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We consider a new queuing model with sequential two stations (stages), single server at each station, where no queue is allowed at
station 2 andwith no restriction at station 1.
ere is a FCFS service discipline inwhich the input stream is Poisson having rate �.
e
service time of any customer at server i (� = 1, 2) is exponential with parameter ��.
e state probabilities and loss probability of this
model are given.
e performance measures are obtained and optimized, and, additionally, the model is simulated.
e simulation
results, exact results, and optimal results of the performance measures are numerically computed for di�erent parameters.

1. Introduction

New models of queuing theory have been needed lately
concerning the developments in areas such as production
line, communication, and computer systems. One of these
necessary models is for a tandem queuing system. Many
important studies have been done in this area. 
e mean
waiting time and the mean customer number at two tandem
channels (servers) which are Poisson arrival and exponential
service time were given in [1]. 
e mean customer number,
distribution of waiting time, and the probabilities of various
numbers of the tandem queuing system at every stage of
the Poisson arrival and the exponential service time of the
tandem queuing system were found in [2]. In [3], it was
proved that if arrivals to the system are Poisson process with
the parameter, then the output of this system is also Poisson
process with a parameter �. A more complicated example
with network analysis was studied in [4]. In queuing theory,
it is usually assumed that service channels are homogeneous.
However, it is seen that in real queuing systems, service
channels sometimes are heterogeneous. Understanding such
systems is important for nding solutions to both theoretical
and technical problems. Under the condition that the sum

of service rates is xed, homogeneous systems have been
compared with the heterogeneous systems for performance
measures in [5–9]. 
e measures of e�ectiveness for tandem
queueswith blockingwere calculated according to an approx-
imation method and simulated in [10]. 
e tandem queues
with one server in the rst queue, and � ≥ 1 servers in the
second queue, where the arrivals to the system with Poisson
process having parameter � and there is no waiting room
between the two stages, were analyzed and some probabilities
for the number of customers were found in [11]. In the
literature usually, for some similar models to ours, blocked
tandemqueueing systems have been studied and probabilities
of number of customers have been obtained. Approximate
and simulation results of performance measures have been
obtained. In our proposed model, there is no restriction for
the rst stage, there is no waiting room between both stages
and no blocking (i.e., customers leave the system a�er hav-
ing service in the rst stage if the second stage is busy).
Probabilities of being-nonbeing of customers in the rst and
second stages, performancemeasures, and the optimal values
of these measures are theoretically obtained by analyzing our
proposed method. Also, we have compared some results by
obtaining simulation results.
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In real life, while there is waiting case in the service sys-
tems, because of obligations and urgency and unavailability
of desired features, the loss may occur in the beginning of
second stage as in our proposed model. 
erefore, we have
decided to construct such a model and analyze it.
e follow-
ing two examples can be proposed as potential applications
of our model under some conditions.


e following examples can be proposed as the applica-
tions of our model on some topics.

(a) Fruit-Vegetable Packing Line. 
ere is a company which
exports fresh fruits and vegetables. 
is company has a
product packing linewhich consists of two stages, for a special
export fruit. 
e product comes to rst stage for quality
control. Later, if the product is not in the desirable size or
quality, then it is taken away from the system (the loss occurs).

e product is sent to the second stage to be packed with no
waiting time, if it qualies the desirable size and quality.

(b) VoIP (Voice Over Internet Protocol). Internet telephony
refers to communications services—voice, fax, SMS, and/or
voice-messaging applications—that are transported via an IP
network, rather than the public switched telephone network
(PSTN). 
e steps involved in originating a VoIP telephone
call are signalling andmedia channel setup, digitization of the
analogy voice signal, encoding, packetization, and transmis-
sion as Internet Protocol (IP) packets over a packet-switched
network. On the receiving side, similar steps (usually in the
reverse order) such as reception of the IP packets, decoding
of the packets, and digital-to-analogy conversion reproduce
the original voice stream.

More generally, the server transfers voice messaging to
the recipient. In this system, the server is rst service, the
recipient is second service. If the recipient is busy, and then
the server destroys voice messaging at that moment.

2. The Model

Let �1 and �2 be the number of customers in the rst and
second stages, respectively, at any time of �, including those
being served, where �1 = 0, 1, 2, . . .; �2 = 0, 1.

