbial association mapping; their stat-

istical powers peak when the screening is performed at the

middle taxonomic rank family. Based on the simulation re-

sults, we recommend conducting the screening at the fam-

ily rank using massMap.

Real data applications

Here, we apply OMiAT-HBH, OMiAT-SST, AGG-HBH,

AGG-SST, and traditional BH methods to the

population-based American Gut Project (AGP) study and

a murine gut microbiome dataset [28] to further compare

their performance.

American Gut Project

The American Gut Project (www.americangut.org) is a

crowd-sourced project aimed at creating a comprehensive

map of the human microbiome. The data include 16S

rRNA V4 region sequences from 8610 fecal samples using

Illumina MiSeq platform as well as the subjects’ metadata,

as described in [33]. The full data set includes 22,891 OTUs

from 7293 baseline samples. In our analyses, we excluded

subjects who (1) were not USA resident; (2) had missing

values in variables: sex, gender, body mass index (BMI), or

antibiotic history (ABH); (3) were alcoholics; or (4) had

BMI ≥ 80. After filtering, 1134 unique baseline samples were

retained for analysis. Next, OTUs aligned to the bacteria

kingdom were further filtered if (1) they could not be

aligned to a family rank, or (2) they are presented in less

than 3 individuals, or (3) average relative abundance <0.1%.

After filtering, the abundance data related to 90 species

were used for our analyses. We performed the microbial as-

sociation mapping at the species rank on a binary outcome

antibiotic history (ABH) and a continuous outcome body

mass index (BMI), respectively. Sex and age are adjusted in

both analyses.

Antibiotic history (ABH)

The ABH was coded into a binary response to indicate

whether the subject had (ABH= 1, n = 761) or had not

had (ABH= 0, n = 373) antibiotic usage in the preceding

year. The logistic regression model in Eq. (1) was used to

fit the data. As suggested by the simulation results, family

rank was selected to conduct the screening test. With

FDR = 0.05, 12 family groups (consisting of 37 species)

were significantly associated with ABH by OMiAT, while

only four groups (consisting of 5 species) are reported by

the aggregated method (Additional file 6: Table S1). This

indicates that OMiAT is much more powerful as a screen-

ing test compared with the aggregated method.

OMiAT-HBH, OMiAT-SST, and traditional BH methods

each identified 15 ABH-associated species, among which 14

species are common (Table 1). In contrast, AGG-HBH and

AGG-SST only identified five ABH associated species due

to the miss-hits of the aggregated method at the screening

rank. One possible reason that OMiAT-HBH/OMiAT-SST

and the traditional BH method had similar performance

was that the antibiotic effect was sufficiently strong to pass

the stringent multiple comparison corrections in the trad-

itional BH method in this study. However, OMiAT-HBH

and OMiAT-SST produced much smaller FDR-adjusted p

values than did the traditional BH method, which implies

that OMiAT-HBH and OMiAT-SST are more efficient. The

microbial association mapping results of OMiAT-HBH/

OMiAT-SST are illustrated on a taxonomic tree (Fig. 5).

There are four ABH associated microbial species clustered

in family Lachnospiraceae and two species clustered in fam-

ily Micrococcaceae. These observations are consistent with

the hypothesis that evolutionarily closer taxa usually have

similar responses to exposures. Additional file 7: Figure S6

shows the relative abundance distributions for discovered

species. [Ruminococcus] gnavus, Proteus|Other, Rothia muci-

laginosa, Streptococcus|Other, Actinomyces|Other, [Eubacter-

ium] dolichum, Rothia dentocariosa, Granulicatella|Other,

and Haemophilus parainfluenzae are more abundant in

ABH= 1 group; and Ruminococcaceae|Other, Odoribacter|-

Other, Christensenellaceae|Other, Anaerostipes|Other,

Coprococcus|Other, and Dorea formicigenerans are more

abundant in ABH= 0 group.

Body mass index (BMI)

The linear regression model in Eq. (2) was adopted to in-

vestigate the association between BMI for the AGP sub-

jects and microbes at the species level. In massMap, as

suggested by the simulations, screening tests were first

performed at the family rank. With FDR = 0.10, 5 family

groups (consisting of 13 species) were identified as associ-

ated with BMI by OMiAT, whereas none was identified by

the aggregated method (Additional file 8: Table S2). Con-

sidering the target species level, the traditional BH,

OMiAT-HBH, OMiAT-SST, AGG-HBH, and AGG-SST

methods detected 1, 6, 6, 0, and 0 significant taxa associ-

ated with BMI respectively. The associated species identi-

fied by OMiAT-HBH/OMiAT-SST are further presented

in the taxonomic tree in Fig. 6. Compared with the trad-

itional BH and massMap with the aggregated method,

OMiAT-HBH and OMiAT-SST discover more taxa and

exhibit extra power gain, consistent with the simulations.
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The OMiAT-HBH/OMiAT-SST identified species: [Eu-

bacterium] biforme, Bifidobacterium|Other, Catenibacter-

ium|Other, and Prevotella stercorea (bold highlighted in

Table 2) were also reported to be associated with BMI or

related phenotypes in other studies [34–36]. Our results

show that the abundances of [Eubacterium] biforme,

Catenibacterium|Other, and Prevotella stercorea were

positively associated with BMI; and the abundance of

Bifidobacterium|Other was negatively associated with

BMI (Additional file 9: Figure S7). In two separate studies

[33, 34], genus Bifidobacterium was present at higher

abundance in normal-weight than in overweight women.

In another study, two Bifidobacterium strains have signifi-

cant effects on obesity in high-fat diet induced rats [34].

Zhang et al. (2008) [35] reported that the Erysipelotricha-

ceae (from phylum Firmicutes) and Prevotellaceae (from

phylum Bacteroidetes) families are more abundant in the

obesity group than in the normal weight group. In our

analyses, identifying microbial associations at the species

level, Catenibacterium|Other with OTU ID 4480861 from

family Erysipelotrichaceae, and Prevotella stercorea with

OTU ID 513664 from family Prevotellaceae were posi-

tively associated with BMI.

As a sensitivity analysis, the traditional BH, OMiAT-HBH,

OMiAT-SST, AGG-HBH, and AGG-SST methods detected

1, 3, 3, 0, and 0 significant species associated with BMI re-

spectively with FDR= 0.05 (Additional file 10: Table S3). All

methods identified fewer species when a more stringent

FDR threshold was used, but OMiAT-HBH and

OMiAT-SST discovered more.

The effects of early-life antibiotics on murine intestinal

microbiota

Livanos et al. (2016) [28] has conducted a longitudinal

microbiome study to examine whether early-life

sub-therapeutic antibiotic treatment (STAT) would alter the

gut microbiota and accelerate T1D onset in non-obese dia-

betic (NOD) mice. DNA samples from feces were analyzed

by targeting the V4 region of the bacterial 16S rRNA genes

as described in [37]. Using the QIIME pipeline [38], OTU

table and phylogenetic tree were created for 28 control and

21 STAT male mice. Compared with the observational AGP

data, the number of observed OTUs and the size of the

phylogenetic tree are both much smaller in this experimen-

tal mouse study. We re-examined the antibiotic effect on

the fecal microbiome immediately after weaning (week 3).

Originally, 75 species were observed. After filtering species

that were present in ≤ 3 mice, 36 were retained for analysis.