For stage �, let ��(�) be dened as follows:

�� (�) = {�1, � = 1,�2, � = 2. (1)

We can denote


�1,�2 (�) = Prob {�1 (�) = �1, �2 (�) = �2} . (2)


e random process

{�� (�) : � = 1, 2; � ≥ 0} (3)

is a continuous-time two-dimensionalMarkov chain. For � ≥1, the state space of this chain becomes

 = {(0, 0) , (0, 1) , (�, 0) , (�, 0)} . (4)

We wish to nd the steady-state probability ��1 ,�2 :
��1 ,�2 = lim

�→∞

�1,�2 (�) . (5)


e usual procedure leads to the steady-state equations for
this Markov chain:

0 = −��00 + �2�10, (6)

0 = − (� + �2) �01 + �1�10 + �1�11, (7)

0 = − (� + �1) ��1 ,0 + ���1−1,0 + �2��1 ,1, �1 ≥ 1, (8)

0 = − (� + �1 + �2) ��1 ,1 + ���1−1,1
+ �1 (��1+1,0 + ��1+1,0) , �1 ≥ 1. (9)

We dene �� = �/�� for � = 1, 2 and � = �/(�1 + �2).
2.1. State Probabilities. 
e probability ��1 denotes the prob-
ability of nding �1 customers in the rst stage at an arbitrary
point in time (see [12]). We can write these as

��1 = ��1 ,0 + ��1 ,1 = ��11 (1 − �1) , �1 ≥ 0, (10)

�00 + �01 = 1 − �1. (11)

Using this equation and (6), we obtain the following:

�01 = � (1 − �1)� + �2 = (1 − �1) �21 + �2 ,
�00 = �2� �01 = 1 − �11 + �2 .

(12)

By substituting the expression ��1+1 in (9), we get

(� + �1 + �2) ��1 ,1 = ���1−1,1 + �1��1+1, �1 ≥ 1. (13)

Let us take � = �/(1 + �) and choose ��1 ,1 a place to put ��1
in (13), for simplicity. In this case, the following equation can
be obtained:

��1 = ���1−1 + ���1 , �1 ≥ 1. (14)

Both sides of (14) are divided into ��1 , and later, the index �1
is changed to �. 
en, we sum this obtained value:

��1��1 − �0 =
�1∑
�=1

����−1 =
�1 (1 − �1) (��1 − ��11 )(1 − (�1/�)) ��1 , (15)

��1 ,1 − ��1�01 = ��1 (1 − �1) (�
�1 − ��11 )� − �1 , (16)

��1 ,1 = ��1 (1 − �1) (�
�1 − ��11 )� − �1 + (1 − �1) �21 + �2 ��1 . (17)
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When the value of � in (17) is substituted, the following equa-
tion is obtained:

��1 ,1 = (1 − �1) �21 + �2 ��11 . (18)

We get the probability ��1 ,0 from (10) and (18):

��1 ,0 = (1 − �1)1 + �2 �
�1
1 . (19)

2.2. Loss Probability. 
e customer’s loss probability is given
as

�� = ∞∑
�1=0

��1 ,1 = �21 + �2 . (20)

In other way, the formula (20) can be obtained from “Erlang’s
loss formula” or “Erlang’s B formula” for the�/�/�/� queue.
In [13], it is denoted as �(�, �2) and formulated as the follows:

� (�, �2) = �2/�!∑	�=0 ��2 /�! , (21)

where �2 is the utilization factor. Substituting � = 1 in (21),
we have (20).

3. The Measures of Performance and
Optimization of Performance Measures

3.1. �eMean Sojourn Time. Let � be a random variable that
describes the sojourn time of customers in the system. Using
the law of total expectation, we can write is as follows

 (�) =  (� | �) 
 (�) +  (� | �)
 (�) , (22)

where 
(�) is the probability of the loss of a customer. Now
it is clear that

 (� | �) = 1�1 − � ,  (� | �) = 1�1 − � +
1�2 . (23)


us,

 (�) = �1 + �2(�1 − �) (�2 + �) . (24)

Our main results about the problem of minimizing the mean
sojourn time can be explained by the following theorem.

�eorem 1. If sum of two service rates �1 + �2 = � is 	xed,
then the mean sojourn time of this tandem system attains its
minimum value for �1 = �/2 + � and �2 = �/2 − �.