The logistic regression model in Eq. (1) was employed

to detect differentially abundant species between the

STAT and control groups. The screening test was con-

ducted at the family rank in massMap. With FDR =

0.05, OMiAT and the aggregated method identified four

and two groups associated with the antibiotic treat-

ment, respectively (Additional file 11: Table S4). At the

target species rank, the traditional BH, OMiAT-HBH,

OMiAT-SST, AGG-HBH, and AGG-SST methods de-

tected 9, 11, 11, 4, and 4 significant species associated

with antibiotic treatment respectively (Table 3). mass-

Map using OMiAT, i.e., OMiAT-HBH and OMiAT-SST,

reported two more significant species than the

Table 1 The raw and FDR-adjusted p values for the detected ABH-associated species using the AGP data (FDR = 0.05). Adjusted p
values ≥0.05 are left blank

OTU ID Species Raw p value BH OMiAT-HBH OMiAT-SST AGG-HBH AGG-SST

132657 Ruminococcaceae|Other < 2.0E-06 1.80E-04 1.00E-05 7.40E-05

164719 [Ruminococcus] gnavus 9.40E-05 4.20E-03 1.10E-03 1.70E-03

4385479 Proteus|Other 2.90E-04 8.80E-03 1.20E-03 3.60E-03

4476877 Odoribacter|Other 5.60E-04 1.30E-02 1.10E-03 5.20E-03

903426 Rothia mucilaginosa 7.70E-04 1.40E-02 1.50E-03 5.70E-03 1.50E-03 3.20E-03

145236 Christensenellaceae|Other 1.30E-03 1.90E-02 1.30E-03 7.90E-03 1.30E-03 3.20E-03

1005952 Streptococcus|Other 3.40E-03 3.10E-02 3.40E-03 1.40E-02 3.40E-03 4.30E-03

4463237 Actinomyces|Other 3.40E-03 3.10E-02 3.40E-03 1.40E-02 3.40E-03 4.30E-03

177828 Anaerostipes|Other 3.50E-03 3.10E-02 2.10E-02 1.40E-02

4328910 Veillonella parvula 3.50E-03 3.10E-02

4396877 [Eubacterium] dolichum 4.30E-03 3.50E-02 1.70E-02 1.60E-02

4466006 Rothia dentocariosa 5.00E-03 3.80E-02 5.00E-03 1.70E-02 5.00E-03 5.00E-03

47862 Coprococcus|Other 7.90E-03 4.90E-02 3.20E-02 2.20E-02

1102921 Granulicatella|Other 8.10E-03 4.90E-02 8.10E-03 2.20E-02

2654263 Haemophilus parainfluenzae 8.20E-03 4.90E-02 8.20E-03 2.20E-02

4424063 Dorea formicigenerans 1.50E-02 4.40E-02 3.60E-02

Number of detected ABH-associated species 15 15 15 5 5
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traditional BH method, whereas the aggregated method

had the fewest findings. Two species Lactobacillus del-

brueckii and Oscillospira guilliermondii explicitly re-

ported by OMiAT-HBH and OMiAT-SST have much

lower relative abundances in STAT mice than in con-

trol mice (Additional file 12: Figure S8). The associated

species reported by the OMiAT-HBH and OMiAT-SST

are presented in the taxonomic tree (Fig. 7), and they indi-

cate a clear clustering association pattern. From the figure,

we observe that there are four associated species clustered

in family Lachnospiraceae and four species clustered in

family Ruminococcaceae that are differentially presented

in STAT and control groups. With clustered signals, mass-

Map achieves higher power as expected.

Discussion
massMap can easily be extended to examine survival

outcome. A highly adaptive microbial group association

Fig. 5 The microbial association mapping of antibiotic history (ABH) in American Gut Project subjects (FDR = 0.05). ABH-associated species with

corresponding significant taxonomic groups reported by OMiAT-HBH and OMiAT-SST are highlighted. The taxonomic tree was generated using

GraPhlAn [46]. The nodes on the tree from inner to outer circles are the phylum, class, order, family, genus, and species rank. The corresponding

annotations are written in the reverse order. Family rank is selected to conduct the screening test for massMap
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test for survival outcome (OMiSA) has been separately

developed by our group [39]. Upon publication, it will

be added to our massMap software. Furthermore, the

concepts underlying massMap can be generalized to the

functional pathway analysis of metagenomics data. Con-

fronting numerous pathways, one can first test for differ-

ential microbial abundance at the pathway level and

then proceed to test for differential microbial abundance

at the gene family level. In practice, to implement mass-

Map, it is required to pre-determine the screening rank.

Based on the simulation results and our practical experi-

ence with the real data analyses, we recommend con-

ducting the screening at the middle taxonomic rank

family. We should note that massMap is an association

mapping tool and does not make causal inference. It

provides candidate microbial taxa for the follow-up

Fig. 6 The microbial association mapping of body mass index (BMI) in American Gut Project subjects (FDR = 0.10). The associated species with

corresponding significant taxonomic groups identified by OMiAT-HBH and OMiAT-SST are highlighted in the taxonomic tree. Among six detected

species, [Eubacterium] biforme in phylum Firmicutes is also detected by the traditional BH method. The taxonomic tree was generated using

GraPhlAn [46]. The nodes on the tree from inner to outer circles are the phylum, class, order, family, genus, and species rank. The corresponding

annotations are written in the reverse order. Family rank is selected to conduct the screening test for massMap
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validation studies, where additional experiments could

elucidate the causal role of the discovered taxa on the

outcome trait.

massMap uses the relative abundance of taxa to

perform the association analysis. The relative abun-

dance data is compositional as the summation in

each sample is constrained to one [40]. The log-ratio

transformation of relative abundances have been

used to relieve the compositionality issue [6] in vari-

ous methods. However, since the compositional ef-

fect is attenuating as the number of taxa increases

and our goal is to detect which taxa (instead of ratio

of taxa) are associated with the outcome, we prefer

to work on the relative abundance for better inter-

pretation. A school of statistical methods working on

the relative abundance data have been developed, in-

cluding differential abundance analyses [41–43] and

association mapping analyses [18, 27, 29].

We shed light on the usage of advanced FDR control-

ling methodologies [21–24] in the two-stage microbial

association analysis. Our simulations were based on the

large-scale population-level microbiome AGP study with

174 OTUs after filtering. The HBH and SST

FDR-controlling procedures can control the FDR in

most scenarios while among few scenarios, we did ob-

serve minor FDR inflation in HBH and/or SST proce-

dures. Similar two-stage analysis has been studied in

analyzing microarray data; when there are a large num-

ber of hypotheses (usually in the thousands) at the target

level in microarray studies, an inflated FDR for the HBH

procedure has been reported [21]. Reiner-Benaim et al.

(2007) [25] presented a corrected threshold q∗ for both

stages to control the FDR around the nominal level in

the microarray data analysis setting. A similar correction

can be considered if the number of hypotheses in the

application is very large.

Sankaran and Holmes (2014) [44] applied the HBH

procedure to an environmental microbiome dataset

based on phylogenetic tree of the microbes, which is

different from the proposed massMap based on the

taxonomic tree. The phylogenetic tree is deeper than

the taxonomic tree with complex structure. It consists

Table 2 The raw and FDR-adjusted p values for the detected BMI-associated species using the AGP data (FDR = 0.10). Adjusted

p values ≥0.10 are left blank. Note that there is no associated species reported by the aggregated method. The biological evidence

for the bold highlighted taxa has been found in the literature [34–36] and discussed in the text