Proof. We will prove the theorem by using the following
inequality:

( 
∏̇
I=1
��)
1/


≤ 1#

∑
�=1
��, ∀�� > 0, ∀# ∈ Z+. (25)

From inequality (25), we have

1(�1 − �) (�2 + �) ≥
4�2 . (26)

If we replace the expressions �1+�2 = � and 4/�2 in equality
(24), we obtain the minimum value of (�) as follows:

min (�) = 4� , (27)

where the equality (27) is provided with �1 = �/2 + � and�2 = �/2 − �.
3.2. �e Mean Number of Customers. Let & be the random
variable that describes the number of customers in the sys-
tem:

 (&) = ∞∑
�1=0

1∑
�2=0

(�1 + �2) ��1 ,�2
= � (�1 + �2)(�1 − �) (�2 + �) ,

(28a)

or

 (&) = � (�) . (28b)


e mean number of customers in the system is opti-
mized from
eorem 1 and the equality (28b) as below:

min (&) = �min (�) = 4�� . (29)


e independence of the number of customers can be
expressed by the following theorem.

�eorem 2. If the random variables &1 and &2 are taken as
the number of customers in the 	rst and second stages, respec-
tively, then&1 and&2 are independent random variables.

Proof. 
e joint probability mass functions of &1 and &2
random variables is

��1 ,�2 = 
 (&1 = �1, &2 = �2) , �1 = 0, 1, 2, . . . ; �2 = 0, 1.
(30)

If �2 = 0 and (�2 = 1) are substituted in (30), the equations
(19) and (18) are obtained, respectively.


e marginal probability mass function of&1 is given as
(10).



4 Mathematical Problems in Engineering

Table 1: For � = 0.30, �1 = 0.80; �2 = 1.00.
Iteration
number

Simulation results Exact results Optimal results

(�) (&) (�) (&) (�) (&)
100 2.8163 0.8452 2.7692 0.8308 2.2222 0.6667

1000 2.8111 0.8433 2.7692 0.8308 2.2222 0.6667

5000 2.8124 0.8436 2.7692 0.8308 2.2222 0.6667

Table 2: For � = 0.1, �1 = 0.9; �2 = 0.9.
Iteration
number

Simulation results Exact results Optimal results

(�) (&) (�) (&) (�) (&)
100 2.2661 0.2263 2.2500 0.2250 2.2220 0.2222

1000 2.2599 0.2261 2.2500 0.2250 2.2220 0.2222

5000 2.2500 0.2260 2.2500 0.2250 2.2220 0.2222

Table 3: For � = 0.01, �1 = 0.6; �2 = 0.7.
Iteration
number

Simulation results Exact results Optimal results

(�) (&) (�) (&) (�) (&)
100 3.1042 0.0311 3.1034 0.0310 3.0769 0.0308

1000 3.1034 0.0310 3.1034 0.0310 3.0769 0.0308

5000 3.1043 0.0310 3.1034 0.0310 3.0769 0.0308


emarginal probability mass function of&2 is obtained
from Erlang’s B formula or (20):

��0 = 
 (&2 = 0) = 11 + �2 , (31)

��1 = 
 (&2 = 1) = �21 + �2 , (32)

��1 ,�2 = ��1���2 , �1 = 0, 1, 2, . . . ; �2 = 0, 1. (33)

If (10) and (31) are substituted in (30), the equation (19) is
obtained, and if (10) and (32) are substituted in (30), the
equation (18) is obtained. 
us, the independence of &1 and&2 has been demonstrated.

4. Numerical Results


e random arrivals and service times were generated from
exponential distribution as seconds by using MATLAB 7.10.0
(R2010a) programming for this proposedmodel.
e number
of customers taken was 10000 and was performed in three
iterations. Performance measures are calculated for di�erent
values of �� (� = 1, 2) and three di�erent iterations steps, that
is, 100, 1000, and 5000. 
ese results were shown in Tables 1,
2, and 3.

5. Conclusions

A new queuing discipline is given for a Markov model which
consists of two consecutive channels and no waiting line

between channels. In this model, steady-state equations, the
mean sojourn time, the mean number of customers, and
loss probability are obtained. Additionally, two theorems are
givenwhich are about optimization of performancemeasures
and the independent of the number of customers, respec-
tively. Performance measures are calculated for di�erent val-
ues of �� (� = 1, 2) and for three di�erent iterations steps, that
is, 100, 1000, and 5000. Moreover, results of these measures
are compared in the tables above. It has been seen that
the simulation results approximated the theoretical results.
Although the iteration number is increased, the simulation
results of performance measures have not changed. However,
as �� (� = 1, 2) converges to zero, both the simulation results
and exact results approximately are equal to optimal results.

us, it is said that our proposed queueing model operates
well.

For further research, a model, in which a customer who
completed his service in channel 1, blocks channel 1 with
probability ' or leaves the systemwith probability 1−' while
channel 2 is busy, can be studied.
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