OTU ID Species Raw p-value BH OMiAT-HBH OMiAT-SST

297635 [Eubacterium] biforme 1.90E-04 1.70E-02 7.60E-04 2.50E-03

824876 Bifidobacterium|Other 2.70E-03 5.30E-03 1.70E-02

4319938 Clostridiaceae|Other 1.00E-02 2.00E-02 3.50E-02

840279 [Barnesiellaceae]|Other 1.10E-02 1.10E-02 3.50E-02

4480861 Catenibacterium|Other 1.50E-02 3.10E-02 4.00E-02

513664 Prevotella stercorea 2.00E-02 8.00E-02 4.30E-02

Number of detected BMI-associated species 1 6 6

Table 3 The raw and FDR-adjusted p values for the detected STAT-associated species using the murine data (FDR = 0.05). Adjusted

p values ≥0.05 are left blank

OTU ID Species Raw p value BH OMiAT-HBH OMiAT-SST AGG-HBH AGG-SST

33701 Adlercreutzia| Other 2.90E-04 1.00E-02 2.90E-04 5.10E-03

37580 Lactobacillus| Other 1.70E-03 2.40E-02 6.90E-03 1.20E-02

9867 Ruminococcaceae| Other 2.00E-03 2.40E-02 9.20E-03 1.20E-02 9.20E-03 6.90E-03

50804 Ruminococcus| Other 3.70E-03 3.00E-02 9.20E-03 1.50E-02 9.20E-03 8.00E-03

47849 Oscillospira| Other 4.60E-03 3.00E-02 9.20E-03 1.50E-02 9.20E-03 8.00E-03

34428 Coprococcus| Other 5.40E-03 3.00E-02 1.30E-02 1.50E-02

195457 Blautia producta 6.80E-03 3.00E-02 1.30E-02 1.50E-02

35567 [Ruminococcus] gnavus 7.00E-03 3.00E-02 1.30E-02 1.50E-02

2416 Anaerostipes| Other 7.60E-03 3.00E-02 1.30E-02 1.50E-02

10675 Lactobacillus delbrueckii 1.70E-02 3.30E-02 3.00E-02

20780 Oscillospira guilliermondii 2.30E-02 3.50E-02 3.80E-02 3.50E-02 3.20E-02

Number of detected STAT-associated species 9 11 11 4 4
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of many levels and every parent node has a maximum

of two daughter nodes. It is not clear whether the

HBH procedure applied to the phylogenetic tree pro-

posed in [38] can control FDRs or not. Xiao et al.

(2017) [45] also proposed an FDR-controlling method

based on the hierarchical tree (TreeFDR), with the

underlying assumption that associated taxa have the

same effect direction and are clustered in the phylo-

genetic tree. When this assumption is violated such

as in scenario 2 of our simulation study, TreeFDR

would suffer great power loss as the aggregated

method did.

Conclusions

In this paper, we focus on developing a two-stage

microbial association mapping framework called mass-

Map for binary and continuous outcomes. MassMap in-

corporates the highly powerful microbial group test

Fig. 7 The microbial association mapping of STAT vs control groups using the murine data (FDR = 0.05). STAT-associated species with

corresponding significant taxonomic groups reported by OMiAT-HBH and OMiAT-SST are highlighted. The taxonomic tree was generated using

GraPhlAn [46]. The nodes on the tree from inner to outer circles are the phylum, class, order, family, genus, and species rank. The corresponding

annotations are written in the reverse order. Family rank is selected to conduct the screening test for massMap
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OMiAT for screening and HBH/SST for the control of

FDR. Compared with the traditional one-stage method,

massMap achieves marked improvements in statistical

power while well controlling FDR under most scenarios.

Consequently, we recommend that massMap can be ex-

tensively used for microbiome-wide association analyses

as a highly efficient method.
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Additional file 7: Figure S6. Relative abundances of ABH-associated

species present in the fecal samples from AGP subjects without (indicated

as 0) or with (indicated as 1) recent antibiotic use (ABH). The species were

detected by the proposed two-stage framework OMiAT-HBH and OMiAT-
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BMI detected by OMiAT in AGP data (FDR = 0.10). The aggregated method

did not identify any significant groups at the family rank. (PDF 143 kb)
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OMiAT-HBH and OMiAT-SST (FDR = 0.10). (PDF 309 kb)
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